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Abstract

We study the possibility to constrain deviations from Lorentz invariance in dark matter
(DM) with cosmological observations. The homogeneous expansion of the Universe with
Lorentz violating (LV) DM is found to be practically indistinguishable from the standard
ΛCDM cosmology. On the other hand, the evolution of the cosmological perturbations
significantly differs from the standard case. We discuss, at which level this type of devia-
tions from Lorentz invariance is constrained by the present-day and upcoming cosmological
observations.

1 Introduction

Clarifying the nature of dark matter (DM) stands as a major challenge of modern cosmology.
One of the basic properties always assumed is that DM satisfies Lorentz invariance (LI). We want
to analyse how this assumption can be verified from the study of cosmological perturbations.

Lorentz invariance is one of the best tested symmetries of the Standard Model of particle
physics [1]. Thus, it is tempting to postulate that it is a fundamental property of all fields
of Nature including gravity and the dark sectors of the Universe, i.e DM and dark energy.
However, the unique Lorentz Invariant theory of gravity, GR, suffers from the problem of non-
renormalizability precluding its interpretation as a UV complete quantum theory. This is the
essence of the notorious problem of quantum gravity.

It is conceivable that the eventual theory of quantum gravity will involve LV in some form.
For instance, it was recently suggested by P. Hořava that a UV completion of GR may be
possible within perturbative quantum field theory at the cost of abandoning LI at very high
energies [2]. However, the renormalizability of gravity in the strict sense along these lines has
not yet been demonstrated due to the complexity of the resulting theory. If deviations from LI
are present in quantum gravity, it is mandatory to understand which are the consequences for
the rest of fields in Nature [3, 4].

A first relevant observation is that even when introduced at very high energies, LV has
also consequences at low energies [5]. Precision tests of LI in the Standard Model of particle
physics put extremely tight constraints on the LV in the sector of ordinary matter [1, 3]. If
similar bounds held for LV in the other sectors, it would have no effect on cosmology. In this
paper we adopt the viewpoint that there is a mechanism that enforces LI of the Standard
Model with the required precision while allowing for sizable LV in gravitational physics, DM
or dark energy. Some consequences of LV for dark energy were unveiled in [12], where it was
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shown that the presence of LV vector field allows to attribute the current acceleration of the
Universe to a renormalizable operator not sensitive to UV corrections. The present work is
devoted to a systematic investigation of LV effects in the cosmological evolution of DM. To
isolate these effects we will assume throughout the paper that the dark energy is represented
by the cosmological constant.

We will assume that the velocities of DM are non-relativistic during the observable evolution
of the Universe. One might think that this would suppress all LV effects. However, this is not
the case. We will see that the coupling with the additional gravitational degrees of freedom
modifies the inertial mass of the DM particles, but does not affect their gravitational mass.
As a consequence, DM violates the equivalence principle and the dynamics of cosmological
perturbations is changed.

2 Gravity theory with Lorentz violation

To describe LV we assume that at every point of space-time there is a time-like vector uµ that
following Ref. [6] we will call “aether”. The vector is constrained to have unit norm1,

uµu
µ = 1 . (1)

Thus it does not vanish anywhere and sets the preferred time-direction at every point of space-
time. This way, the introduction of uµ allows us to describe LV effects with an action invariant
under arbitrary coordinate transformations. We work in the context of the Einstein-aether
model [6, 7], and the most general action containing up to two derivatives of uµ reads

Sæ ≡ −M
2
0

2

∫

d4x
√−g

[

R+Kµν
σρ∇µu

σ∇νu
ρ + l(uµu

µ − 1)
]

, (2)

where
Kµν

σρ ≡ c1g
µνgσρ + c2δ

µ
σδ

ν
ρ + c3δ

µ
ρ δ

ν
σ + c4u

µuνgσρ, (3)

and the last term with the Lagrange multiplier l has been added to enforce the unit-norm
constraint. We have included in the above action the Einstein-Hilbert term for the metric gµν .
The parameter M0 is related to the Planck mass, cf. (6), while the dimensionless constants
ca, a = 1, 2, 3, 4, characterize the strength of the interaction of the aether with gravity. Let
us stress that while we are interested in describing LV, the action (2) is explicitly generally
covariant. This stems from the assumption that the non-vanishing aether field represents the
only source of LV.

