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Abstract

We investigate the cosmological dynamics of non-minimally coupled scalar field system
described by F (φ)R coupling with F (φ) =

(

1 − ξφN
)

R (N ≥ 2) and the field potential,
V (φ) = V0φ

n. We use a generic set of dynamical variables to bring out new asymptotic
regimes of the underlying dynamics. However, our dynamical variables miss the most im-
portant fixed point− the de Sitter solution. We make use of the original form of system of
equations to investigate the issues related to this important solution. In particular, we show
that the de-Sitter solution which is a dynamical attractor of the system lies in the region of
negative effective gravitational constant GN thereby leading to a ghost dominated universe
in future and a transient quintessence(phantom) phase with GN > 0 around the present
epoch1.

1 Introduction

Theories with a scalar field non-minimally coupled to gravity dubbed scalar tensor theories
have been studied for decades. The first well-known example of non-minimal coupling a la

Brans-Dicke theory, was proposed in 1961 with an aim to match Mach principle with General
Relativity [1]. In this theory the gravitational constant is replaced by a scalar field φ entering
into the action in a specific combination with Riemanian curvature as φ2R.

Followed by the Brans-Dicke proposal, other forms of scalar-tensor action were investigated,
a well known example of a non-minimally coupled system is provided by F (φ)R coupling with
F = 1− ξφ2. The cosmological dynamics of such a theory is rather rich and deserves attention.
For a recent development in this direction, it is worth nothing that non-minimally coupled Higgs
field due to a large coupling ξ might give rise to a successful inflation [2] which is otherwise
impossible.

The non-minimally coupled scalar field system due to novel features are of great interest to
dark energy model building [3-11]. For instance, non-minimal coupling might allow phantom
crossing and may give rise to cosmological scaling solutions of interest to models of dark energy.
Phantom scaling solutions are generic features of a non-minimally coupled system with F =
1 − ξφ2 [12].

In recent years, methods of dynamical system theory have been extensively used in cosmol-
ogy for obtaining a general picture of dynamics for many cosmological models including those
with a scalar field and modified gravity. The advantage of this method is in having some kind
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1However, as demonstrated by Starobinsky in 1981, the ghost dominated universe, if exists, can not be accessed

from the Universe we live in, we shall say more about this important result in the last section.
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of ”machinery ” for deriving asymptotic solution using a simple programmed algorithm. This
requires introduction of new set of variables in which the initial system can be rewritten as a
system of first-order equations. On the other hand, there is a danger of losing some impor-
tant solution as well as inability for this scheme to find transient regimes which can also be
important. Nevertheless, a classification of stable asymptotic regimes, given by this method
may be useful for understanding the underlying dynamics. The success and the limitation of
the framework of dynamical systems applied to f(R) theory can be found in [13] and [14].

We shall restrict our discussion to a polynomial functions F of the form F (φ) = 1 − ξφN

(N ≥ 2) and power-law potentials for the scalar field, V (φ) = V0φ
n giving rise to generalization

of models considered earlier [12, 14-16](see also Ref. [17] on the related theme). The set of
variables that we use can help in bringing out some generic features of the underlying dynamics
and new asymptotic regimes missed in earlier studies. We should, however, note that the set of
variables used in the present paper is not useful for the study of approximate Einstein regime
in the system under consideration. For detailed description of this regime, other methods are
required [18]. Secondly, our variables miss the existence of de Sitter solution and in order to
investigate its existence and stability, we need to go back to initial variables to perform the
analysis.

In this paper, we investigate cosmological dynamics of non-minimally coupled scalar field
system with specific functional forms of coupling and field potential using a convenient set of
dynamical variables. We shall focus on the asymptotic regimes of the solutions of interest and
reveal the important features associated with the de Sitter solution.

