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Abstract

The scattering of the surface thermal X-ray photons on ultrarelativistic electrons with
electron-positron pair production, γe± → e±e+e−, in the vicinity of magnetar polar cap is
considered. The amplitude of the pair production process is calculated in the limit, where the
initial and final electrons are on the ground Landau level but the virtual electron occupies the
arbitrary Landau level. It is shown that the cyclotron resonances are responsible for the main
contribution to the amplitude. The simple analytical expression for the electron absorption
coefficient is obtained. Possible astrophysical consequences of the resonant process γe± →
e±e+e− are discussed.

1 Introduction

Nowadays, there exists a growing interest to the process of radio emission of some magnetars [1],
i.e. isolated neutron stars with anomalously strong magnetic fields B � Be (Be = m2/e '
4.41 × 1013 G), 1, namely, the magnetic field strength in magnetars can reach the values up to
∼ 1014 − 1015 G [2, 3, 4].

According to a generally accepted model, an effective generation of electron-positron plasma
in the radio pulsar magnetosphere is necessary for the radio emission formation [5], and mech-
anisms of e+e− pairs production in radio pulsars are well known (see eg. [6, 7]). In the model
of the magnetar magnetosphere, the e+e− pairs production occurs in two stages [8]:

(i) the hard X-ray production by Compton mechanism γe → eγ (the so called the inverse
Compton effect);

(ii) the increase of the angle between the photon momentum and the magnetic field direction
(the so called pitch angle), and the e+e− pair production, γ → e+e−.

However, in our view, this mechanism has a major drawback. Namely, the dispersion prop-
erties of a photon become significant in a strong magnetic field. This fact leads to an effect of the
photon capture by the field [9], i.e. gamma quantum with energies greater than 2m will move
along magnetic field line, without increases of the pitch angle. Therefore, the electron-positron
pair cold not be produced by such a photon.

Thus, it is interesting to consider alternative mechanisms for the generation of e+e− pairs
in the magnetosphere of a magnetar. The reaction, which could solve of this problem, is the
Compton like process, γe → ee+e−. 2.

The main advantage of such a reaction, compared with the adopted model is that the
production of a pair occurs almost instantaneously at the point of interaction of an initial
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1We use natural units c = ~ = k = 1, m is the electron mass, e > 0 is the elementary charge.
2A symbol e in the future means an electron or a positron
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photon and an electron (in fact, this scale is of the order of the Compton wavelength of an
electron). With this approach, the effect of the photon capture by the magnetic field becomes
negligible. On the other hand, it is possible to fill a small area by the dense e+e− plasmas with
help of the reaction γe → ee+e− in a short time, such as in the model of giant flare of the Soft
Gamma Repeaters (SGR) [2].
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Figure 1: Feynman diagram for the process γe → ee+e−. Double lines mean that the effect of
the external field on the fermions is exactly taken into account.

2 Transition amplitude γe → ee
+
e
−

The process of the electron-positron pair production in the reaction γe → ee+e− is described by
the eight Feynman diagrams (see Fig. 1). The kinematical analysis shows, that the s-channel
diagrams (Fig. 1a and the corresponding diagram with the electron momenta permutation,
p ′ ↔ p2) provide a leading contribution in to the resonance amplitude only. Nevertheless,
even with taking into account of the resonance, the problem will have enough cumbersome,
since the charged fermions can occupy arbitrary Landau levels. However, this problem can be
essentially simplified in the application to magnetars. Indeed, we consider the situation where
electron, accelerated in the electric gap of the magnetar polar cap, collides with the gamma
quantum from the equilibrium thermal bath formed by radiation of X-rays from the surface of
a neutron star. We will have the following parameters hierarchy in this problem formulation:
T 2 � m2 � eB � E2.

In addition, the initial electron occupies the zero Landau level (` = 0) until the acceleration.
Then electron moved along magnetic field line and it remains all the time on the ground level.
(We consider the small vicinity of the polar cap, where the electric ~E and magnetic ~B fields
are collinear vectors and |~E| � | ~B| [8].) And we will consider that the scattered electron and
electron and positron of the pair are on the ground Landau level with ` ′ = n1 = n2 = 0 in the
first approximation.

After this remark, the Sif – matrix element of the process γe → ee+e− can be written in
the following form:

Sif = (ie)3
∫

d4Xd4Y d4Z
{
Ψ̄p′(Y )γβŜ(X,Y )Â(X)Ψp(X)Ψ̄p2

(Z)γµΨp1
(Z) − (1)

Ψ̄p2
(Y )γβŜ(X,Y )Â(X)Ψp(X)Ψ̄p′(Z)γµΨp1

(Z)
}
Gβµ(Z − Y ) ,

where pµ = (E, ~p) and p′µ = (E ′, ~p ′) are the four-momenta of initial and final electrons corre-
spondingly, pµ

2 = (E2, ~p2) and pµ
1 = (E1, ~p1) are the four-momenta of electron and positron of
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the pair correspondingly, Xµ = (X0, X1, X2, X3),

