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Abstract

The process of neutrino pair emission by strongly magnetized plasma is investigated. It
is shown that calculation of the plasma emissivity due to a general process via resonant
photon i → γ → f can be reduced to the investigation of the process γ → f only. As an
example the plasma emissivity due to the process γe → νν̃e via photon intermediate state
is calculated.

1 Introduction

In our research we study the process of neutrino pair emission by strongly magnetized
plasma due to neutrino electromagnetic interaction. The process γe → γ → νν̃e via photon
intermediate state is of special interest because it has resonant character at a particular energy
of virtual photon. Taking into account the possible astrophysical application we calculate the
volume density of plasma energy losses due to neutrino emission in this process.

The direct calculations of the plasma emissivity due to process γe → γ → νν̃e are a quite
complex, however, it turn out that for study of plasma emissivity there is no need to investigate
this process completely. As will be shown below it is enough to calculate the width of the
process γ → νν̃ only.

2 Plasma emissivity due to an arbitrary process i → γ → f

Let us discuss the some process with arbitrary ”initial” |i > and ”final” |f > states via
resonant photon intermediate state in a magnetized plasma (fig.1).

Under the ”initial” state we will assume the total set of initial particles of the process as
well as the don’t leaving plasma final particles. While as the ”final” state it is considered the
weakly interacting final particles (neutrino, axion, etc), which leave plasma and carry away the
some energy.

The S-matrix element of the process i → γ → f can be written as

Sif = (Ai γ)α Gαβ (Bγf )β. (1)

Here (Ai γ)α and (Bγf )β are the some four-vectors, corresponding to the first part of the process
considered (the transition i → γ) and the second part (the transition γ → f) respectively, Gαβ

is the photon propagator, which has the following form

Gαβ = i
∑

λ

ε
∗(λ)
α ε

(λ)
β

q2 − Πλ(q)
, (2)
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Figure 1: The transition of an arbitrary ”initial” state |i > to some ”final” state |f > via photon
intermediate state.

where qµ = (ω,~k) is the four-momentum of photon, ε
(λ)
α are the photon polarization four-

vectors, Πλ are the eigenvalues of photon polarization operator, parameter λ defines the number
of eigenvalues and eigenvectors of photon polarization operator.

In a general case three eigenvectors of the photon polarization operator exist in the strongly
magnetized plasma:

ε(1)
α =

(qϕ)α
√

q2
⊥

, ε(2)
α =

(qϕ̃)α
√

q2
‖

, (3)

ε(3)
α =

q2(qϕϕ)α − qα(qϕϕq)
√

q2 q2
‖ q2

⊥

,

where ϕαβ is the dimensionless external field tensor, ϕαβ = Fαβ/B, ϕ̃αβ = 1
2εαβρσϕρσ is the

dual tensor, q2
‖ = (qϕ̃ϕ̃q) = ω2 − k2

3 , q2
⊥ = (qϕϕq) = k2

1 + k2
2 , q2 = q2

‖ − q2
⊥ (it is assumed that a

magnetic field is directed along the third axis, ~B = (0, 0, B)).

From these modes only second mode with eigenvector ε
(2)
α corresponds to timelike vector

with q2 > 0, when the process of photon decay becomes possible. So, we will consider in our
investigations the photon of second mode only.

The dispersion law of second mode in the strongly magnetized plasma has the following
form:

q2 =
2αeB

π
(I(ω, k3) − H(z)), z =

q2
‖

4m2
e

< 1, (4)

here α is the fine structure constant, me is the electron mass, H(z) is the function of q2
‖ [3]:

H(z) =
1

√

z(1 − z)
arctg

(√

z

1 − z

)

− 1.

Function I(ω, k3) in (4) can be presented as the integral [4]

I(ω, k3) = 2 q2
‖ m2

e

+∞
∫

−∞

dp3

E

fe−(E) + fe+(E)

4(pq)2‖ − q4
‖

, fe±(E) =
1

e(E±µ)/T + 1
,

where fe−(E) and fe+(E) are the distribution functions of plasma electron and positron, pµ =
(E, ~p) is the electron (positron) four-momentum, (pq) = Eω − p3k3, µ and T are the chemical
potential and plasma temperature correspondingly.

