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Abstract

The Skyrme model has been shown to be a low energy, effective field theory for QCD.
When coupled to a gravitational field it can be used to describe neutron stars. The solution
of the Skyrme model with the lowest energy per baryon is the lattice of α-like particles. We
use such a lattice as a building block to construct low energy neutron star configurations,
allowing the crystal to be strained anisotropically. Below 1.49 solar masses the stars’ crystal
deforms isotropically and above this critical mass, it undergoes anisotropic strain. We show
that the maximum mass allowed for a neutron star is 1.90 solar masses, in close agreement
with the most massive neutron star found so far. The computed solutions have radii that
match the experimentally estimated values of approximately 10km.

1 Introduction

Neutron stars are stars that due to the intense self gravitational pressure have collapsed to the
point where all electrons are squeezed into nuclei. The results is a large cluster of neutrons
with a typical radius of about 10km. Their mass has been measured to be of up to twice the
mass of the sun and they are also know as pulsar: neutron stars spin at a frequency varying
between 0.1 and 1000Hz. By a process not yet fully understood, this leads to the emission
intense radiation in a narrow cone at an angle with the axis or rotation of the star. When the
line of sight between the star and the earth crosses that cone, the emitted radiation reaches
the earth. The star is then see as emitting burst of light with a period equal to the period of
rotation of the star.

A neutron star can be viewed as a gigantic nuclei that is electrically neutral but is strongly
affected by the gravitational field that it generates. This system should be described by a
unified theory of QCD and General Relativity, but for a lack of such theory, one can try to use
the Skyrme model coupled to a gravitational field theory.

Originally proposed by Skyrme in 1961 [1], [2] the Skyrme model is a nonlinear theory
of pions describing strong interactions. Later Witten[3] showed it to be an approximate, low
energy, effective field theory for QCD in the limit of large number of quark colours.

Each solution of the Skyrme model is characterised by an integer valued topological charge
which can be identified with the baryon number B. The simplest solution has B = 1 and it
is made out of a so-called Skyrmion which is interpreted as a proton or a neutron. At the
semi-classical level, the Skyrme model does not distinguish between a neutron and a proton
and as the model does not include the electroweak interaction, all Skyrmions are electrically
neutral.

The B = 1 solution of the Skyrme model is the only exact stable solution that can be
computed easily [1]. Solutions with larger baryon number have been computed numerically
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[4],[5]. These solutions have been shown to describe various nuclei successfully [6]. One of
these solution, B = 4, correspond to an α particle and, as shown in figure 1.a, it has a cubic
symmetry.

Figure 1: Surface of constant energy for Skyrmion solutions. a) B = 4 b) B = 32.

This cubic solution can then be arranged to form solutions with a larger topological charge
(figure 1.b). One can then takes an infinite number of α-like solutions to form a cubic lattice
and this solutions has been shown[7] to be the solution with the lowest energy per baryon.
Being the lowest energy per baryon solution, this lattice looks as the best building block to
describe a neutron star.

Before we proceed, we must first estimate if a neutron star should be considered as fluid of
Skyrmion rather than a solid. The temperature of a neutron star, a few years after its creation,
cools down to a temperature of around 100eV ≈ 106K [8]. While this energy is very high,
compared to the binding energy of an electron around a nucleus, it is small from a nuclear point
of view. The lowest excited state of an α particle, for example, is 23.3MeV [9]. From a more
theoretical point of view, the lowest vibration mode of a B = 4 Skyrmion is of the order of
100MeV [10],[11]. Moreover, Walhout [12] showed that even under intense gravitational energy,
the excitation energy of a lattice of B = 1 Skyrmions is also of the order of 100MeV.

This all supports the view that neutron star must be considered as a solid phase rather than
a liquid or a gas and that the thermal energy will only excite acoustic phonon modes. As a
result, it is sensible to model a neutron star as a lattice of B = 4 Skyrmions.

