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Abstract

We review cosmology in the recently proposed nonlinear massive gravity, especially cos-
mological solutions and their stabilities.

1 Introduction

The concept of the mass has been central in many areas of physics. Gravitation is not an
exception, and it is one of the simplest but yet unanswered questions whether the graviton, a
spin-2 particle that mediates gravity, can have a non-vanishing mass or not. This question is
relevant not only from a theoretical but also from a phenomenological viewpoint, since a nonzero
graviton mass may lead to late-time acceleration of the universe and thus may be considered as
an alternative to dark energy.

Recently Refs.[1, 2] proposed the first example of a fully nonlinear massive gravity theory,
where the so called Boulware-Deser (BD) ghost [3], which had been one of the major obstacles
against a stable nonlinear gravity theory with a non-vanishing graviton mass, is removed by
construction. Due to the theoretical and phenomenological motivations mentioned above, this
theory has been attracting significant interest. The purpose of this paper is to review cosmology
in the nonlinear massive gravity, especially cosmological solutions and their stabilities.

2 Open FRW solution with Minkowski fiducial metric

In this section, we review the open FRW universe solution [4] in nonlinear massive gravity
coupled to general matter content.

The covariant action for the gravity sector is constructed out of the four dimensional metric
gµν and the four scalar fields φa (a = 0, 1, 2, 3) called Stückelberg fields. The action respects the
Poincare symmetry in the field space, i.e. invariance under the constant shift of each of φa and
the Lorentz transformation mixing them:

φa → φa + ca, φa → Λa
bφ

b. (1)

The following line element in the field space is invariant under these transformations.

ηabdφ
adφb = −(dφ0)2 + δijdφ

idφj . (2)

Indeed, this is the unique geometrical quantity in the field space of φa. Thus the action can
depend on φa only through the spacetime tensor

fµν ≡ ηab∂µφ
a∂νφ

b. (3)
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In this language, general covariance is spontaneously broken by the vacuum expectation value
(vev) of fµν . By assumption, matter fields propagate on the physical metric gµν , but are not
coupled to fµν directly. The tensor fµν , constructed from the invariant line element in the field
space, is often called a fiducial metric. On the other hand, the spacetime metric gµν , on which
matter fields propagate, is often called a physical metric.

The gravity action is the sum of the Einstein-Hilbert action (with the cosmological constant
Λ) IEH,Λ for the physical metric gµν and the graviton mass term Imass specified below. Adding
the matter action Imatter, the total action is

I = IEH,Λ[gµν ] + Imass[gµν , fµν ] + Imatter [gµν , σI ], (4)

where

IEH,Λ[gµν ] =
M2

P l

2

∫

d4x
√
−g(R − 2Λ), (5)

Imass[gµν , fµν ] = M2
P lm

2
g

∫

d4x
√−g (L2 + α3L3 + α4L4), (6)

and {σI} (I = 1, 2, · · · ) represent matter fields. Demanding the absence of ghost at least in the
decoupling limit [2], each contribution in the mass term Imass is constructed as

L2 =
1

2

(

[K]2 −
[

K2
]

)

,

L3 =
1

6

(

[K]3 − 3 [K]
[

K2
]

+ 2
[

K3
]

)

,

L4 =
1

24

(

[K]4 − 6 [K]2
[

K2
]

+ 3
[

K2
]2

+ 8 [K]
[

K3
]

− 6
[

K4
]

)

, (7)

where the square brackets denote trace operation and

Kµ
ν = δµ

ν −
(

√

g−1f
)µ

ν
. (8)

The square-root in this expression is the positive definite matrix defined through
(

√

g−1f
)µ

ρ

(

√

g−1f
)ρ

ν
= fµ

ν (≡ gµρfρν). (9)

As already stated above, a vev of the tensor fµν breaks general covariance spontaneously.
Thus, in order to find FRW cosmological solutions in this theory, we should adopt an ansatz
in which not only gµν but also fµν respects the symmetry of the FRW universes [4]. Since the
tensor fµν is the pullback of the Minkowski metric in the field space to the physical spacetime,
construction of such an ansatz is equivalent to finding a flat, closed, or open FRW coordinate
system for the Minkowski line element. It is well known that the Minkowski line element does
not admit a closed FRW chart but allows an open FRW chart. For this reason, in order to find
open FRW solutions [4], we first perform the field redefinition from φa to new fields ϕa so that
fµν written in terms of ϕa manifestly has the symmetry of open FRW universes as

fµν = −n2(ϕ0)∂µϕ
0∂νϕ

0 + α2(ϕ0)Ωij(ϕ
k)∂µϕ

i∂νϕ
j , (10)

where i, j = 1, 2, 3, and

Ωij(ϕ
k) = δij +

Kδilδjmϕ
lϕm

1 −Kδlmϕlϕm
(11)

is the metric of the maximally symmetric space with the curvature constant K (< 0). Con-
cretely, this is achieved by

φ0 = f(ϕ0)
√

1 −Kδijϕiϕj , φi =
√
−Kf(ϕ0)ϕi , (12)
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and
n(ϕ0) = |ḟ(ϕ0)|, α(ϕ0) =

√
−K|f(ϕ0)|, (13)

where f is a function to be determined and ḟ represents its derivative. We then adopt the
“unitary gauge”

ϕ0 = t, ϕi = xi, (14)

so that
fµνdx

µdxν = −(ḟ(t))2 dt2 + |K| (f(t))2 Ωij(x
k)dxidxj . (15)

This is nothing but the Minkowski line element in the open chart. For the physical metric, we
adopt the open FRW ansatz

ds2 = −N(t)2dt2 + a(t)2 Ωij(x
k)dxidxj . (16)

Hereafter, we assume that N > 0 and a > 0, without loss of generality.
The background action now yields, up to boundary terms,

I = M2
P l

∫

dt d3xNa3
√

Ω
(

LEH [N, a] +m2
gLmass[N, a, f ]

)

+ Imatter [N, a, σI ] , (17)

consisting of the Einstein-Hilbert part

LEH =
3K

a2
− 3 ȧ2

a2N2
, (18)

and the contribution from the mass term

Lmass =

(

1 −
√
−K|f |
a

)[

6 + 4α3 + α4 −
√
−K|f |
a

(3 + 5α3 + 2α4) −
K |f |2
a2

(α3 + α4)

]

+sgn(ḟ/f)
|f | ȧ
N a

×
[

3 (3 + 3α3 + α4) −
3
√
−K|f |
a

(1 + 2α3 + α4) −
K |f |2
a2

(α3 + α4)

]

. (19)

Hereafter, an overdot represents derivative w.r.t. the time t.
Varying the action (17) with respect to f yields the following constraint

[

H − sgn(ḟ/f)

√
−K
a

]

×
[

3 + 3α3 + α4 −
2
√
−K |f |
a

(1 + 2α3 + α4) −
K |f |2
a2

(α3 + α4)

]

= 0 , (20)

where the Hubble expansion rate of the physical metric is defined as

H ≡ ȧ

N a
. (21)

Out of the three solutions of the constraint (20), the trivial solution ȧ = sgn(ḟ/f)
√
−KN

corresponds to the Minkowski spacetime in open chart. The remaining two branches of solutions
are given by [4]

α(t) = X±a(t) , X± ≡ 1 + 2α3 + α4 ±
√

1 + α3 + α2
3 − α4

α3 + α4
(> 0) , (22)

and describe FRW cosmologies with K < 0.1 In the present paper we will focus only on these
nontrivial cosmological solutions.