In general case Πλ(q) are the complex functions:

Πλ(q) = Re(Πλ(q)) + i Im(Πλ(q)), (5)

where real part of Πλ(q) defines the dispersion law:

q2 = Re(Πλ(q)),

while the imaginary part is connected with the total width of photon disappearance:

Im(Πλ(q)) = −ω Γtot(q). (6)
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With (2) and (5) the S-matrix element squared can be written in the form:

|Sif |2 =
∑

λ,λ′

(Ai γλ
ε∗λ)(A∗

i γλ′
ελ′

)(Bγλfελ)(B∗
γλ′fε∗λ

′
)

(q2 − Re(Πλ(q))2 + (Im(Πλ(q)))2
. (7)

Taking into account that imaginary part of Πλ(q) is more less than real part the resonance
factor can be approximated by the delta-function:

1

(q2 − Re(Πλ(q)))2 + (Im(Πλ(q)))2
=

π

|Im(Πλ(q))| δ(q2 − Re(Πλ(q))), (8)

where delta-function of q2 can be reduced to the form

δ(q2 − Re(Πλ(q))) =
δ(ω − ωλ(k))

2ωλ
. (9)

Here ωλ is the root of the equation

ω2 − ~k 2 − Re(Πλ(q)) = 0.

After performing some manipulations and taking into account (8) and (9) the S-matrix
element squared can be expressed as

|Sif |2 =
V

T (2π)3

∫

d3 k
∑

λ,λ′

(Siγλ
S∗

iγλ′
) (Sγλf S∗

γλ′f )
1

Γtot(q)
, (10)

where T is the total interaction time, V is the normalization volume, Siγλ
and Sγλf are the

S-matrix elements of the processes i → γλ and γλ → f correspondingly.
The total width of photon disappearance Γtot(q) is defined as difference of the widths of

photon absorption and creation

Γtot(q) = Γab(q) − Γcr(q). (11)

Taking into account the relation between widths of photon absorption and creation [1]

Γcr(q) = e−ω/T Γab(q)

the total width of photon disappearance can be represented in the form

Γtot(q) = (1 − e−ω/T ) Γab(q) = (12)

= (1 − e−ω/T ) eω/T Γcr(q) = (eω/T − 1) Γcr(q).

So for S-matrix element squared of the transition i → f via photon we obtain

|Sif |2 =
V

T (2π)3

∫

d3 k
∑

λ,λ′

(Siγλ
S∗

iγλ′
) (Sγλf S∗

γλ′f )
1

(eω/T − 1) Γcr(q)
. (13)

For calculation the volume density of plasma emissivity due to the process i → f we need
to integrate the S-matrix element squared (13) over both the final and initial states as well

ε̇i→γ→f =
1

V

∑

i

∫

|Sif |2 ωλ dni dnf , (14)

where dni and dnf are the phase-space elements of particles of initial and final states respec-
tively.
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Figure 2: The Feynman diagram of neutrino pair emission via photon intermediate state in
magnetized plasma.

Substituting in (14) the S-matrix element squared (13) and omitting the details of calcula-
tions, the plasma emissivity can be reduced to the form

ε̇i→γ→f =
∑

λ

∑

i

∫ |Siγλ
|2

T dni
|Sγλf |2

T dnf
d3k

(2π)3
ω

(eω/T − 1) Γcr(q)
, (15)

where
∑

i

∫ |Siγλ
|2

T dni = Γcr(q),

∫ |Sγλf |2
T dnf = Γγλ→f .

Finally for the volume density of plasma emissivity due to the process i → f via photon we
obtain the following expression

ε̇i→γ→f =
∑

λ

gλ

V

∫

dnγ fγλ
ωλ Γγ→f . (16)

Here dnγ = d3k V/(2π)3, fγλ
(ωλ) = (eωλ/T − 1)−1 is the photon distribution function, ωλ

is the ”resonant” energy of photon, gλ is the number of photon state with the same dispersion
law, ω = ωλ(k), Γγλ→f is the width of the process γ → f .

As one can see from (16) the calculation of the plasma emissivity due to the process i →
γ → f via resonant photon can be reduced to the investigation of the process γ → f .

3 Plasma emissivity due to the process γe → νν̃e

To illustrate possible applications of the result obtained (16) we calculate the plasma emis-
sivity due to neutrino pair emission via resonant photon in the process γe → γ → νν̃e, when
the neutrino-photon interaction is caused by the neutrino magnetic moment (fig.2). In this case
under ”initial” state should be considered the initial and final plasma electrons as well as initial
photon. As for the ”final” state, then it is involves the final neutrino pair.