Before we proceed we must also estimate the height of it atmosphere At the surface of a
neutron star twice the mass of the sun, the gravitational acceleration is g ≈ 2.6× 1012ms−2. As
a result, the average height that an α particle with a thermal energy of 100eV will be able to
jump is of the order of 1mm, in other words much smaller than the radius of the star. We thus
see that the neutron star atmosphere is extremely thin and consider the star as a solid ball in
our model.

To model the neutron star as a Skyrmion star, we will proceed as follows. We will start
from the the equations of state computed by Castillejo et al. [7] for the B = 4 crystal when
the lattice is deformed asymmetrically. Then, following Walhout [12], we will use a Tolman-
Oppenheimer-Volkoff (TOV) equation [13], [14], generalising it to anisotropic matter [15]. The
TOV equation describes the static equilibrium between the gravitational forces self-generated
by the star matter and the matter forces within the spherically symmetric star.

We will then combine the equations of state of the Skyrme crystal with the TOV equation
to find configurations that are spherically symmetric distributions of anisotropically deformed
matter in static equilibrium. These will correspond to low energy configurations for neutron
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stars. We will solve these equations numerically for large stars and show that below a critical
mass of 1.49 solar masses (M� = 1.98892×1030kg) all neutron/Skyrmion stars are made out of
an isotropically strained crystal. Then we will show that at this critical mass, there is a phase
transition and that heavier stars are made out of an anisotropically deformed crystal that is less
strained radially than tangentially. Moreover, we will show that these stars can have a mass of
up to 1.90M�. We will also investigate the impact of adding a mass term to the Skyrme model
and describe what happens to a star when its mass is increased above its maximum value.

Using Skyrmions to model neutron stars is not new and has been performed previously
in several ways[12][16][17] where the star was considered as a fluid. Our model differ in that
we consider the star as a solid crystal allowed to deform anisotropically, i.e. be compressed
differently in the radial and tangential directions. In our previous papers [18],[19], we computed
minimal energy Skyrmion stars made out of layers of 2 dimensional Skyrme lattices using the
rational map ansatz [20]. This resulted in relatively small stars with a maximum mass of
0.574M� mainly because the multi-layer ansatz that we used was energetically costly.

2 Skyrme Crystals

The Skyrme model [1], [2] is described by the Lagrangian

LSk =
F 2

π

16
Tr(∇µU∇µU−1) +

1

32e2
Tr[(∇µU)U−1, (∇νU)U−1]2 +

m2
πF 2

π

8
Tr(U − 1), (1)

where here U , the Skyrme field, is an SU(2) matrix and Fπ, e and mπ are the pion decay
constant, the Skyrme coupling and the pion mass term respectively. In the Lagrangian (1) the
∇ are ordinary partial derivatives in the absence of a gravitational field and become covarient
derivatives when the Skyrme field is coupled to gravity.

Being finite energy maps from R
3 to S3, the Skyrme solutions can be defined as maps from

S3 to S3 and be characterised by the topological charge B identified with the baryon number.
In what follows, we will consider massless pion, mπ = 0, but we will describe the effects of
massive pions in section 4.3.

The two other Skyrme parameters, Fπ and e can be obtained in different ways in the absence
of gravitational fields. Skyrme first evaluated them by taking the experimental value of the pion
decay constant Fπ = 186MeV and then fitting the mass of a Skyrmion to that of a proton and
obtained e = 4.84. Later Adkins, Nappi and Witten [21] quantised the B = 1 Skyrmion to
fit the parameter values to the mass of the nucleon and the delta excitation and obtained
Fπ = 129MeV and e = 5.45. These later values were the ones used by Castillejo et al. [7] to
compute the energy of the deformed B = 4 crystal and we will thus use them too.

Castillejo et al. [7] also computed the energy of dense Skyrmion crystals when the face-
centred cubic lattice was strained. Two types of deformation where considered: pure compres-
sion or dilations x → σx, y → σy, z → σz and volume preserving strain along one direction:
x → rx, y → ry, z → z/r2. The parameter p = r − 1/r describes the deviation away from the
face-centred cubic lattice symmetries which have p = 0.