1Note that X± are positive by definition since α(t) > 0 and we assumed a(t) > 0. If we instead assumed
a(t) < 0 then the corresponding solutions would be α(t) = −X±a(t) with the same X± and we would conclude
X± > 0 again. The essential reason for the positivity of X± is that the square-root in (8) is the positive one.
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Using the above constraint and varying the action (17) with respect to N and a, we obtain
the remaining background equations

3H2 +
3K

a2
= Λ± +

1

M2
P l

ρ ,

−2Ḣ

N
+

2K

a2
=

1

M2
P l

(ρ+ P ), (23)

where ρ and P are the energy density and the pressure of matter fields calculated from Imatter ,
and

Λ± ≡ −
m2

g

(α3 + α4)
2

[

(1 + α3)
(

2 + α3 + 2α2
3 − 3α4

)

± 2
(

1 + α3 + α2
3 − α4

)3/2
]

. (24)

Thus, for the cosmological solutions (22), the contribution from the graviton mass term Imass

at the background level mimics a cosmological constant with the value Λ±.
For α4 = (3 + 2α3 + 3α2

3)/4 and ±(1 + α3) > 0, the effective cosmological constant Λ±

vanishes, and the background solution reduces to the open FRW universe solution of GR. On
the other hand, both X± and Λ± diverge for α4 = −α3 and ±(1+α3) > 0. In Figure 1, we show
the sign of Λ± in the (α3, α4) space. Note that X± are restricted to be positive by definition,
as explained in footnote 1.
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Figure 1: Sign of the effective cosmological constant Λ± in the positive (left panel) and negative
(right panel) branches. In the red (green) region with +45◦ (−45◦) lines, Λ± is positive (nega-
tive). The white region and the dotted squared region correspond to 1 + α3 + α2

3 − α4 < 0 and
X± < 0, respectively, and are excluded since the cosmological solutions (22) do not exist there.
Along the dotted black line (defining the boundary between the red and green regions), Λ± = 0
and the background solution reduces to the GR one. The solid line corresponds to X± = 0
and thus defines one of the boundaries between the allowed (red or green) and excluded (dot-
ted squared) regions. Along the dashed line, both X± and Λ± diverge, and it defines another
boundary between the allowed (red or green) and excluded (dotted squared) regions.
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3 FRW solutions with general fiducial metric

In appendix of [5], the open FRW solution was generalized to closed/flat/open FRW solutions
by considering a fiducial metric of the general FRW type. In this section we review those general
FRW solutions.

In this and next sections we consider the graviton mass term Imass[gµν , fµν ] defined by
(6)-(11), but with an arbitrary value of K and arbitrary functions n(ϕ0) and α(ϕ0). We shall
develop a formalism to analyze perturbations of this generalized system around flat (K = 0),
closed (K > 0) and open (K < 0) FRW universes.

For the background we adopt the physical metric of the FRW form (16) with (14), but with
general K, n(ϕ0) and α(ϕ0). Without loss of generality, we assume that N > 0, n > 0, a > 0
and α > 0 at least in the vicinity of the time of interest, where N and a are the lapse function
and the scale factor of the background FRW physical metric. (Otherwise, we consider |N |, |n|,
|a| and |α| and rename them as N , n, a and α.)

We now derive the background equation of motion for the Stückelberg fields ϕa by expanding
the graviton mass term Imass up to the linear order in πa (= δϕa) without variation of the
physical metric gµν . We define perturbations πa of ϕa by

ϕa = xa + πa +O(ε2), (25)

where ε is a small number counting the order of perturbative expansion: πa = O(ε). By
substituting this to the definition of the fiducial metric

fµν = f̄ab(ϕ
c)∂µϕ

a∂νϕ
b, (26)

where
f̄00(ϕ

c) = −n2(ϕ0), f̄0i(ϕ
c) = f̄i0(ϕ

c) = 0, f̄ij(ϕ
c) = α2(ϕ0)Ωij(ϕ

k), (27)

we obtain
fµν = f̄µν(x

ρ) + Lπf̄µν(x
ρ) +O(ε2). (28)

Here, Lπ represents the Lie derivative along πµ. Actually, this formula is not restricted to (27)
but holds for any f̄ab(ϕ

c).
Using the formula (28), fµν is expanded up to the linear order as

f00 = −n2

[

1 +
2

n
∂t(nπ

0) +O(ε2)

]

,

f0i = fi0 = αn
[

−n
α
Diπ

0 +
α

n
π̇i +O(ε2)

]

,

fij = α2
[

(1 + 2nHfπ
0)Ωij +Diπj +Djπi +O(ε2)

]

, (29)

where an overdot represents differentiation with respect to the time t and

Hf ≡ α̇

nα
. (30)

With the unperturbed physical metric

g00 = −N2, g0i = gi0 = 0, gij = a2Ωij, (31)

this leads to the following expansion for f µ
ν (≡ gµρfρν).

f0
0 =

n2

N2

[

1 +
2

n
∂t(nπ

0) +O(ε2)

]

,

f0
i = −αn

N2

[

−n
α
Diπ

0 +
α

n
π̇i +O(ε2)

]

,

f i
0 =

αn

a2

[

−n
α
Diπ0 +

α

n
π̇i +O(ε2)

]

,

f i
j =

α2

a2

[

(1 + 2nHfπ
0)δi

j +Diπj +Djπ
i +O(ε2)

]

. (32)
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Then, expanding the matrix square-root, Kµ
ν defined by (8)-(9) is expanded up to the linear

order as
Kµ

ν = K(0)µ
ν + K(1)µ

ν +O(ε2), (33)

where
K(0)0

0 = 1 − n

N
, K(0)0

i = 0, K(0)i
0 = 0, K(0)i

j =
(

1 − α

a

)

δi
j , (34)

and

K(1)0
0 = − 1

N
∂t(nπ

0),

K(1)0
i =

na

N2(1 + r)