2 Equations of motion

Let us consider the scalar field system with non-minimal coupling in the form,

S =
1

2

∫ √−gd4x
[

m2
P lR − (gµνφµφν + ξRB(φ) + 2V (φ))

]

+ SM , (1)

where m2
P l = 1/8πG = 1/κ, and ξ is the dimensionless parameter and SM designates matter

action.
In a homogenous isotropic Friedmann-Robertson-Walker universe with spatially flat metric,

ds2 = −dt2 + a2(t)dl2, (2)

the equations of motion which are obtained by varying the action with(1) have the form,

H2 =
κ

3

(

1

2
φ̇2 + V (φ) + 3ξ(Hφ̇B′(φ) + H2B(φ)) + ρ

)

, (3)

R = κ
(

−φ̇2 + 4V (φ) + 3ξ(3Hφ̇B′(φ) + R
3 B(φ) + φ̇2B′′(φ) + φ̈B′(φ)) + ρ(1 − 3ω)

)

, (4)

φ̈ + 3Hφ̇ + 1
2ξRB′(φ) + V ′(φ) = 0. (5)

where ρ and p are the energy density and pressure of the ordinary matter with p = ωρ.
From the standard form of equations Rij − 1

2Rgij = 8πGN (Tij,φ + Tij,m) = κT eff
ij , we read

off the expression for GN as the effective Newtonian gravitational constant GN = κ
8π(1−κξB(φ)) ,

and we shall use this definition of GN hereafter. Ricci Scalar in chosen metric is given by,
R = 6(2H2 + Ḣ). For convenience, we shall use the system of unites with κ = 6 .

We introduce the following dimensionless variables,

x = φ̇2

H2(1−6ξB(φ)) , y =
2V (φ)

H2(1−6ξB(φ)) , z =
6ξφ̇B′(φ)

H(1−6ξB(φ)) , Ω = 2ρ
H2(1−6ξB(φ)) , (6)

2



and the dimensionless parameters that depend on the specific form of functions B(φ), V (φ),

A = B′(φ)φ
(1−6ξB(φ)) , b = B′′(φ)φ

B′(φ) , c = V ′(φ)φ
V (φ) . (7)

Here ′ denotes derivative with respect to φ.
We will consider only function in the form B(φ) = φN and V (φ) = V0φ

n. In this case the

parameters b = N(N−1)φN−1

NφN−1 = N − 1 and c = V0nφn

V0φn = n are constants and don’t depend on
time.

Taking derivative with respect to ln a of the introduced variables x, y, z and the parameter
A (Ω is excluded with the identity Ω = 1− x− y − z, which is a consequence of (3)) we get the
system of equations

x′ = dx
d lna

= 12x
(

1
2 − z

18(4x+z2)

(

−6x + 12y + z2b
2ξA

+ yc
ξA

+ 3(1 − x − y − z)(1 − 3ω)
))

−
−2x

(

2x
3(4x+z2)

(

−6x + 12y + z2

4ξA

(

2b − yc
x

)

+ 3(1 − x − y − z)(1 − 3ω)
)

− 2
)

+ xz,

y′ = yz
6ξ

c
A
− 2y

(

2x
3(4x+z2)

(

−6x + 12y + z2

4ξA

(

2b − yc
x

)

+ 3(1 − x − y − z =)(1 − 3ω)
)

− 2
)

+

+yz,

z′ = 6z
(

1
2 − z

18(4x+z2)

(

−6x + 12y + z2b
2ξA

+ yc
ξA

+ 3(1 − x − y − z)(1 − 3ω)
))

+ z2

6ξ
b
A
−

−z
(

2x
3(4x+z2)

(

−6x + 12y + z2

4ξA

(

2b − yc
x

)

+ 3(1 − x − y − z)(1 − 3ω)
)

− 2
)

+ z2,

A′ = z
6ξ

(b + 1) + Az.

(8)
In what follows, we shall investigate the autonomous system (8) for fixed points. We would
specially be interested in stable solutions of interest to late time cosmic acceleration.

3 Stationary points and their stability : B(φ) = φN , V (φ) = V0φ
n

In this special case, b = B ′′(φ)φ/B′(φ) = N − 1 and c = V ′(φ)φ/V (φ) = n. Our autonomous
system was written keeping this simple case in mind.