The numerical solutions found in [7] provide an equation for the dependence of the energy
of a single Skyrmion, E(L, p), on its size, L = n−1/3 = σ3L0, where n is the Skyrmion number
density and L0 the lattice size of the unstrained lattice:

E(L, p) = Ep=0(L) + E0[α(L)p2 + β(L)p3 + γ(L)p4 + δ(L)p5 + ...], (2)
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where the coefficients are given by

Ep=0(L) = E0

[

0.474

(

L

L0
+

L0

L

)

+ 0.0515

]

, (3)

α(L) = 0.649 − 0.487
L

L0
+ 0.089

L0

L
, (4)

β(L) = 0.300 + 0.006
L

L0
− 0.119

L0

L
, (5)

γ(L) = −1.64 + 0.78
L

L0
+ 0.71

L0

L
, (6)

δ(L) = 0.53 − 0.55
L

L0
. (7)

Here E0 = 727.4MeV and L0 = 1.666 × 10−15m. Notice that for any value of L the minimum
energy occurs at the face-centred cubic lattice configuration, p = 0, and the global minimum is
reached for L = L0.

3 TOV Equation for Skyrmion Stars

Using equation (2) relating the energy of a Skyrmion to its size and aspect ratio we can in-
vestigate how a neutron star can be described using a Skyrme crystal and how this crystal is
deformed under the high gravitational field it experiences.
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λ

λ
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t

t

Figure 2: a) Lattice cell parametrisation.

In what follows, we denote λr as the Skyrmion length in the radial direction of the star
and λt as the Skyrmion length in the tangential direction (figure 2). These parameters and the
parameters L and p used in (2) are related as follows

L = (λrλtλt)
1

3 , and p =

(

λt

λr

)
1

3

−

(

λr

λt

)
1

3

. (8)

To construct a neutron star we consider a spherically symmetric distribution of matter in
static equilibrium with a stress tensor that is allowed to be locally anisotropic. As a result of
the spherical symmetry the stress tensor, T µ

ν , is diagonal and all the components are functions
of the radial coordinate r. We can thus write this stress tensor as

T µ
ν = diag(ρ(r), pr(r), pθ(r), pφ(r)), (9)
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and consider that, again due to spherical symmetry, pθ(r) = pφ(r). We can thus write pt(r) =
pθ(r) = pφ(r) where pr(r) and pt(r) describe the stresses in the radial and tangential directions
respectively. Moreover we define ρ(r) as the mass density.

We now use the generalised TOV equation [13], [14] derived by Bowers and Liang [15] to
describe a spherically symmetric star composed of anisotropically deformed matter in static
equilibrium.

One starts from the metric for the static spherically symmetric distribution of matter written
in Schwarzschild coordinates

ds2 = eν(r)dt2 − eλ(r)dr2 − r2dθ2 − r2 sin2 θdφ2, (10)

where eν(r) and eλ(r) are functions of the radial coordinate that need to be determined. One
then must impose that the combination of this metric and the matter distribution, described
by the stress tensor (9), satisfies Einstein’s equations

Gab = Rab −
1

2
Rgab = 8πTab, (11)

where we have set G = c = 1. This leads to the following equations

e−λ

(

λ′

r
−

1

r2

)

+
1

r2
= 8πρ (12)

e−λ

(

ν ′

r
+

1

r2

)

−
1

r2
= 8πpr (13)

e−λ

(

1

2
ν ′′ −

1

4
λ′ν ′ +

1

4

(

ν ′
)2

+
(ν ′ − λ′)

2r

)

= 8πpt . (14)

We can rewrite equation (12)
(re−λ)′ = 1 − 8πρr2 (15)

and if we integrate it we get

e−λ = 1 −
2m

r
(16)

where m = m(r) is defined as the gravitational mass contained within the radius r

m =

∫ r

0
4πr2ρdr. (17)

Substituting equation (16) for e−λ into equation (13) we find

1

2
ν ′ =

m + 4πr3pr

r(r − 2m)
. (18)

Differentiating equation (13) with respect to r and adding it to equation (14) we get the
generalised TOV equation that we will use to find suitable neutron star configurations

dpr

dr
= −(ρ + pr)