[

−n
α
Diπ

0 +
α

n
π̇i

]

,

K(1)i
0 = − n

a(1 + r)

[

−n
α
Diπ0 +

α

n
π̇i
]

,

K(1)i
j = − α

2a

[

2nHfπ
0δi

j +Diπj +Djπ
i
]

. (35)

Here, we have defined

r ≡ na

Nα
. (36)

It is now straightforward to expand the graviton mass term (6) up to the first order. The
result is

Imass = I(0)
mass +M2

P lm
2
g

∫

d4xNa3
√

Ω
3n

a
(aH − αHf )Jφπ

0 +O(ε2), (37)

where the zero-th order part I
(0)
mass does not depend on πa and

Jφ ≡ 3 − 2X + α3(1 −X)(3 −X) + α4(1 −X)2, X ≡ α

a
. (38)

Therefore, the background equation of motion for the Stückelberg fields is

(aH − αHf )Jφ = 0, (39)

where Hf is defined in (30) and

H ≡ ȧ

Na
. (40)

Setting aH = αHf would not allow nontrivial cosmologies since this branch does not evade
Higuchi bound [6] and thus linear perturbations around the corresponding solution [7, 8] include
ghost in the cosmological history. Thus, we shall not consider this branch and restrict our
attention to solutions of Jφ = 0. This leads to X = X±, where X± are given by (22).

Using Jφ = 0 and varying the action (17) with respect to N and a, we obtain the remaining
background equations. They agree with those obtained in the previous section, i.e. (23) with
(24).

What is interesting is that the Friedmann equation, including the value of the effective
cosmological constant induced by the graviton mass term, does not depend on the nature of
the fiducial metric. In particular, even if the Hubble expansion rate of the fiducial metric is of
the Planck scale, the induced cosmological constant remains to be of the order of the graviton
mass squared.

4 Perturbations of homogeneous isotropic solutions

As shown in the previous section, for general cases with arbitrary K, n(ϕ0) and α(ϕ0), the
background equation of motion for the Stückelberg fields ϕa has three branches of solutions.
One of them does not allow nontrivial cosmologies because of the Higuchi bound, and thus
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is not of our interest. The other two branches of solutions allow nontrivial cosmologies and
are given by (22)-(24) even for general K, n(ϕ0) and α(ϕ0). In this section we then consider
perturbations of the physical metric and the Stückelberg fields around the FRW solutions in
these nontrivial branches, following ref. [5].

4.1 Exponential map and Lie derivative

Since the fiducial metric fµν is defined as in (10) without referring to the physical metric gµν ,
let us begin with perturbations of the Stückelberg fields ϕa. We define perturbations πa of ϕa

through the so-called exponential map. Actually, since the action will be expanded only up to
the quadratic order, we can truncate the exponential map at the second order. We thus define
πa by

ϕa = xa + πa +
1

2
πb∂bπ

a +O(ε3), (41)

or equivalently,

πa = (ϕa − xa) − 1

2
(ϕb − xb)∂b(ϕ

a − xa) +O(ε3). (42)

Here, ε is a small number counting the order of perturbative expansion: πa = O(ε) and ϕa−xa =
O(ε). By substituting the expansion (41) to the definition of the fiducial metric

fµν = f̄ab(ϕ
c)∂µϕ

a∂νϕ
b, (43)

where f̄ab is defined in (27), we obtain

fµν = f̄µν(x
ρ) + Lπf̄µν(x

ρ) +
1

2
(Lπ)2 f̄µν(xρ) +O(ε3). (44)

Here, Lπ represents the Lie derivative along πµ. Actually, this formula is not restricted to (27)
but holds for any f̄ab(ϕ

c).

4.2 Stückelberg fields and gauge invariant variables

We define perturbations φ, βi and hij of the physical metric by

g00 = −N2(t) [1 + 2φ] ,

g0i = N(t)a(t)βi

gij = a2(t)
[

Ωij(x
k) + hij

]

. (45)

We suppose that φ, βi, hij = O(ε).
Under the linear gauge transformation

xµ → xµ + ξµ, (ξµ = O(ε)) (46)

each variable transforms as

π0 → π + ξ0,

πi → πi + ξi,

φ → φ+
1

N
∂t(Nξ

0),

βi → βi −
N

a
Diξ

0 +
a

N
ξ̇i,

hij → hij +Diξj +Djξi + 2NHξ0Ωij, (47)
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where H is the Hubble expansion rate as defined in (21),

πi ≡ Ωijπ
j, ξi ≡ Ωijξ

j , (48)

and Di is the spatial covariant derivative compatible with Ωij .
We then define gauge invariant variables

φπ ≡ φ− 1

N
∂t(Nπ

0),

βπ
i ≡ βi +

N

a
Diπ

0 − a

N
π̇i,

hπ
ij ≡ hij −Diπj −Djπi − 2NHπ0Ωij. (49)

For later convenience, let us decompose βπ
i and hπ

ij as

βπ
i = Diβ

π + Sπ
i ,

hπ
ij = 2ψπΩij +

(

DiDj −
1

3
Ωij4

)

Eπ +
1

2
(DiF

π
j +DjF

π
i ) + γij, (50)

where Sπ
i and F π

i are transverse, and γij is transverse and traceless:

DiSπ
i = DiF π

i = 0, Diγij = 0, Ωijγij = 0, (51)

and Di ≡ ΩijDj .

4.3 Graviton mass term

At the FRW background level, the graviton mass term acts as an effective cosmological constant
Λ± shown in (24). The proof of this statement was presented in Sec. 3 for arbitrary K, n(ϕ0)
and α(ϕ0). Thus, calculations are expected to be simplified if we add M 2

P l

∫

d4x
√−gΛ± to

Imass before performing perturbative expansion. For this reason, we define

Ĩmass[gµν , fµν ] ≡ Imass[gµν , fµν ] +M2
P l

∫

d4x
√−gΛ±, (52)

and expand it instead of Imass itself.
As shown explicitly in [5], upon using the background equation of motion for the Stückelberg

fields but without using the background equation of motion for the physical metric, the graviton
mass term can be expanded up to the quadratic order as

Ĩmass = Ĩ(0)
mass + Ĩ(2)

mass[h
π
ij ] +O(ε3),

Ĩ(2)
mass[h

π
ij ] =

M2
P l

8

∫

d4xNa3
√

ΩM2
GW

[

(hπ)2 − hij
π h

π
ij

]

, (53)

where the zero-th order part Ĩ
(0)
mass is independent of perturbations,

M2
GW ≡ ±(r − 1)m2

g X
2
±

√

1 + α3 + α2
3 − α4, (54)

r ≡ na

Nα
=

1

X±

H

Hf
, H ≡ ȧ

Na
, Hf ≡ α̇

nα
,

X± is given by (22), and
hπ ≡ Ωijhπ

ij , hij
π ≡ ΩikΩjlhπ

kl. (55)
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With the decomposition of hπ
ij in (50), the quadratic mass term is expanded as

Ĩ(2)
mass = M2

P l

∫

d4xNa3
√

ΩM2
GW

×
[

3(ψπ)2 − 1

12
Eπ4(4 + 3K)Eπ +

1

16
F i

π(4 + 2K)F π
i − 1

8
γijγij

]

, (56)

where
F i

π ≡ ΩijF π
j , γik ≡ ΩjlΩjlγkl. (57)

What is important here is that the quadratic part Ĩ
(2)
mass is gauge-invariant and depends only

on hπ
ij , or equivalently (ψπ, Eπ, F π

i , γij). In particular, it does not contribute to the equations
of motion for φ and βi.