Aµ(X) =
εµ(q)e−i(qX)

√
2ωV

(2)

is the four-potential of the quantized electromagnetic field with four-momentum qµ = (ω,~k),

Gβµ(Z) =

∫
d4q ′

(2π)4
e−i(q ′Z)Gβµ(q ′) , (3)

Gβµ(q ′) =

3∑

λ=1

b
(λ)
β b

(λ)
µ

(b(λ))2
−i

q ′2 −P(λ)(q ′)

is the Fourier transform of the photon propagator in the orthogonal basis b
(λ)
α : b

(1)
α = (q ′ϕ)α,

b
(2)
α = (q ′ϕ̃)α, b

(3)
α = q ′2(q ′ϕϕ)α − (q ′ϕϕq ′)q ′

α, P(λ)(q ′) are the eigenvalues of the photon

polarization operator corresponding to the eigenvectors b
(λ)
α (see [9]), Ψp(X) is the electron wave

function in the presented of external magnetic field on the ground Landau level (see [10, 11]).
We use the electron propagator in the following form [12]

Ŝ(X,X ′) =

∞∑

n=0

i

2n n!

√
eB

π
exp

{
− eB

X2
1 + X ′ 2

1

2

} ∫
dp0 dpy dpz

(2π)3
×

e− i (p (X−X ′))‖

p2
q
− m2 − 2 eB n + i ε

exp

{
−

p2
y

eB
− py

[
X1 + X ′

1 − i (X2 − X ′
2)

]
}

×
{

[(pγ)q + m]
[
Π− Hn(ξ)Hn(ξ ′) + Π+ 2nHn−1(ξ)Hn−1(ξ

′)
]
+

i 2n
√
|ef |B γ1

[
Π− Hn−1(ξ)Hn(ξ ′) − Π+ Hn(ξ)Hn−1(ξ

′)
]}

, (4)

where Hn(ξ) is the Hermitian polynomial [13].
Here it is necessary to make the following remark. When we consider the resonance on the

virtual electron, it should take into account of the imaginary part of the electron propagator. On
the other hand, the imaginary part of the electron propagator associated with the total width
of electron absorption. However, the electron absorption width depends on the polarization of
the electron, but in the strong-field limit, B � Be, this dependence becomes insignificant. This
fact allows to use of the propagator in the form (4).

In addition, we use the following definitions: the four-vectors with indices ⊥ and ‖ belong
to the Euclidean {1, 2}-subspace and the Minkowski {0, 3}-subspace correspondingly in the
frame were the magnetic field is directed along z (third) axis; (ab)⊥ = (aΛb) = aαΛαβbβ,

(ab)‖ = (aΛ̃b) = aαΛ̃αβbβ, where the tensors Λαβ = (ϕϕ)αβ , Λ̃αβ = (ϕ̃ϕ̃)αβ , with equation

Λ̃αβ − Λαβ = gαβ = diag(1,−1,−1,−1) are introduced. ϕαβ = Fαβ/B and ϕ̃αβ = 1
2εαβµνϕµν

are the dimensionless field tensor and dual field tensor correspondingly.
After integration (1) over d4X, d4Y we obtain

Sif =
i(2π)3δ3(. . .)M√

2ωV 2ELyLz2E ′LyLz2E1LyLz2E2LyLz

, (5)

where δ3(. . .) ≡ δ(P0−E ′−E1−E2)δ(Py−p ′
y−p1y−p2y)δ(Pz−p ′

z−p1z−p2z), Pα ≡ (p+q)α, α =
0, 2, 3.
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The amplitude M of the process γe → ee+e− can be presented in the following form

M ' −i
2
√

2e3m2

π

∞∑

n=0

∞∫

−∞

dq ′
x

q ′2 −P(2)(q ′)
exp

[
− i(qϕq ′)

2eB

]
exp

[
−

i(qx − q ′
x)(py + p ′

y)

2eB

]
×

× exp

[
iq ′

x(p1y − p2y)

2eB

]
exp

[
−2q ′2

⊥ + q2
⊥

4eB

]
1

n!

(
(qΛq ′) − i(qϕq ′)

2eB

)n

× (6)

× (pq ′)‖[(pq)‖ + (p ′q)‖]
(
P 2

‖ − m2 − 2eBn + iP0Γn

)√
q2
‖q

′2
‖ [(pp ′)‖ + m2]

∣∣∣∣
q ′α
‖

=pα
1‖

+pα
2‖

q ′
y=p1y+p2y

− (p ′ ↔ p2) .

In the amplitude (6) Γn is total width of electron absorption process. The analysis shows,
that the leading contribution in Γn gives the process en → γ + en′ and the value P0Γn for
ultrarelativistic electrons and in strong field limit can be presented in the following form (see [11,
14])

P0Γn ' αeB

n−1∑

n′=0

(
√

n−
√

n′)2∫

0

dx√
(n + n′ − x)2 − 4nn′

× (7)

×{(n + n′ − x)[I2
n,n′−1(x) + I2

n−1,n′(x)] − 4
√

nn′In,n′(x)In−1,n′−1(x)} .

