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Abstract

The influence of the dilatonic scalar field on the Parameterized Post-Newtonian expan-
sion of a static, asymptotically flat, spherically-symmetric Gauss-Bonnet solution is con-
sidered. We present analytical and numerical expressions for the dilatonic magnitude and
demonstrate that at the present time the theoretical limit for “dilatonic charge” obtained
20 years ago remains much more strong than one from existing experimental data.

1 Parameterized post-Newtonian formalism

Parameterized post-Newtonian formalism was constructed for comparing different extended the-
ories of gravity and selecting the most probable ones. First attempt to create such a framework
was taken by Eddington in 1922 [1]. Robertson in 1962 [2], Schiff in 1967 [3] and Nordtvedt in
1968 [4, 5] continued to develop this idea. The formalism was completed by Will and Thorn in
1971 [6, 7] and this version is considered to be a standard one nowadays.

For using the Parameterized post-Newtonian the one should stay in within the post-Newtonian
limit i.e. the weak field approximation, an asymptotically flat space-time and small velocities of
matter so that it would obey the state equation for perfect fluid. As the space-time is considered
to be asymptotically flat, the metric tensor can be represented as the perturbative expansion
around Minkowski spacetime [8]:

gµν = ηµν + hµν , (1)

h00 ∼ O(2) + O(4), h0j ∼ O(3), hij ∼ O(2), (2)

U ∼ v2 ∼ p/ρ ∼ Π ∼ O(2). (3)

The metric can be written down in the following view:

g00 = − 1 + 2U − 2βU 2 − 2ξΦW + (2γ + 2 + α3 + ς1 − 2ξ) Φ1 +

+ 2 (3γ − 2β + 1 + ς2 + ξ) Φ2 + 2 (1 + ς3) Φ3 + 2 (3γ + 3ς4 − 2ξ) Φ4 −
− (ς1 − 2ξ) A − (α1 − α2 − α3) w2U + α2w

iwjUij + (2α3 − α1) wiVi,

g0i = −
1

2
(4γ + 3 + α1 − α2 + ς1 − 2ξ) Vi −

1

2
(1 + α2 − ς1 + 2ξ) Wi −

1

2
(α1 − 2α2) wiU −

− α2w
iUij ,

gij = (1 + 2γU) δij ,

(4)
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where U is the gravitational potential taken with the opposite sign, Uij is its tensor form,
w is the coordinate velocity of the PPN frame, Φ1, Φ2, Φ3, Φ4, ΦW , A, Vi and Wi are so
called post-Newtonian potentials and β, γ, ξ, α1, α2, α3, α4, ς1, ς2 and ς3 are post-Newtonian
parameters that characterize the gravity model. As the matter is considered to be a perfect
fluid its stress-energy tensor has the following view [8]:

T 00 = ρ
(

1 + Π + v2 + 2U
)

(5)

T 0i = ρ

(

1 + Π + v2 + 2U +
p

ρ

)

vi (6)

T ij = ρ

(

1 + Π + v2 + 2U +
p

ρ

)

vivj + pδij(1 − 2γU) (7)

The post-Newtonian parameters are measured experimentally very well (Table 1). These
values generally depend on the model. So it is possible to select between different theories of
gravity by comparing their PPN-parameters with the experimental data.

PPN- Physical Current
Effects

parameter meaning value

γ − 1
measure of space curvature

2.3 × 10−5 time delay, light deflection
produced by unit mass

β − 1
measure of non-linearity

1.1 × 10−4 Nordtvedt effect, perihelion shift
in gravitational superposition

ξ
measure of existence

1 × 10−3 Earth tides
of preferred location effects

α1 measure the existence of
1 × 10−4 orbit polarization

α2 preferred frame effects
4 × 10−7 spin precession

α3 4 × 10−20 self-acceleration

ς1 measure of the failure 2 × 10−2 —
ς2 of conservation laws of energy 4 × 10−5 binary pulsar acceleration
ς3 momentum and 1 × 10−8 Newton’s 3rd law
ς4 angular momentum 6 × 10−3 —

Table 1: Experimental values of PPN-parameters.