We note that M 2
GW vanishes or diverges for some special values of the parameters (α3, α4):

α4 = −3 (1 + α3), ±(α3 + 2) > 0 =⇒ M 2
GW = 0 ,

α4 = 1 + α3 + α2
3 =⇒ M2

GW = 0 , (58)

α4 → −α3, ±(1 + α3) > 0 =⇒ |M 2
GW | → ∞,

where the ± signs are for the ± branches, respectively. In the following we suppose that the
parameters (α3, α4) take generic values away from the special values shown in (58).

4.4 Matter perturbations and gauge-invariant variables

Let us divide matter fields σI (I = 1, 2, · · · ) into the background values σ
(0)
I and perturbations

as
σI = σ

(0)
I + δσI . (59)

We suppose that {σI} forms a set of mutually independent physical degrees of freedom. Oth-
erwise, we consider a subset of the original {σI} consisting of independent physical degrees of
freedom and rename it as {σI}. We can construct gauge-invariant variables QI from δσI and
metric perturbations, without referring to the Stückelberg fields.

For illustrative purpose let us decompose βi, hij and ξi as

βi = Diβ + Si,

hij = 2ψΩij +

(

DiDj −
1

3
Ωij4

)

E +
1

2
(DiFj +DjFi) + γij,

ξi = Diξ + ξT
i , (60)

where Si, Fi and ξT
i are transverse, and 4 is the Laplacian associated with Ωij :

DiSi = DiFi = DiξT
i = 0, 4 ≡ DiDi. (61)

Under the gauge transformation (46), each component of the physical metric perturbation
transforms as

φ → φ+
1

N
∂t(Nξ

0),

β → β − N

a
ξ0 +

a

N
ξ̇,

ψ → ψ +NHξ0 +
1

3
4ξ,

E → E + 2ξ,

Si → Si +
a

N
ξ̇T
i ,

Fi → Fi + 2ξT
i ,

γij → γij . (62)
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Noting that the vector Zµ defined by

Z0 = − a

N
β +

a2

2N2
Ė, Z i =

1

2
Ωij(DjE + Fj) (63)

transforms as
Zµ → Zµ + ξµ , (64)

we can construct the following gauge-invariant variables out of matter perturbations and phys-
ical metric perturbations:

QI ≡ δσI −LZσ
(0)
I ,

Φ ≡ φ− 1

N
∂t(NZ

0),

Ψ ≡ ψ −NHZ0 − 1

6
4E,

Bi ≡ Si −
a

2N
Ḟi , (65)

and γij is gauge-invariant by itself. In the above, LZ is the Lie derivative along Zµ.
Those gauge-invariant variables defined here and in Subsection 4.2, i.e. {QI , Φ, Ψ, Bi, γij ,

φπ, βπ, Sπ
i , ψπ, Eπ, F π

i }, are not independent. Indeed, it is easy to show that

φπ = Φ +
1

N
∂t

[

1

H

(

ψπ − Ψ − 1

6
4Eπ

)]

,

βπ = − 1

aH

(

ψπ − Ψ − 1

6
4Eπ

)

+
a

2N
Ėπ,

Sπ
i = Bi +

a

2N
Ḟ π

i . (66)

There are no more independent relations among gauge-invariant variables defined here and in
Subsection 4.2.2 Therefore, we have the following set of independent gauge-invariant variables.

{QI , Φ, Ψ, Bi, γij , ψ
π, Eπ, F π

i }. (67)

Based on their origins, we can divide this set of independent gauge-invariant variables into two
categories as

{QI , Φ, Ψ, Bi, γij} and {ψπ, Eπ, F π
i }. (68)

The first category consists of those gauge-invariant variables that originate from the physical
metric gµν and the matter fields {σI}. Thus, those in the first category already exist in GR
coupled to the same matter content. On the other hand, those in the second category are
physical degrees of freedom associated with the four Stückelberg fields ϕa.

4.5 Structure of total quadratic action

Let us now define

Ĩ[gµν , σI ] ≡ IEH,Λ̃[gµν ] + Imatter[gµν , σI ], Λ̃ ≡ Λ + Λ±, (69)

so that
I = Ĩ[gµν , σI ] + Ĩmass[gµν , fµν ]. (70)

Since Ĩmass was already shown to be gauge-invariant up to the quadratic order, (70) implies that
Ĩ is also gauge-invariant up to that order. Thus the quadratic part Ĩ(2) of Ĩ can be written in

2See also the sentence just after (59).
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terms of gauge-invariant variables constructed solely from perturbations of the physical metric
perturbations (φ, βi, hij) and matter perturbations δσI , i.e. {QI , Φ, Ψ, Bi, γij}.

Therefore, the total quadratic action has the following structure.

I(2) = Ĩ(2)[QI ,Φ,Ψ, Bi, γij ] + Ĩ(2)
mass[ψ

π, Eπ, F π
i , γij ], (71)

where the explicit form of Ĩ
(2)
mass is shown in (56). As already stated, gauge-invariant variables

listed in (67) are independent from each other.
Note that ψπ, Eπ and F π

i do not have kinetic terms but have non-vanishing masses, provided
that the parameters (α3, α4) take generic values away from the special values shown in (58).
Thus, we can integrate them out: their equations of motion lead to

ψπ = Eπ = 0, F π
i = 0, (72)

and then

I(2) = Ĩ(2)[QI ,Φ,Ψ, Bi, γij ] −
M2

P l

8

∫

d4xNa3
√

ΩM2
GWγijγij , (73)

where M 2
GW is given by (54). For scalar and vector modes, this quadratic action is exactly the

same as that in GR with the matter content {σI}.
In Fierz-Pauli theory in de Sitter background, it has been known that the scalar mode

among five degrees of freedom of massive spin-2 graviton becomes ghost unless 2H 2 ≤ m2
FP ,

where H is the Hubble expansion rate and mFP is the graviton mass [6]. This conclusion,
called Higuchi bound, does not hold in the nontrivial cosmological branches of the nonlinear
massive gravity. Indeed, as stated above, the scalar and vector modes have vanishing kinetic
terms. This sharp contrast to the linear (Fierz-Pauli) massive gravity stems from a peculiar
structure of the graviton mass term expanded up to the quadratic order in perturbations: it
depends only on the (ij)-components of metric perturbations and thus are independent of (00)
and (0i)-components. This Lorentz-violating structure is possible because the vev of fµν in the
cosmological branches spontaneously breaks diffeomorphism invariance in a nontrivial way.