We shall find stationary points equating to zero the left-hand sides of the system (8). Their
stability will be established using the sign of the corresponding eigenvalues which we shall obtain
numerically. We begin our discussion from the case, N 6= 2 (b 6= 1). In the case of N = 2, a
simple additional relation exists between x and z and we also investigated corresponding system
with the same method (obtained solutions in this case coincide with ones found in [15], these
results are written down in the Table 1.). In the general case the form of this relation is more
involved algebraically and its substitution into our system leads to cumbersome equations. We,
therefore, prefer not to make use of it, we would rather check resulting solutions for consistency.

3.1 The case of b 6= 1(N 6= 2).

After solving the system of algebraic equations obtained after equating the left hand sides of
(8) to zero, we find the following stationary points:

1. Vacuum stationary line: x = 1, y = 0, z = 0, A = − b+1
6ξ

,Ω = 0
This is a vacuum solution for which the corresponding eigenvalues are given by,

λ1 = 3 − 3ω, λ2 = 6, λ3 = 0, λ4 = 0. (9)

As one of these eigenvalues is positive, the stationary line is unstable for any value of ξ and ω.
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The time dependence a(t), φ(t), ρ(t) can be found using the combinations of coordinates of
a stationary point. For point 1 we get

a(t) = a0|t − t0|
1
3 , (10)

|φ(t)|
2−N

2 = ± (2−N)
√

6|ξ|
6 ln | t−t0

t′−t′0
|, (11)

where t0 = const, t′ = const, t′0 = const. This solution exists for 0 < N < 2. We can now
write the expression for the quantity GN using the coordinates of the stationary point, A =
B′(φ)φ/(1 − 6ξB(φ)) = NφN/(1 − 6ξφN ) = N/(φ−N − 6ξ), we find that φN = A/(N + 6ξA)
leading to GN = 6/8π(1 − 6ξφN ) = 6(N +6ξA)/8πN which is positive when ξ > 0, A < −N/6ξ
or ξ < 0, A > −N/6ξ. We note that at all stationary points either t → t0 or t → ∞. And all
functions of time (a(t), φ(t), H(t), ρ(t)) either go to zero or infinity or become constants in this
limit.

Since the stationary line reduces to a stationary point for which A = −N/6ξ (φ(t) → ∞),
it follows that GN → 0. We also note that the vacuum solution does not contain parameters,
ω, n and N .

2. x = 0, y = 0, z = 1, A = − b+1
6ξ

= −N
6ξ

,Ω = 0

The eigenvalues are,

λ1 =
b − 1

b + 1
=

N − 2

N
, λ2 =

5 + 5b − c

b + 1
= 5 − n

N
, λ3 = 2 − 3ω, λ4 = 1. (12)

This point is unstable because λ4 is positive for any ξ, ω. We can compute a(t)

a(t) = a0|t − t0|
1
2 , (13)

φ(t) = φ0|t − t0|−
1

2N . (14)

Consistency analysis shows that this solution exists for N > 2 and n < 5N , so it never
coexists with the solution discussed above under point 1. They both correspond to the situ-
ation in which the scalar field potential is negligible. Power indexes in this solutions do not
depend on ξ, ω, n, however the function φ(t) contains dependence on N . We also note that
since A = −N/6ξ (φ(t) → ∞ for t → t0) in the present case, GN vanishes asymptotically at
the stationary point.

3. x = 0, y = 0, z = −1 + 3ω, A = − b+1
6ξ

= −N
6ξ

, Ω = 2 − 3ω
The corresponding eigenvalues are,

λ1 = (1−b)(1−3ω)
b+1 ,

λ2 = c(1−3ω)+3(b+1)(1+ω)
b+1 < 0, for c > 3(b + 1), ω0 < ω < 1,

λ3 = −2 + 3ω < 0, for ω < 2
3 ,

λ4 = −1 + 3ω < 0, for ω < 1
3 .

(15)

where ω0 = −3(b+1)+c

3(b+1−c) > 1
3 for b > 0, c > 3(b + 1).