ν ′

2
+

2

r
(pt − pr) . (19)

Now, substituting (18) into (19), we get

dpr

dr
= −(ρ + pr)

m + 4πr3pr

r(r − 2m)
+

2

r
(pt − pr) . (20)

To solve this generalised TOV equation two equations of state need to be specified, pr = pr(ρ)
and pt = pt(ρ), where, as argued above, we are allowed to assume that the temperature of the
start is 0.
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We must then specify the following boundary conditions: First, the solution must be regular
at the origin and so m(r) → 0 as r → 0. Then pr must be finite at the centre of the star implying
that ν ′ → 0 as r → 0. Moreover, the gradient dpr/dr must be finite at the origin too and so
(pt − pr) must vanish at least as rapidly as r when r → 0. This implies that we need to impose
the boundary condition pt = pr at the centre of the star.

As the radial stress for the Skyrmions on the surface of the star will be negligibly small the
radius of the star, R, can be determined by the condition pr(R) = 0. The equations, however,
do not impose that pt(R) vanishes at the surface. We must also impose the condition that to
be physically relevant solutions must all have pr, pt ≥ 0 for r ≤ R. Moreover, as an exterior
vacuum Schwarzschild metric can always be matched with our metric, the star is allowed to
have a sharp edge at its surface, as one would expect from a solid star.

As the star as a zero temperature the equations of state for the neutron star configurations
can be calculated from equation (2) which depends on the lattice scale L, and aspect ratio, p,
which are both functions of the radial distance form the centre of the star, r. Using the theory
of elasticity, we find that the radial and the tangential stresses are related to the energy per
Skryrmion, Eq (2), as follows

pr = −
1

λ2
t

∂E

∂λr
, and pt = −

1

λr

∂E

∂λ2
t

. (21)

The mass of the star is given by

MG = m(R) = m(∞) =

∫ R

0
4πr2ρdr, (22)

where R is the total radius of the star and

ρ =
E

λrλ2
t c

2
. (23)

One can now minimise MG for stars of various baryon number using the generalised TOV
equation (20) and the two equations of state (21).

As the mass of the star is a function of λr and λt which both depend on r, we can minimise
MG by assuming a profile for λt(r) and compute MG for this profile as described below. We
can then determine the configuration of the neutron star, with a specific baryon charge, by
minimising MG over the field λt. This can be easily done using a simulated annealing algorithm.

Notice that at the origin, one can use (21) to determine pr(0) and pt(0) from the initial
values of λr(0) and λt(0). Using this, one can proceed as follows. Knowing λr(r) and λt(r) one
computes ρ(r) using (23) and m(r) using (17). Then, knowing pr(r), pt(r), ρ(r) and m(r) one
integrates (20) by one step to determine pr(r +dr). One then uses (21) to determine λr(r +dr)
and as the profile for λt(r) is fixed, one proceeds with the next integration step.

One then integrates (20) up to the radius R for which pr(R) = 0; this sets the radius of the
star. In our integration, we used a radial step of 50m.

Finally, one must evaluate the total baryon charge of the star using

B =

∫ R

0

4πr2n(r)

(1 − 2Gm
c2r

)1/2
dr, (24)

where

n(r) =
1

λr(r)λt(r)2
(25)

and rescale λt to restore the baryon number to the desired value. One then repeats the integra-
tion procedure until the baryon charge reaches the correct value without needing any rescaling.
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4 Results

4.1 Stars Made of Isotropically Deformed Skyrme Crystal

After computing the minimum energy configuration of a Skyrmion star for a large range of
baryon number we found that below the critical value Bc = 2.61 × 1057, equivalent to 1.49M�,
all the stars are made out of crystals that are isotropically deformed, i.e λt(r) = λr(r), across
the whole radius of the star. To confirm this result, we have solved the TOV equations for
isotropic starts and found that no such solution exits above Bc.

It can be shown that this indeed has to be the case as one can prove that if it is possible
to find an isotropic Skyrme crystal solution then that solution will be the minimum energy
configuration[22].