4.6 Gravitational waves with time-dependent mass

The total quadratic action for the tensor sector is

I
(2)
tensor =

M2
P l

8

∫

d4xNa3
√

Ω

[

1

N2
γ̇ij γ̇ij +

1

a2
γij(4− 2K)γij −M2

GWγijγij

]

, (74)

provided that there is no tensor-type contribution from the quadratic part of Imatter . In this way
the dispersion relation of gravitational waves is modified. The squared mass of gravitational
waves M 2

GW is given by (54) and is time-dependent.
If M2

GW is negative then long wavelength gravity waves exhibit linear instability. For generic
values of parameters (α3, α4) away from the special values shown in (58), we see from the formula
(54) that the sign of M 2

GW is the same as the sign of the combination ±(r − 1)m2
g, where ±

signs correspond to ± branches, respectively.

5 Nonlinear instability of homogeneous, isotropic solutions

Although a massive spin-2 particle generically has 5 propagating degrees of freedom, we have
seen in the previous section that the number of propagating gravity degrees of freedom around
the FRW solutions is 2, same as in general relativity (GR). This is due to the vanishing of the
kinetic terms for the expected additional degrees.

The goal of this section is to determine the fate of the extra degrees of freedom. Following
ref. [9], we argue that all homogeneous and isotropic solutions in nonlinear massive gravity are
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unstable. For this purpose, we study the propagating modes on a Bianchi type–I manifold. We
analyze their kinetic terms and dispersion relations as the background manifold approaches the
homogeneous and isotropic limit. We show that in this limit, at least one ghost always exists
and that its frequency tends to vanish for large scales, meaning that it cannot be integrated
out from the low energy effective theory. This ghost mode is interpreted as a leading nonlinear
perturbation around a homogeneous and isotropic background.

5.1 The model and the background

Since we are interested in the stability of the gravity sector only, it is sufficient to consider a
vacuum configuration, with a cosmological constant Λ.

The physical metric is chosen to be the simplest anisotropic extension of FRW, namely, the
axisymmetric Bianchi type–I metric

ds2 = −N2dt2 + a2(e4 σ dx2 + e−2 σ δij dy
i dyj) , (75)

where N , a, and σ are functions of the time variable t. In the rest of the paper, Greek indices
span the space-time coordinates, while the indices i, j = 2, 3 correspond to the coordinates on
the y–z plane, with y2 = y, y3 = z. Since our goal is to obtain the stability conditions of
this metric in the isotropic limit, the whole system in this limit needs to reduce to the general
cosmological solutions given in [4, 5] and reviewed in Sec. 2 and 3. For this reason, we consider
a fiducial metric to be in the flat FRW form,

fµν = −n2∂µφ
0∂νφ

0 + α2(∂µφ
1∂νφ

1 + δij∂µφ
i∂νφ

j), (76)

where both n and α are functions of the time-Stückelberg field φ0.
The equations of motion for the background can be calculated by varying the action with

respect to the Stückelberg fields and the metric. As a result, we obtain three independent
equations as

3
(

H2 − Σ2
)

− Λ = m2
g

[

−(3 γ1 − 3 γ2 + γ3) + γ1 (2 eσ + e−2σ)X

−γ2(e
2σ + 2 e−σ)X2 + γ3X

3
]

,

3Σ̇

N
+ 9HΣ = m2

g(e
−2 σ − eσ)X

[

γ1 − γ2(e
σ + r)X + γ3 re

σX2
]

, (77)

and
J

(x)
φ (H + 2Σ −Hf e

−2σX) + 2J
(y)
φ (H − Σ −Hfe

σX) = 0 , (78)

where

J
(x)
φ ≡ γ1 − 2 γ2 e

σ X + γ3 e
2σ X2 ,

J
(y)
φ ≡ γ1 − γ2 (e−2σ + eσ)X + γ3 e

−σ X2 , (79)

and

γ1 ≡ 3 + 3α3 + α4 , γ2 ≡ 1 + 2α3 + α4 , γ3 ≡ α3 + α4

H ≡ ȧ/(aN ) , Hf ≡ α̇/(αn) , Σ ≡ σ̇/N ,

X ≡ α/a , r ≡ an/(αN). (80)

We note that, in the isotropic limit (σ, Σ → 0), we have J
(x)
φ = J

(y)
φ , so that the Stückelberg

equation of motion, Eq. (78), at leading order, gives

γ1 − 2 γ2X + γ3X
2 ' 0 , (81)

that is X → constant, which corresponds to the FRW result found in [5] and reviewed in the
previous sections. In the same limit, we can also see that H → constant, as expected.

12



5.2 Even modes

Let us now consider the perturbations which transform as 2d scalars under a spatial rotation
in the y−z plane (also referred as even modes). Then, the perturbed metric for the even sector
can be written as

ds2 = −N2(1 + 2Φ)dt2 + 2aNdt[e2σ∂xχdx+ e−σ∂iBdy
i]

+ a2e4σ(1 + ψ)dx2 + 2a2eσ∂x∂iβdxdy
i

+ a2e−2σ [δij(1 + τ) + ∂i∂jE]dyidyj , (82)

while the even-type perturbations of Stückelberg fields read

φ0 = t+ π0 , φ1 = x+ ∂xπ
1 , φi = yi + ∂iπ . (83)

We can then define gauge invariant combinations as follows

Φ̂ = Φ − 1

2N
∂t

(

τ

H − Σ

)

,

χ̂ = χ+
τ e−2σ

2a(H − Σ)
− ae2σ

N
∂t

[

e−3σ

(

β − e−3σ

2
E

)]

,

B̂ = B +
eσ

2 a (H − Σ)
τ − a e−σ

2N
Ė ,

ψ̂ = ψ − H + 2Σ

H − Σ
τ − e−3 σ ∂2

x

(

2β − e−3 σ E
)

,

τ̂π = π0 − τ

2N (H − Σ)
,

β̂π = π1 − e−3 σ

(

β − e−3 σ

2
E

)

,

Êπ = π − 1

2
E . (84)

The first four definitions do not refer to the Stückelberg perturbations and are thus already
present in GR. However, the additional three degrees arise from the breaking of general coor-
dinate invariance by the non zero expectation value of the Stückelberg fields.