As regions where λ2 and λ4 are negative do not intersect, this point is unstable (either a
saddle or a repulsive node).

For obtaining a(t), φ(t), we note that Ystat = 0, β = 1−3ω
b+1 = 1−3ω

N
. This tells us that,

a(t) = a0|t − t0|
1
2 , (16)

φ(t) = φ0|t − t0|
1−3ω
2N . (17)
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The time dependence of the matter density is obtained

ρ(t) = ρ0|t − t0|−
3(1+ω)

2 (18)

Power indexes of this solution do not contain parameters ξ, n and they depend on ω, N .
It follows from the definition of Ω that it must be positive to ensure that ρ > 0 andGN > 0.
Since Ω = 2− 3ω in the present case, we should have ω < 2/3 to avoid a pathological situation.
We also note that since A = −N/6ξ (φ(t) → ∞), the effective Newtonian constant GN vanishes
at the stationary point.

4.

x = 0, y =
(b + 1)(c(1 − 3ω) + 3(b + 1)(ω + 1))

2c2
,

z =
3(b + 1)(ω + 1)

c
, A = −b + 1

6ξ
= −N

6ξ
, (19)

Ω =
2c2 − (b + 1)(3(ω + 1)(b + c + 1) + 4c)

2c2

The corresponding eigenvalues are,

λ1 = 3(ω+1)(b−1)
c

,

λ2,3 = 3(ω+1)(b+1)2+3c(ω−1)(b+1))
4c(b+1) ±

√
(b+1)(f1(b,c)ω+f2(b,c)+9ω2f3(b,c))

4c(b+1) ,

λ4 = 3(ω+1)(1+b)
c

,

(20)

where

f1(b, c) = −210c2(b + 1) + 162(b3 + 1) + 192b2c + 192c + 486b(b + 1) + 384bc + 48c3,

f2(b, c) = 81(1 + b3) + (243b + 17c2)(1 + b) + 174c(1 + b2) − 16c3 + 348bc,

f3(b, c) = (1 + b)(b + 1 + c)(9(b + 1) − 7c).

and λ1, λ4 are positive for −1 < ω 6 1 therefore this stationary point is unstable for any ξ.

Analogous to previous points we get

a(t) = a0|t − t0|−
2n

3(N−n)(ω+1) ,

φ(t) = φ0|t − t0|
2

(N−n) ,

ρ(t) = ρ0|t − t0|
2n

N−n . (21)

We note that power indices of this solution depend on ω, N , n and do not depend on the
coupling constant ξ.

For b + 1 = c (N = n), the power index of functions a(t) and φ(t) is infinite and power-law
solutions cease to exist. In this case the coordinates of the fixed point 4 are, x = 0, y = 2, z =
3(ω + 1), A = − b+1

6ξ
,Ω = −(3ω + 4). We note that Ω < 0 for ω ∈ [−1, 1] and that from the

definition of Ω in (6), it follows that either ρ > 0, GN < 0 or ρ < 0, GN > 0 which doesn’t
correspond to the real Universe. We find in this case that

a(t) = a0e
H0(t−t0),

φ(t) = φ0e
− 3H0(1+ω)(t−t0)

N ,

ρ(t) = ρ0e
−3H0(1+ω)(t−t0). (22)

As for the constants H0 and ρ0, we substitute (22) in definitions (6) of y, Ω taking into account
that N = n, y = 2 and Ω = −(3ω + 4). We then have for this exponential solution y → − V0

3H0
2ξ
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for t → t0 when H0 > 0 (or t → t0 when H0 < 0 ). Therefore, H0
2 = − V0

3ξy
= −V0

6ξ
, where ξ < 0,

V0 > 0 or ξ > 0, V0 < 0, and ρ0 = −3ΩH0
2φ0

Nξ = −V0φ0
N (3ω+4)

2 .
We next consider the behavior of quantities T = Tφ + Tm and R = 6Teff = 8πGNT for the
case N = n. Substituting the so obtained exponential solution, a(t) = a0e