The proof however does not rule out the existence of anisotropic Skyrme crystal solutions
with baryon numbers for which there does not exist an isotropic Skyrme crystal solution. We
will discuss such configurations in the next section.

We have also computed the quantity

S(r) = e−λ(r) = 1 −
2m(r)

r
, (26)

which appears in the static, spherically symmetric metric (10). Its root correspond to singular-
ities in the metric, or in other words, to horizons. We have thus computed its minimum value
Smin and observed that even for the largest isotropically deformed star Smin = 0.5578 and so
all the isotropically deformed stars are far from an horizon.

The neutron star solutions which have masses larger than the mass of the Sun have radii of
about 10km, which very much matches the experimental estimates of the radii of observed neu-
trons stars. Notice also that the largest neutron star, in our model, has a mass of approximately
1.28M�, and above that value, the radius of the stars decreases with their mass.
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Figure 3: Radius of the neutron star solutions as a function of their mass (solid line), and that
of the maximum mass solution (cross).
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4.2 Stars Made of Anisotropically Deformed Skyrme Crystal

The critical Baryon mass Bc correspond to a phase transition between isotropically deformed
star crystals and anisotropically deformed ones. We were able to compute such minimising
configurations for starts up to B = 3.25×1057 , corresponding to 1.81M�. Above that value our
numerical energy minimisation procedure became difficult to implement but we were able to
compute anisotropic Skyrme crystal solutions up to a baryon number of 3.41× 1057, equivalent
to 1.90M� by maximising the baryon number. This maximum baryon number solution is unique
as any modification to it results in a decrease in the baryon number, hence it is the minimum
energy solution. Above this baryon number, solutions do not exist.

We found that the anisotropically deformed crystal configurations are energetically favourable
as the energy per baryon decreases as the total baryon number increases, indicating stable so-
lutions.

Sm
in
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0.6

0.7

0.8

0.9

1

Mass (Solar Mass)
0 0.5 1 1.5 2

Figure 4: Smin of the neutron star solutions as a function of their mass. The maximum mass
solution is shown as a cross.

Figure 3 shows a plot of the star radius as a function of its mass in units of M� for all the
stars that we found, isotropic and anisotropic. For small stars, the radius increases with their
mass until the maximum of 10.8km at 1.28M�. The radius then decreases up to the critical
mass 1.49M� above which star crystals becomes anisotropically deformed. The radius then
decreases further to reach a plateau value of 9.5km just over 1.5M�.

We can see that the configurations we have constructed do not collapse into a black hole by
noticing that the values of Smin are always positive, and monotonically decreasing, as shown
in figure 4. Despite a sharp decrease just over 1.5M�, i.e. just above the critical mass, Smin

always remains positive, indicating that no black hole is formed.
In all previous work[12],[16], [17] on Skyrmion star, it has always been assumed that neutron

star matter was a fluid and thus deformed isotropically and a maximum mass was then derived
using that assumption. We have argued that anisotropic deformations must be considered as
well and doing so one finds that the mass range over which solutions can be found increases by
about 28% above the maximum mass found for the isotropic case.

The maximum star mass that we obtained for our Skyrme crystal model is approximately
1.90M� and the recent discovery of a 1.97 ± 0.04M� neutron star [23], the highest neutron
star mass ever determined, makes this an encouraging finding, especially when we consider that
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Figure 5: Skyrmion lengths λr(r) (solid line), λt(r) (dashed line) and L(r) (dotted line) for
a) Largest neutron star (R = 10.8km): M = 1.28M� b) Heaviest isotropic neutron star:
M = 1.49M� (all lengths coincide as they are made of isotropically deformed crystal); c)
Densest neutron star: M = 1.54M�; d) Heaviest neutron star: M = 1.90M�.
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including the effects of rotation into our model will increase the maximum mass found, by up
to 2% for a star with a typical 3.15ms spin period [24].