As it was shown above in (16) for calculation plasma emissivity it is enough to find the
width of the process γ → νν̃. The lagrangian of neutrino-photon interaction caused by the
neutrino magnetic moment µν has the form:

L = − iµν

2
(ν̄ σαβ ν)F αβ, (17)

where σαβ = (γαγβ − γβγα)/2, ν is the solution of the Dirac equation [5].
The amplitude of the process γ → νν̃ can be obtained immediately from the lagrangian (17)

by means of substitution solutions of the Dirac equation

Mγ→νν̃ = µν

(

ν̄(p1)ν(p2)
)

(p1 − p2)
α ε(λ)

α , (18)

where pµ
1 = (E1, ~p1) and pµ

2 = (E2, ~p2) are the four-momenta of the final neutrino and antineu-

trino respectively, ε
(λ)
α are the photon polarization four-vectors.
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In strongly magnetized plasma only for photon of the second mode a region with q2 > 0
exists, therefore only the photon of second mode can decay into neutrino pair.

The amplitude (18) for photon of the second mode with eigenvector (3) leads to the ampli-
tude squared in the form:

|Mγ→νν̃ |2 = 8µ2
ν

q2

q2
‖

(qϕ̃p1)
2. (19)

The width of the decay γ → νν̃ is defined by the standard manner

Γγ→νν̃ =

∫

(2π)4 |Mγ→νν̃ |2
(
√

2ωV
√

2E1V
√

2E2V )2
V δ4(q − p1 − p2) dn1 dn2, (20)

where dn1 = d3p1V/(2π)3 and dn2 = d3p2V/(2π)3 are the phase-space of final neutrino and
antineutrino correspondingly.

Substituting (19) in (20) and performing integrating over the phase-space of particles for
the width of the process γ → νν̃ we find

Γγ→νν̃ =
µ2

ν

24π

(q2)2

ω
. (21)

The squared of four-vector q2 in (21) in the strongly magnetized degenerate plasma is defined
by the equation (4).

In the limit of low temperature, T � me, at q2
‖ � 4m2

e the dispersion law (4) is essentially
simplified:

q2 = ω2
pl

ω2 − k2
3

ω2 − v2
F k2

3

, ωpl =
2α

π
eB vF , (22)

where ωpl is the plasma frequency, vF is the Fermi velocity.
The dispersion law (22) has a very simple form in the some limiting cases:

• the case of relativistic plasma, (vF → 1)

q2 = ω2
pl, ω2

pl =
2α

π
eB, (23)

• the case of nonrelativistic plasma, (vF → 0)

q2 = ω2
pl

(

1 − k2
3

ω2

)

, ω2
pl =

4παne

me
, (24)

where ne is the electron number density.
As one can see from (24) the dispersion law in nonrelativistic plasma is essentially anisotropic

as it contains the dependence on third component of photon momentum.
After integration over the phase space of photon intermediate state in accordance with (16)

in the case of relativistic plasma for the plasma emissivity in the limit ωpl >> T we find:

ε̇ =

√
2πµ2

ν

96π3
ω7

pl

(

T

ωpl

)3/2

e−ωpl/T , (25)

where T is the plasma temperature.
The plasma emissivity due to neutrino pair emission in the nonrelativistic plasma in the

limit ωpl � T has the form:

ε̇ =
µ2

ν

45π3
T 3 ω4

pl ξ(3), (26)

where ξ(3) is the Riemann Zeta-function
At the present time in the literature only the numerical estimations of plasma emissivity

due to the process γe → νν̃e are presented [6].
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The numerical estimations of relativistic plasma emissivity in accordance with the equation
(25) reproduces the result [6]. While the numerical estimations in the limit of nonrelativistic
plasma differ from one in [6] by a factor 0,64. We believe that this is due to the fact that
authors [6] used in the nonrelativistic plasma the same photon dispersion law as in the case of
relativistic plasma.

4 Conclusions

We have investigated the general transition process of arbitrary ”initial” state to the ”final”
state via resonant photon in strongly magnetized plasma, i → γ → f . The interest to studies the
processes via photon intermediate state is caused by the its resonant character at a particular
energy of virtual photon. As the ”final” state it is considered neutrino, axion, etc., which
due to the weakly interaction with matter leave the plasma and carry away the some energy.
The processes with the such weakly interacting particles in final state could be of interest for
astrophysical applications, because they could give an additional contribution into the star
energy losses and considerable influence on the dynamics of a cooling stars.

The most general expression for the plasma emissivity in the process i → γ → f via resonant
photon is obtained. It was found that the calculation of the plasma emissivity due to the process
i → γ → f via resonant photon can be reduced to the investigation the process γ → f .

As an example the plasma emissivity due to the process γe → νν̃e caused by the neutrino
electromagnetic interaction is calculated.
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