H0(t−t0), φ(t) =

φ0e
− 3H0(1+ω)(t−t0)

N in (4), we find

Teff = R
6 = 2H0

2 = const,

GN = 6
8π(1−6ξφ0

Ne−3H0(1+ω)(t−t0))
∝ e3H0(1+ω)(t−t0)

T = Tφ + Tm

= e−3H0(1+ω)(t−t0)
(

φ0
N (4V0 − 27ξ(1 + ω)H0

2 + 27ξ(1 + ω)2H0
2) + ρ0(1 − 3ω)

)

∝ e−3H0(1+ω)(t−t0)

(23)
for t → t0, H0 > 0 (or t → ∞, H0 < 0).

It is therefore clear from the aforesaid that GN (t) grows as an exponent whereas T (t) de-
creases with the same rate thereby leading a constant product GNT . A remark about the
exponentially expanding solution is in order. The solution though has features similar to de
Sitter solution but does not really qualify for a true de Sitter as GN is not constant in this case.
We shall say more about this point in the discussion of the vacuum solution to follow.

5. Vacuum solution

This solution corresponds to the following fixed point,

x = 0, y =
5 + 5b − c

b + 1 + c
, z = −2(2 + 2b − c)

b + 1 + c
, A = −b + 1

6ξ
= −N

6ξ
, Ω = 0. (24)

The corresponding eigenvalues in this case are given by,

λ1 = −2((b−1)(2(b+1)−c))
(b+1)(b+1+c) < 0, for b > 1 and c < 2(b + 1),

λ2 = −2(2+2b−c)
b+1+c

< 0, for c < 2(b + 1),

λ3 = −5+5b−c
b+1 < 0, for c < 5(b + 1).

λ4 = − (b+1)(3(b+1)(ω+1)+c(7+3ω))−2c2

(b+1)(b+1+c) < 0, for c < 2(b + 1) when ω ∈ [−1; 1],

for c = 2(b + 1) when ω ∈ (−1; 1],

for 2(b + 1) < c 6
6(b+1)√

35−5
, when ω ∈ (ω0; 1],

(25)

where ω0 = 2c2−7c(b+1)−3(b+1)2

3(b+1)(b+1+c) . The negativity of eigenvalues for this vacuum point show that

it is stable for c < 2(b + 1).
We find the following expressions for a(t) φ(t),

a(t) = a0|t − t0|
(N+n)N

(2N−n)(N−n) ,

φ(t) = φ0|t − t0|
2

N−n (26)

This solution contains parameters N , n but is independent of ξ and ω. We note that power
indexes in (26) are negative for N < n < 2N and, therefore, a(t), φ(t) diverge leading to ”Big
Rip” singularity at t = t0. This result is generalization for the analogous vacuum solution

a(t) = a0|t − t0|
2(ξ(2+n)−1)
ξ(n−2)(n−4) , φ(t) = φ0|t − t0|

2
2−n obtained in the case of N = 2 [12], [15].

Let us further investigate the nature of the fixed point. For b + 1 = c (N = n) and also for
2(b+1) = c (2N = n) power indexes of functions a(t) and φ(t) diverge and power-law solutions
should transform into exponential ones. Indeed, the coordinates of the fixed point in these cases
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Figure 1: The left panel (a) shows the evolution of (1 − 6ξB(φ)) versus redshift z, where GN =
6/8π(1− 6ξB(φ)). The right panel (b) shows the evolution of weff versus redshift z. Both the figures
correspond to the case of non-minimal coupling with N = 2, n = 5, ξ = 1/2. We had chosen appropriate
initial conditions, H = 2.034, φ = −0.300, φ̇ = −0.001 and ξ = 0.5000 (corresponding to wm = 0 initially)
to obtain weff ' −1 at the present epoch. The black dot in both the figures designates the present
epoch which occurs in the regime of GN > 0, the effective Newtonian constant changes sign thereafter
in future. The square marks the epoch where GN turns negative.

are given by, x = 0, y = 2, z = −1, A = −N
6ξ

,Ω = 0 and x = 0, y = 1, z = 0, A = −N
6ξ

,Ω = 0
respectively for N = n and 2N = n. In case of N = n, we find that

a(t) = a0e
H0(t−t0),

φ(t) = φ0e
H0(t−t0)

N . (27)

We can find out H0, using the definition of the coordinate y from (6), y → − V0

3H0
2ξ

and

H0
2 = − V0

3ξy
= −V0

6ξ
, where ξ < 0, V0 > 0 or ξ > 0, V0 < 0.