In order to find the behavior of the perturbations, we proceed as usual by expanding the
action at second order in the perturbation fields, then by employing the Fourier plane-wave
decompositions, as in exp[i(kLx + kiy

i)]. The degrees of freedom arising from the g0µ pertur-
bations, namely Φ̂, B̂ and χ̂, are nondynamical, thus can be integrated out. Furthermore, the
kinetic term for the τ̂π is proportional to the background equations of motion, so that this de-
gree of freedom is also nondynamical. We interpret this field as the would-be BD ghost, which
is eliminated in this theory by construction.

In the massless theory (i.e. GR), using the constraint equations also removes the degrees
β̂π, Êπ, leaving only ψ̂ in the action, which becomes one of two gravity wave polarizations in
the isotropic limit. However, in our case, due to the nonzero mass of the graviton, these two
degrees of freedom are dynamical, in general.

Thus, the Lagrangian for even-type perturbations in vacuum has three physical propagating
modes, Va, (a = 1, 2, 3). Assuming small deviation from FRW, with |σ| � 1 and |Σ/H| � 1,
we study the kinetic matrix Kab

S(2)
even 3

M2
p

2

∫

N dt dkL d
2kT a

3

(

V̇?
a

N
Kab

V̇b

N

)

. (85)
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Thanks to the 2d rotational symmetry on the y–z plane, the action depends on kT ≡
√

k2
2 + k2

3 ,
instead of the individual components. The eigenvalues of Kab, at leading order in small
anisotropy expansion, are

κ1 ' p4
T

8 p4
, κ2 ' −2a4M2

GWp
2
L

1 − r2
σ , κ3 ' − p2

T

2 p2
L

κ2 , (86)

where we defined M 2
GW ≡ m2

g(1 − r)X2(γ2 − γ3X), and introduced the physical momenta

pL ≡ kL

ae2σ ' kL

a , pT ≡ kT

ae−σ ' kT

a , p2 ≡ p2
L + p2

T . (87)

The kinetic term κ1 which is the only eigenvalue that does not vanish in isotropic limit, cor-
responds to one of the gravity wave polarizations in FRW. Once small but non-vanishing
anisotropy is introduced, two additional even modes acquire nonzero kinetic terms at quadratic
order. More importantly, from (86), we see that κ2 and κ3 have opposite signs, regardless of the
parameters of the theory. Thus, we conclude that in the isotropic limit, one of the new degrees
is always a ghost. Assuming that σ(1− r) > 0 (which turns out to be the condition for stability
in the odd sector, as we show later), the ghost mode is associated with the eigenvalue κ2 < 0.

We conclude the discussion of the even modes by presenting their dispersion relations. We
first make a field redefinition into new field basis fields Wa defined such that the kinetic action
can be written as

S(2)
even 3 1

2

∫

N dt dkLd
2kTa

3

(

Ẇ?
a

N
ηab

Ẇb

N

)

, (88)

where ηab = diag(1,−1, 1). The mass spectrum can be determined either by studying the
equation for the frequency-discriminant, or equivalently, by performing a Lorentz transformation
to diagonalize the frequency matrix. Eventually, we find

ω2
1 ' p2 +M2

GW ,

ω2
2 ' −1 − r2

24σ

[

√

(10p2 + p2
T )2 − 8p2

Lp
2
T − (2p2 + 3p2

T )

]

,

ω2
3 ' −ω2

2 +
1 − r2

12σ
(2p2 + 3p2

T ) , (89)

with ω2
2ω

2
3 < 0 in general, and ω2

2 < 0 by assuming σ(1 − r) > 0. We note that the disper-
sion relation corresponding to the ghost, ω2

2, becomes smaller at larger scales. Therefore, at
sufficiently large scales, this mode cannot be integrated out from the low energy effective the-
ory. This feature makes the FRW background unstable for massive gravity. As a consequence,
the homogeneous and isotropic cosmology cannot be accommodated in the nonlinear massive
gravity theory.

5.3 Odd modes

Let us now discuss the odd sector (i.e. the divergence-less part of the modes which transform
as 2d vectors under a rotation in the y−z plane). The perturbed metric we consider is

ds2 = −N2dt2 + 2ae−σNvidtdy
i + 2a2eσ∂xλidxdy

i

+ a2e4σdx2 + a2e−2σ(δij + ∂(ihj))dy
idyj , (90)

where ∂(ihj) ≡ (∂ihj + ∂ihj)/2 and ∂ivi = ∂iλi = ∂ihi = 0. For the Stückelberg fields, we
consider instead

φ0 = t , φ1 = x , φi = yi + πi , (91)
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where ∂iπ
i = 0. Since the vectors are defined on the 2d y–z plane, the transverse condition can

be used to reduce each of these vectors to a single degree of freedom

vi = ε j
i ∂jv, λi = ε j

i ∂jλ, hi = ε j
i ∂jh, πi = ε j

i ∂jπodd,

where ε j
i is a unit anti-symmetric tensor with ε 3

2 = −ε 2
3 = 1. Also for the odd modes we can

introduce gauge invariant combinations as follows

v̂ = v − a e−2 σ

2N
ḣ ,

λ̂ = λ− e−3 σ

2
h ,

ĥπ = πodd − 1

2
h . (92)

Using these fields, the second-order resulting action depends on the three perturbations (v̂, λ̂,
ĥπ). Among these, v̂ does not have any time derivatives and can be removed by solving its
own constraint equation. In General Relativity, this operation also removes ĥπ and the final
action can be written in terms of λ̂ only. However, in this nonlinear theory of massive gravity,
we expect the field ĥπ to remain in the action as an extra degree of freedom coming from the
Stückelberg sector.

After a further field redefinition,

Q1 ≡ −e3 σ λ̂ , Q2 ≡ 2 e3 σ p2
L

p2
λ̂− 2 ĥπ , (93)

the quadratic action, for small anisotropy, takes the following form

S
(2)
odd ' M2

Pl

2

∫

N dt dkLd
2kT a

3

[

K11
|Q̇1|2
N2

− Ω2
11 |Q1|2

+ K22
|Q̇2|2
N2

− Ω2
22 |Q2|2

]

, (94)

where the two modes decouple at leading order in the small anisotropy expansion, with coeffi-
cients

K11 =
a4 p2

L p
4
T

2 p2
, K22 =

a4 p2
T M

2
GW

4 (1 − r2)
σ ,

Ω2
11

K11
= p2 +M2

GW ,
Ω2

22

K22
= c2odd p

2 , (95)

and c2odd = (1 − r2)/(2σ). Thus, at leading order, we identify the mode Q1 with one of the
gravity wave polarizations in the FRW background [5]. The extra degree of freedom Q2 is
massless and has sound speed codd. In order for this mode to be stable, we require the kinetic
term for Q2 to be positive, that is

(1 − r)σ > 0 . (96)

In this case, also c2odd becomes positive, and the odd mode Q2 is, in general, free from ghost
instabilities.