To analyse the efficiency of the process under consideration and to compare it with other
competitive reactions we calculate the electron absorption rate in the equilibrium photon gas
with the temperature T :

W =

∫
δ3(. . .)|M|2

25(2π)6ωEE ′E1E2

d3q

eω/T − 1
dp ′

ydp ′
zdp1ydp1zdp2ydp2z . (8)

As already mentioned, the main contribution to the amplitude will give the resonance region,
so that we can replace the part of the integrand in (8) by δ - function

1

(P 2
‖ − m2 − 2eBn)2 + P 2

0 Γ2
n

' π

P0Γn
δ(P 2

‖ − m2 − 2eBn) . (9)

Introducing new variables y = q ′2
⊥ /eB and z = q ′

z/E, we obtain in our approximation,
q ′2
‖ ' 2eBz, (q − q ′)2‖ ' −m2z2/(1 − z). In addition, the leading contribution in absorption

rate (8) from the virtual electron Landau levels will be determined by n = 1 only, while the
contributions of the higher levels are suppressed by the temperature. In this case the electron
absorption width has a simple form: P0Γ1 ' αeB(1− e−1). With this in mind, after integration
of the expression (8) with δ - function, we obtain

W ' α2T

2π(1 − e−1)

(m

E

)2
ln

(
1 − e−

eB
2ET

)−1
1∫

2Be/B

dz × (10)

×
∞∫

0

dyye−y

z2(2z − y)2 + 4α2(Be/B)2e−y
.

Near the second resonance (now on the virtual photon), the part of the integrand in Eq. (10)
can be interpolated by δ - function also

1

z2(2z − y)2 + 4α2(Be/B)2e−y
' πey/2

2α

B

Be
δ(2z2 − yz) . (11)

4



Thus in the process of eγ → ee+e− in presence of the strong magnetic field and ultrarelativistic
particles, the both resonances on the virtual electron and the virtual photon become possible.
After substituting (11) in (10) and simple integration we obtain

W ' α

2
T

B

Be

(m

E

)2
ln

(
1 − e−

eB
2ET

)−1
. (12)

The dependence of the electron absorption rate on the energy of initial electron at B = 100Be

and T = 1 keV is presented on the Fig. 2.
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Figure 2: The electron absorption rate as a function of electron energy in a strong magnetic
field (B/Be = 100) at T = 1 keV.

In addition, for E ' 10 GeV and the same value of parameters ne, B and T as on the Fig. 2,
we obtain that the electron free path is ` ' 57 cm. This value is very small in comparison with
the electric gap width (h ∼ 104 cm). On the other hand, the change of electron number in the
stream can be expressed through optical thickness τ in the following way

N = N0 exp [−τ ] ' N0 exp


−

h∫

0

dxW


 , (13)

where N0 is the initial electron number in the stream.
We obtain the following estimation for N/N0 ' 0.99 at h ∼ 104 cm, E ∼ 107m. Thus,

the considering process can increases the number of density of e+e− plasma in the polar cap
area. However, a detailed quantitative analysis of a development cascade of e+e− pairs requires
solution of the kinetic equation, which is beyond the scope of our problem.

Finally, we have make still one remark. The resonances on the virtual electron and virtual
photon correspond to processes with the real particles. Thus the considering process, γe →
ee+e−, can be presented as a group of three subprocesses:

(i) the absorption of the photon by electron with the electron production on the first Landau
level,
e0 + γ → e1;

(ii) the synchrotron radiation process, e1 → e0 + γ;

(iii) the e+e− pair production by hard photon, γ → e+e−.
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The branching fractions of the reactions e1 → e0 +γ and γ → e+e− are equal approximately
of 1 and 1/2 correspondingly. (The factor 1/2 appears, because the photon only one polarisation
takes part in the reaction γ → e+e−.) Therefore, the electron absorption coefficient in the
process γe → ee+e− can be obtained from the probability of the reaction γ + e0 → e1 in the
following way W = Wγ+e0→e1

/2. The expression for the transition probability γ + e0 → en can
be presented as

Wγ+e0→en ' αeB

E

(
Tn

E

)n

Lin

(
e−

eBn
2ET

)
, (14)

where Lin(x) is the polylogarithm of order n.
In particular, for n = 1 we obtain

Wγ+e0→e1
= 2W ' αT

B

Be

(m

E

)2
ln

(
1 − e−

eB
2ET

)−1
. (15)

This result coincides with that obtained previously (see (12)).

3 Conclusion

In conclusion, let us summarize some of our results. We have considered the resonant Compton
like process of electron-positron pair production near polar cap of magnetar magnetosphere. It
has been shown, that the leading contribution in the process amplitude γe± → e±e+e− occur
from cyclotron resonances. It has been found, that intensive pair production will on the initial
stage of electrons acceleration in the internal gap. It has been shown, that this mechanism can
be efficient for the e+e− plasma production in magnetar magnetosphere.
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