Figure 5 shows a selection of plots of the Skyrmion lengths λr and λt and the Skyrmion
size L, equation (8), over the radius of the star for four special stars: the largest star, with
radius R = 10.8km and mass M = 1.28M� (figure 4.2); the heaviest isotropically deformed
star M = 1.49M� (figure 4.2); the densest neutron star, M = 1.54M� (figure 4.2) and the
heaviest neutron star, M = 1.90M� (figure 4.2). The first two figures correspond to isotropically
deformed crystals, while the last two correspond to anisotropically deformed ones. One notices
that the amount of anisotropy increases as the mass increases (the divergence between λr and λt

increases). In what follows we will use these four special stars as examples to illustrate various
properties of the neutron stars.

As the maximum mass is approached the gradient of the profile of tangential Skyrmion
lengths over the radius of the star becomes smaller as the mass increases. Moreover phys-
ically meaningful stars composed of anisotropically deformed crystal must have dλt/dr ≥ 0
[25] confirming that the minimum energy solution for the maximum mass found, 1.90M�, for
anisotropic Skyrme crystal solutions is the configuration with a constant tangential Skyrmion
length as illustrated in figure 4.2.

As shown above, the generalised TOV equation imposes that the sizes of the Skyrmions
are equal in all directions at the centre of the star, but away from the centre we find that the
amount of Skyrmion anisotropy increases as we move towards the edge of the star, reaching
the maximum at the edge. We thus observe that the Skyrmions are more deformed in the
tangential direction in agreement with the value of the aspect ratio, p, being negative over the
values where λr 6= λt.

As expected, the profiles for λr and λt show that the mass density at the centre of the star
is higher than at the edge, decreasing monotonically as the radial distance increases. This is
shown by figure 6 for the largest, heaviest isotropic, densest and maximum mass solutions.

In figure 7 one can see how the lengths of the Skyrme crystal λr and λt vary with the mass of
the star both at the centre (r = 0) and the edge of the star (r = R). For isotropically deformed
stars, λr(R) = λt(R) is constant and corresponds to the minimum energy Skyrme crystal in the
absence of gravity. Not surprisingly, λr(0) = λt(0) decreases steadily as the mass of the star
increases, showing that the density at the centre of the star increases. Once the phase transition
has taken place and the star is too heavy to remain isotropically deformed, we observe that
λr(0) = λt(0) drops sharply to a local minimum, reached for M ≈ 1.54M�. Meanwhile, λr(R)
and λt(R) remain nearly identical. Beyond the minimum of λr,t(0), λr(R) and λt(R) start to
diverge sharply; λr(R) decreases slightly in value while λt(R) decreases rapidly. These stars are
thus much more compressed in the tangential direction than in the radial one, as seen on figure
4.2, λt(R) = λt(0) for the maximum mass neutron star.

The expression for the energy of the Skyrme crystal eq. (2) allows us to compute the speed
of sound in the star along the radial direction (z in (2))

vr =

(

dpr

dλr

(

dρ

dλr

)−1
)1/2

. (27)

First of all it is interesting to observe that vr is amazingly large in the pure Skyrme crystal in
the absence of any gravitational field: v = 0.57 c. This is the speed of sound at the surface of a
neutron star when it is deformed isotropically. One sees From figure 8 that vr increases as one
moves towards the centre of the star. Moreover, as vr is directly related to the density of the
star, it is not surprising to find that the maximum radial speed obtained, vr = 0.78c, is reached
at the centre of the densest neutron star, i.e. the one with M = 1.54M�. Notice also that, as
one expects it, vr < c everywhere.

We would like to point out that the minimum value of the aspect ratio, p, for the minimum
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Figure 6: Mass density ρ(r) for: a) Largest neutron star (R = 10.8km): M = 1.28M� (solid
line) b) Heaviest isotropic neutron star: M = 1.49M� (dashed line); c) Densest neutron star:
M = 1.54M� (dotted line); d) Heaviest neutron star: M = 1.90M� (dash dotted line).
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Figure 7: Skyrmion lengths at the edge of the star, λr(R) (solid line) and λt(R) (dashed line),
and at the centre of the star, λr(0) = λt(0) (dotted line), as a function of the star mass.

energy configurations found is −0.283 and the minimum value of L is 8.11 × 10−16, both of
which are within the valid range of values for equation (2) [7].