6 Anisotropic FRW solutions

As reviewed in Sec. 2 and 3, the nonlinear massive gravity allows self-accelerating open Friedmann-
Robertson-Walker (FRW) solutions with the Minkowski fiducial metric [4] as well as flat/closed/open
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FRW solutions with general FRW fiducial metric [5]. Unlike the other branch of solutions [7, 8],
we have seen in Sec. 4 that these backgrounds evade the Higuchi bound [6] and thus are free
from ghost at the linearized level even when the expansion rate is significantly higher than the
graviton mass. This is because there are only two propagating modes on these backgrounds.
However, as we have seen in Sec. 5, these constructions exhibit a ghost instability at nonlinear
order in perturbations [9]. This is a consequence of the FRW symmetries; in order to obtain a
stable solution, some of these symmetries need to be broken.

An inhomogeneous background solution was obtained in [10], where the observable universe
is approximately FRW for a horizon size smaller than the Compton length of graviton. Similar
solutions with inhomogeneities in the Stückelberg sector, meaning that the physical metric
and the fiducial metric do not have common isometries acting transitively, were found in [11].
Note that those inhomogeneous solutions cannot be isotropic everywhere since isotropy at every
point implies homogeneity [12]. Note also that cosmological perturbations can in principle probe
inhomogeneities in the Stückelberg sector. For example, generic spherically-symmetric solutions
are isotropic only when they are observed from the center of the universe.

The goal of this section is, following ref. [13], to introduce an alternative option, where the
assumption of isotropy is dropped but homogeneity, i.e. the cosmological principle, is kept.
In a region with relatively large anisotropy, we find an attractor solution. On the attractor,
the physical metric is still isotropic, and the background geometry is of FRW type. Hence,
the thermal history of the standard cosmology can be accommodated in this class of solutions.
However, the Stückelberg field configuration is anisotropic, which may lead to effects at the
level of the perturbations, suppressed by smallness of the graviton mass.

6.1 The action and background

We consider a simple description of the universe at present time. We assume that the late-
time acceleration is sourced by a cosmological constant Λ, as well as the contribution from
the graviton mass. (Setting Λ = 0 corresponds to self-accelerating solutions as in the example
shown in Fig.2.) For this purpose, the vacuum configuration is sufficient.

For the physical metric, we adopt the axisymmetric Bianchi type–I metric (75), which is
the simplest anisotropic extension of FRW ansatz. As for the fiducial metric, we assume the
flat FRW form as (76). This includes a de Sitter fiducial as a special case, with Hf ≡ α̇/αn =
constant.

Varying the Stückelberg fields around the background value φa = xa + πa, the variation of
the mass term up to first order gives the equation of motion (78). The expansion rate for the
fiducial metric Hf is related to the invariants of the field space metric, and is independent of the
choice of the background values of φa. Thus, Eq.(78) can be interpreted as an algebraic equation
for α (or equivalently for X), instead of a differential equation. Varying the action with respect
to gµν , the field equations for the physical metric are obtained as (77). Additionally, there is
also an equation for Ḣ, which can be recovered by combining Eq.(78) with Eq.(77).

6.2 Fixed Points

We consider a de Sitter fiducial metric (Hf = const.) and seek solutions with Ḣ = Σ = Ẋ = 0.
The constancy of X allows us to express H as H = Hf X r. In this setup, the independent
equations become

3λ− (3γ1 − 3γ2 + γ3) + γ1(2e
σ + e−2σ)X

−
[

γ2(2e
−σ + e2σ) + 3 r2µ−2

]

X2 + γ3X
3 = 0, (97)

(eσ − 1)
[

γ1 − γ2(r + eσ)X + γ3e
σrX2

]

= 0, (98)

γ1(3r − 2eσ − e−2σ) − 2γ2

[

(2eσ + e−2σ)r − (e2σ + 2e−σ)
]

X

+γ3

[

(e2σ + 2e−σ)r − 3
]

X2 = 0, (99)
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where λ ≡ Λ
3m2

g
and µ ≡ mg

Hf
are dimensionless parameters.

For σ = 0, the set of equations is reduced to that for isotropic configurations, which was
already investigated in [4, 5] and reviewed in Sec. 2 and 3. Assuming σ 6= 0 and using (98),
Eq.(99) can be rewritten as

(γ1 − γ2Xe
σ)(eσ − r)(re2σ − 1) = 0 . (100)

Considering (100) as an algebraic equation for eσ, there are three solutions:

eσ =

{

γ1

γ2X
, r , r−1/2

}

. (101)

We now consider each solution separately.
Case I. eσ = γ1

γ2 X . Using this solution in Eq.(98) gives X = γ1/γ2, implying σ = 0. In
other words, this solution is isotropic and thus is not of our interest.

Case II. eσ = r. In this case, Eq.(98) gives

(r − 1)
[

γ1 − 2 γ2 r X + γ3 (r X)2
]

= 0 . (102)

This equations have two solutions; The first solution is r = 1, and leads to isotropy σ = 0
which is not our interest. The second solution gives rX = (γ2 ±

√

γ2
2 − γ1γ3)/γ3, which reduces

Eq.(97) to a nontrivial constraint between the parameters of the theory. Since this case requires
a fine-tuning of a parameter, it is not of our interest either.