2 Dilatonic Gauss-Bonnet

The purpose of this work was to research into the PPN formalization of the Gauss-Bonnet
model with the scalar field. The corrsponding 4-dimensional low-energy effective string action
with second order curvature correction can be written down as following [9, 10]:

S =
1

16π

∫

d4x
√−g

[

−R + 2∂µφ∂µφ + e−2φSGB

]

, (8)

where SGB = RijklR
ijkl − 4RijR

ij + R2 is the Gauss-Bonnet term and the dilaton scalar field
can be approximated like φ = D/r + . . . .

Spherically symmetrical solutions are not very popular in PPN research. In 1978 Karlhede
studied the post-Newtonian formalism Schwarzschild metric [11]. He found obtained a coor-
dinate system in which the PPNmetric is linear that allowed to deal with the solutions in a
non-isotropic form.
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The solution for the Gauss-Bonnet action with the scalar field was found by Mignemi and
Stewart in 1993 [12] and studied in 1997 by Alexeyev and Pomazanov [9]. As a result a solution
for spherically symmetrical BH was obtained by the method of successive approximations and
it was shown that the dilatonic charge D ∼ 1/M for small higher order corrections. In 2007
Sotiriou and Barausse considered the cosmological solution for action with dilaton and Gauss-
Bonnet term that seemed to be indistinguishable from general relativity at the post-Newtonian
order [13].

3 Results

As the concerned solution should be asymptotically Schwarzschild at the infinity the metric

ds2 = −
(

1 −
a

r

)

dt2 +
dr2

(1 − a/r)
+ (r2 − br) dΩ (9)

can be written down in the following isotropic form

ds2 = −
(

1 −
a

r̃
+

a (a + b)

2r̃2

)

dt2 +

(

1 +
a

r̃

)

(dr̃2 + r̃2dΩ). (10)

If a = 2M and b = 0 we obtain the Schwarzschild solution itself. Therefore

g00 = − 1 + 2U + . . . , (11)

gij = (1 + 2γU)δij , (12)

U = M/r → γ = 1, (13)

for all Schwarzschild-like metrics.
For the second and third order by the matter velocity v the solution does not differ from

the GR case [8]:

h00 = 2U, (14)

hij = 2Uδij , (15)

h0i = −
7

2
Vi −

1

2
Wi = 0. (16)

In the forth order the equations of motion have the following view [13]:

Gµν = 8π
(

Tm
µν + T φ

µν + T GB
µν

)

,

T φ
µν =

1

8π

(

∂µφ ∂νφ −
1

2
gµν ∂ρφ ∂ρφ

)

,

TGB
µν =

1

16π

[

2 (∇µ∇νe
−2φ) R − 2 gµν(�e−2φ) R − 4 (∇ρ∇µe−2φ) Rνρ −

− 4 (∇ρ∇νe
−2φ) Rµρ + 4 (�e−2φ) Rµν + 4 gµν(∇ρ∇σe−2φ) Rρσ −

− 4 (∇ρ∇σe−2φ) Rµρνσ

]

(17)

and T m
µν is the matter stress-energy tensor. Therefore

R00 = −
1

2
∇2(h00 + 2U2 − 8Φ2) = 4π (ρ + 2v2ρ − 2Uρ + Πρ + 3p) −

5

8

g00

g11

(

∂φ

∂r

)2

(18)
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and the 4th order correction for the metric tensor is

h00 = 2U − 2U 2 + 4Φ1 + 4Φ2 + 2Φ3 + 6Φ4 −
5

2

πD2

r2
=

= 2U − 2U 2 + 4Φ1 + 4Φ2 + 2

(

1 −
5

4

πD2

r2 Φ3

)

Φ3 + 6Φ4

(19)

The PPN potential Φ3 can be evaluated as

Φ3 =

∫

ρ′Π′

|x − x′| d3x′ ∼ −
M2

2r2
. (20)

So it is possible to find the influence of the scalar field on the parameter ς3:

ς3 =
5πD2

2M2
. (21)

Consequently we can find the experimental limit on the value of dilatonic charge from the PPn
data:

ς3 = 10−8 ⇒ D ≤ 3.6 × 10−5M (22)

and compare it with the theoretical limit D ∼ 1/M found by Mignemi [12].

4 Conclusions

In this work a spherically symmetric case for dilaton-Gauss-Bonnet gravity is considered. In-
fluence of the dilaton term was found in explicit form and the upper limit on magnitude of
dilatonic charge was obtained from the experimental PPN data. It is obvious that the theoret-
ical limits on contributions of higher order curvature corrections and scalar field are still much
more strict than the experimental ones.
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