11



M=1.28MS M=1.49MS

M=1.54MS

M=1.90MS

Ra
dia

l S
pe

ed
 of

 so
un

d (
m/

s)

1.4e+08
1.5e+08
1.6e+08
1.7e+08
1.8e+08
1.9e+08
2e+08

2.1e+08
2.2e+08
2.3e+08
2.4e+08

Radius (km)
2 4 6 8 10

Figure 8: Radial speed of sound, vr(r) for a) Largest neutron star (R = 10.8km): M = 1.28M�

(solid line) b) Heaviest isotropic neutron star: M = 1.49M� (dashed line); c) Densest neutron
star: M = 1.54M� (dotted line); d) Heaviest neutron star: M = 1.90M� (dash dotted line).

4.3 Inclusion of the Pion Mass

So far we have assumed that the pion mass in the model was zero. The inclusion of a non-zero
pion mass can be considered by including the pion mass term,

∫

m2
πF 2

π

8
Tr(U − 1)d3x, (28)

in the static Skyrme Lagrangian (1), where U is the Skyrme field, Fπ is the pion decay constant
and mπ is the pion mass. Using the cubic lattice of α-like Skyrmions considered above one finds
that Tr(U − 1) = −2, meaning that the energy Eπ arising from the pion mass term reduces to

Eπ =
1

4
m2

πF 2
πL3, (29)

an energy term proportional to the volume of the Skyrmions.
Figure 9 shows that the inclusion of the pion mass m = 138MeV decreases the maximum

mass of the star by a very small amount from 1.49 to 1.47M� while also slightly decreasing the
central density at which this occurs.

Including a pion mass of m = 138MeV in the simulated annealing process used to find the
maximum baryon number for the anisotropic Skyrme crystal solutions results in a maximum
baryon number of 3.34 × 1057, equivalent to 1.88M�, a decrease of 0.02M� from the maximum
mass found in the case without a pion mass.

5 Conclusions

Neutron stars are stars which have collapsed under their own gravitational pull. The electrons,
instead of orbiting the atoms, are forced to merge with the nuclei, resulting in extremely dense
stars made out of neutrons. Their temperature, from a nuclear point of view, is very low
and this implies that they must be considered as a solids rather than a fluids. Moreover, the
gravitational pull of the star is so strong that the “atmospheric” fluid one might expect at the
surface is of negligible height.
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Figure 9: Mass of the star as a function of the size of the Skyrmions at the centre, L0, for zero
pion mass (solid line) and m = 138MeV (dashed line).

The Skyrme model, known to be a low energy effective field theory for QCD [3], is then
an ideal candidate to describe neutron stars if one modifies it to add gravity. The minimum
energy configuration of large numbers of Skyrmions is a cubic crystal made of B = 4 Skyrmions
corresponding to a crystal of α-like particles. Using these solutions as building blocks we
have described the neutron star by combining the deformation energy computed in [7] and a
generalised version of the TOV equation [13], [14], [15] which describes the static equilibrium
between matter forces, within a solid or fluid, and the gravitational forces self-generated by the
matter for a spherically symmetric body.

We showed that the star must be considered as a solid that could potentially deform itself
anisotropically. We then found that below 1.49M�, all stars were made of a crystal deformed
isotropically, i.e. the radial strain was identical to the tangential one. Above that critical value,
the neutron star undergoes a critical phase transition and the lattice of Skyrmions compresses
anisotropically: the Skyrmions are more compressed tangentially than radially. Stars were
shown to exist up to a critical mass of 1.90M�, a result that closely matches the recent discovery
of Demorest et al. [23] who measured the mass of the heaviest neutron star found to date, PSR
J1614-2230, to be 1.97M�. We also observed that the maximum radius for a Skyrmion star
was approximately 11km, a figure that matches well the experimental estimations.

In our model we did not consider the rotational energy of the star which is approximated
at about 2% of its total energy. If we included that extra energy, our upper bound would thus
just fit above the mass of PSR J1614-2230.
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