Case III. r = e−2 σ. With this solution, Eq.(98) is reduced to

γ1e
σ − γ2(e

2σ + e−σ)X + γ3X
2 = 0. (103)

while Eq.(97) becomes

(3λ− 3γ1 + 3γ2 − γ3) + γ1(e
−2σ + 2eσ)X

−[γ2(2e
−σ + e2σ) + 3 e−4σ µ−2]X2 + γ3X

3 = 0. (104)

Combining these two equations, we obtain an expression linear in X,

X =
3γ1 + [γ1γ2 − γ2

3 + 3γ3(γ2 − γ1 + λ)]µ2e3σ

(eσ + e−2σ) [3γ2 + (γ2
2 − γ1γ3)]µ2e3σ

. (105)

and an equation which only depends on σ

c0 + c1e
3σ + c2e

6σ + c3e
9σ = 0, (106)

where

c0 = 3γ2

(

γ2
1 + 3γ2

2 − 3γ1γ2 − γ2γ3 + 3γ2λ
)

µ2 − 9γ2
1 ,

c1 = (γ2
2 − γ1γ3)

[

−6(3γ1 − 3γ2 + γ3 − 3λ) +
(

γ2
1 + 3γ2

2 − 3γ1γ2 − γ2γ3 + 3γ2λ
)

µ2
]

µ2 ,

c2 =
[

3γ2 + (2γ2
2 − 2γ1γ3)µ

2
] (

γ2
1 + 3γ2

2 − 3γ1γ2 − γ2γ3 + 3γ2λ
)

µ2

−(γ1γ2 − 3γ1γ3 + 3γ2γ3 − γ2
3 + 3γ3λ)2µ4 ,

c3 = (γ2
2 − γ1γ3)

(

γ2
1 + 3γ2

2 − 3γ1γ2 − γ2γ3 + 3γ2λ
)

µ4 , (107)

For a given set of parameters (α3, α4, λ, µ), one can solve the cubic equation (106) for e3σ and
then use (105) to calculate the corresponding value of X.
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6.3 Local Stability

We now introduce homogeneous perturbations around the fixed point described in the third
case above.

H = Hf [r0X0 + ε h1(t) +O(ε2)],

σ = σ0 + ε σ1(t) +O(ε2),

X = X0 + εX1(t) +O(ε2), (108)

where (X0, σ0, r0 = e−2σ0) is the background representing the fixed point. Adopting this
expansion, we calculate the equations of motion up to O(ε). At linear order, σ1 can be decoupled
from the remaining O(ε) quantities, and a second-order evolution equation is obtained as

d2σ1

dτ2
+ 3X0e

−2σ dσ1

dτ
+M2σ1 = 0, (109)

where

M2 =
X2

0µ
2e−4σ0

2

(

d1 (3 d1 − d2)(6 + d1 µ
2)

2 d2 − d1
2 µ2

)

,

d1 ≡ (e3 σ0 − 1) [γ2 − γ3e
σ0 X0] ,

d2 ≡ (e3 σ0 − 1)
[

γ2(3 + 2 e3 σ0) − 5 γ3e
σ0 X0

]

, (110)

while the dimensionless time coordinate τ is defined by dτ = HfNdt. The fixed point is locally
stable if

M2 > 0. (111)

6.4 Global Stability

To study the global stability of the fixed point, we consider an example with

λ = 0 , µ = 20 , α3 = −1/20 , α4 = 1 , (112)

for which the local stability condition (111) is satisfied. For this parameter set, there is only
one set of real solutions to the equations of motion (97)-(99)

X ' 4 , eσ ' 1
2 , r ' 4 . (113)

In order to determine the phase flow, we first reduce the system of equations. Using Eq.(78),
the first of Eq.(77) and their time derivatives, we can express X, H and their derivatives in
terms of σ and Σ. Since these equations are nonlinear, there are always more than one solution.
For the parameter set (112), we find that there are three branches of solutions which give X > 0
and H > 0. For each branch, we use this solution with the second of Eq.(77). As a result we
obtain, for a set of (σ,Σ), the corresponding set of (σ̇, Σ̇) pair. Out of the three branches, only
one contains an attractor. The flow corresponding to this branch is shown in Fig.2. The flow
proceeds towards the fixed point we found in Eq.(113).

7 Summary and discussions

As reviewed in Sec. 2 and 3, the recently proposed nonlinear massive gravity [1] allows self-
accelerating open Friedmann-Robertson-Walker (FRW) solutions with the Minkowski fiducial
metric [4] as well as flat/closed/open FRW solutions with general FRW fiducial metric [5].
Unlike the other branch of solutions [7, 8], we have seen in Sec. 4 that these backgrounds
evade the Higuchi bound [6] and thus are free from ghost at the linearized level even when the
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Figure 2: The phase flow for (σ, Σ) for parameters (α3, α4, λ, µ) =(−0.05, 1, 0, 20). The flow
is directed toward the red dot at (σ, Σ) = (0.5, 0), which is the fixed point obtained by solving
Eqs.(97)-(99).

expansion rate is significantly higher than the graviton mass. This is because there are only
two propagating modes on these backgrounds at the linearized level.

However, as we have seen in Sec. 5, these constructions exhibit a ghost instability at nonlinear
order in perturbations [9]. Our conclusion about ghost instability is far more general than it
appears 3, despite simplicity of the analysis presented above. This is because, whenever a
quadratic kinetic term vanishes, the leading kinetic term is generically cubic and thus can
easily become negative, signaling the existence of ghost at the nonlinear level. Moreover, the
other type of homogeneous and isotropic solutions (in the non-self-accelerating branch) suffer
from ghost instability already at the linearized level [7], as expected from classical work of
Higuchi [6]. Therefore, all homogeneous and isotropic backgrounds, as well as most (if not all)
of known spherically-symmetric inhomogeneous solutions, are unstable [9].

Thus, although the theory admits homogeneous and isotropic solutions, these suffer from
an unavoidable nonlinear ghost [9] or a linear ghost [7]. Since this is a consequence of the
FRW symmetries, either homogeneity or isotropy needs to be broken in order to obtain a stable
solution.

In Sec. 6 we thus explored regions with relatively large anisotropy for homogeneous attrac-
tor solutions. The classification of fixed points revealed the existence of a single anisotropic
attractor. The local and global stability analyses indicate that, a universe with a sufficiently
large anisotropy at the onset of the late-time accelerated expansion should flow to this point.

A very interesting implication is that the scale factors corresponding to the two directions
differ only by a constant normalization, thus the expansion rate is completely isotropic. In
general relativity, such a solution will be identical to an isotropic universe, up to a coordi-
nate redefinition. Conversely, in nonlinear massive gravity, such a redefinition cannot remove
the anisotropy completely; it is merely shifted from the physical metric to the fiducial metric.
Although the background metric is of FRW type, the signature from the anisotropy will be
imprinted on the spectrum of cosmological perturbations. The statistical anisotropy signal is

3Partially massless gravity [14] may evade our conclusion but it is a different theory. Also, nonlinear completion
is not known.
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expected to be suppressed by smallness of the graviton mass mg. The type of anisotropy, i.e.
statistical anisotropy for perturbations without anisotropic background expansion, is totally
new. For example, none of the anisotropic inflation scenarios [15] has this type of anisotropy.
Detailed analysis of perturbations and comparison with observational data are worthwhile pur-
suing. As the first step, a preliminary analysis of perturbations indicates that the anisotropic
attractor solutions found in this paper are free from ghost for a range of parameters [16].
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