In case of n = 2N , the fixed point under consideration does not lead to any physically
admissible regime ( our numerical work shows that all trajectories in this case lead to oscillations
near the minimally coupled field solution). It is interesting to note that in the absence of the
standard curvature term in the action (F (φ)R = φNR), a family of de Sitter solutions exists
[20] for arbitrary values of field φ.

As for n = N , the solution corresponds to Ḣ = 0 and weff = −1 taken usually as the
definition for de-Sitter solution tacitly assuming that Newtonian gravitational constant is a
true constant of nature. In case, φ is constant, the constancy of GN is trivially satisfied. How-
ever, in the model under consideration, we have an interesting vacuum solution with Ḣ = 0
and an exponentially expanding solution for φ which corresponds to an exponentially decreas-
ing/increasing (depending upon the sign of H0) the effective Newtonian gravitational constant,
GN . The true de-Sitter corresponds to Ḣ = 0 and φ = const implying GN = const. Let us
note that in this case, choosing φ0 = 0, one might think to obtain de Sitter solution but the
latter implies H0 = 0. Clearly, this solution does not qualify for a genuine de Sitter.

In fact, the true de-Sitter solution is not captured by the autonomous variables, we have
used. In this case, our autonomous system is not suitable for the study of de-Sitter solution
corresponding to, x = 0, y = 1, z = 0, A = − n

12ξ
, Ω = 0 as the combination, 4x + z2 appearing
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in the denominator of dynamical system vanishes identically. In this special, we go back to
the original variables and make use of the system of equations (3), (4), (5). Investigating this
system numerically for N = 2, 3, 4, 5, 6, 7; n = 1, 2, 3, 4, 5, 6, 7, 8, 9 we find stability conditions of
de-Sitter solution which are written in the Table 1 .

Table 1. Cosmological solutions and their character of stability for cases N 6= 2 and N = 2.

Kind of solution N = 2 N 6= 2

De Sitter

solution H0
2 = −V0nφ0

n−N

6ξN
, φ0

N = n
6ξ(n−2N) .

(doesn’t exist Stable only for
for n > 2N , 1). n > 2N + 1, where N = 2, 4, 6, ...,

where n – even.) where N = 2, 4, 6, ..., n = 5, 7, 9, ....

a(t) = a0e
H0(t−t0), 2). ξ > ξ0 > 0,

φ(t) = φ0. 3). H0 > 0, φ0 < 0.

α = 1
2 , βα = − 1

2N
.

α1,2 = 1

3−12ξ±2
√

6ξ(6ξ−1)
Unstable.

Power-low βα1,2 = − 6ξ±
√

6ξ(6ξ−1)

3−12ξ±2
√

6ξ(6ξ−1)
. α = 1

3 , |φ(t)|
2−N

2 = ± (2−N)
√

6|ξ|
6 ln | t−t0

t′−t′0
|.

solutions Unstable. Unstable.

a(t) = a0|t − t0|α, α = 2(4ξ+ω−1)
3ω2+16ξ−3

,

φ(t) = φ0|t − t0|βα. βα = 4ξ(1−3ω)
3ω2+16ξ−3 α = 1

2 , βα = 1−3ω
2N

.

Unstable. Unstable.
α = − 2n

3(N−n)(ω+1) , βα = 2
N−n

Unstable.

α = 2(ξ(2+n)−1)
ξ(n−2)(n−4) ,

βα = 2
2−n

α = (N+n)N
(2N−n)(N−n) ,

Stability βα = 2
N−n

.

depends on ξ, n. Stable for n < 2N .

H0
2 = V0(4ξ−1)2

3(96ξ2−34ξ+3)

Exponential β = 2ξ
4ξ−1 H0

2 = −V0
6ξ

.

solutions Stability β = 1
N

.
(exist depends on ξ, n. Stable.

only for N = n.) H0
2 = − 8V0

3(16ξ−3+3ω2)
H0

2 = −V0
6ξ

.

a(t) = a0e
H0(t−t0), β = −3(1+ω)

2 . β = −3(1+ω)
N

.

φ(t) = φ0e
βH0(t−t0). Unstable. Unstable.

We also note that for de-Sitter solution the effective Newtonian gravitational constant GN =
6/(8π(1 − 6ξB(φ)) = 3(2N − n)/(8πN) is positive only if n < 2N , which means that graviton
is ghost thereby leading to instability. Before approaching the attractor, the system passes
through a phantom phase and parameters in the theory can easily be adjusted such that we
obtain the observed value of equation of state parameter, weff ' −1 at present with GN > 0
followed by a brief phantom phase before approaching the stable de Sitter fixed point ultimately
pushing the ghost dominated regime to future (see Fig.1). It is also possible to set the phantom
phase at the present epoch. We have carefully managed to shift the ghost regime to future
by adjusting the parameters in the model. We should, however, admit that such a model of
transient dark energy suffers from ugly fine tuning problem.
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4 Conclusion

In this paper, we have revisited cosmological dynamics of non-minimally coupled scalar field
system. We presented detailed investigation of dynamics of the underlying system in case of
F (φ)R = (1− ξB(φ))R coupling with B(φ) = φN and V (φ) = V0φ

n (N ≥ 2) using a convenient
set of autonomous variables. We studied asymptotic regimes of solutions in the model. In case
of the vacuum solution, we found a very interesting solution for which Ḣ = 0 (weff = −1) and
the scalar field φ increasing exponentially giving rise to exponentially decreasing GN − effective
Newtonian gravitational constant. Such a solution does not qualify for de Sitter for which GN

should be held constant.
The autonomous variables used in this paper though convenient in general but miss certain
important features of the dynamics. The description fails to capture the de Sitter solution as
the combination of variables 4x + z2 appearing in the denominator of the autonomous system
vanishes identically in this case. The investigation of this solution took us back to the original
variable in the evolution equations. We found that in case of de Sitter solution, GN > 0
provided that n < 2N . On the other hand, our numerical investigations showed that the
solution under consideration is stable only for n ≥ 2N + 1 (we checked for lower values of
N ≥ 2). For initial conditions of matter dominated universe, the system enters the phase of
acceleration consistent with observation at present followed by a brief phantom phase thereafter
which continues till de Sitter is reached, see Fig.1(b). During the phantom phase GN changes
sign from positive to negative thereby making the universe ghost dominated in future, see Fig.1.
It is possible to set parameters in the model such that phantom phase occurs at present epoch
corresponding to GN > 0 compilable with observed values of the equation of state and fractional
density parameter pushing the ghost dominated phase to future which no body has yet seen.
Incidentally, similar features of equation of state are shared by the braneworld model discussed
in Ref. [20].

The de Sitter solution for the case with N = 2 also shares the aforementioned features. In
other cases, we have shown that the solutions obtained earlier are continued for values of N > 2.
We have investigated in detail the asymptotic regimes of these solutions in all cases including
the one corresponding to N = 2

We have shown that the non-minimally coupled scalar field system can account for late time
cosmic acceleration. We should, however, emphasize that dark energy in this scenario appears
as a transient phenomenon which involves extra fine tuning.

A final remark about the ghost dominated evolution in the model is in order. In the
framework of the simple set up of non-minimal scheme discussed here, there exists no consistent
de Sitter solution such that GN remains positive throughout the evolution. It would really be
interesting to explore generic functional forms of the coupling function and the field potential
to check for a well behaved de Sitter solution.
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