A variant of the Einstein-aether model is obtained by restricting the aether to be hypersur-
face-orthogonal,

uµ ≡ ∂µσ
√

gµν∂µσ∂νσ
. (4)

In this case the unit-norm constraint is identically satisfied and the Lagrange multiplier term in
the action (2) can be omitted. The scalar field σ is assumed to have a time-like gradient at every
point of space-time. This defines a preferred time-coordinate, hence σ is called “khronon” (from
the Greek word for “time”), and the class of models including the metric and σ “khronometric”
models. In this special case of scalar field theory the number of couplings reduces:

λ ≡ c2 , β ≡ c3 + c1 , α ≡ c4 + c1 . (5)

1We use the metric with (+,−,−,−) signature. Latin indices from the middle of the alphabet take the values
i, j = 1, 2, 3, while Greek letters denote the space-time indices. The latter are manipulated with gµν . Objects in
bold face are three-vectors. We use units where the speed of propagation of light is c = 1.
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This model naturally arises as the low-energy limit of Hořava gravity [9, 8]. In other words,
Hořava gravity can provide a UV completion for the khronometric theories which potentially
improves their UV behavior as compared to GR.

The main difference between Einstein-aether and khronometric models is the number of
degrees of freedom. Einstein-aether describes three types of massless propagating modes: the
standard transverse-traceless tensor modes of the metric and the vector and scalar polarizations.
For the khronometric case, the transverse vector polarization is absent. In the scalar and tensor
sectors the two models are almost equivalent. As in this paper we are mostly interested in the
scalar cosmological perturbations, we will often use without loss of generality the terminology of
the khronometric model and, in particular, the constants (5). One can show that the parameters
ca (or (5) for the khronometric case) can be chosen such that all modes are stable and have
positive energy [7, 10].

The phenomenology of theories with action (2) has been extensively studied [7, 8, 11]. The
high precision with which LI is tested within the Standard Model excludes the direct interaction
of the aether with baryonic matter, meaning that the latter couples universally to the metric
gµν . Still, the aether affects the gravitational field of matter sources. At the Newtonian level
the modifications amount to an unobservable renormalization of the gravitational constant that
now reads [14, 10],

GN ≡ 1

8πM2
0

(

1 − c1 + c4
2

)−1

. (6)

The deviations from GR for Solar System physics are encoded in two post-Newtonian parameters
αPPN

1 and αPPN
2 . These have been calculated for the generic aether in Ref. [15] and for the

khronometric model in Refs. [8, 11]. Observations yield the constraints [16]

|αPPN
1 | . 10−4 , |αPPN

2 | . 4 · 10−7 . (7)

Those constraints are trivially satisfied in GR, where αPPN
1 = αPPN

2 = 0. For LV theories with
generic parameters they imply the condition

|ca| . 10−7 .

This bound is relaxed for certain relations between the parameters. In the generic aether model
one can impose two restrictions on ca to make both αPPN

1 and αPPN
2 vanish [7]. Then one is

left with a two-parameter family of theories that are indistinguishable from GR at the post-
Newtonian level. Remarkably, for the khronometric case the same is achieved by the single
condition α = 2β, which leaves the parameters β and λ arbitrary. Further bounds of order

|ca| . 10−2 ,

follow from considerations of Big Bang Nucleosynthesis (BBN) [14] and emission of gravitational
waves by binary systems [17, 11].

3 Lorentz violating dark matter: point-particles

To grasp the physical consequences of LV in the DM sector we first study how the coupling to
the aether affects the dynamics of gravitationally interacting point particles. In the presence of
the aether the relativistic action for a massive point particle can be generalized to

Spp ≡ −m
∫

ds F (uµv
µ) , (8)

where
ds ≡

√

gµνdxµdxν (9)
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is the proper length along the trajectory of the particle and

vµ ≡ dxµ

ds
(10)

is the particle’s four-velocity. F is an arbitrary positive function that we normalize to F (1) = 1;
the GR limit corresponds to F ≡ 1. Note that particles described by the action (8) violate the
equivalence principle and, actually, do not follow geodesics of any metric.

We will assume that DM is non-relativistic during the relevant stages of cosmological evo-
lution thus one can use the Newtonian limit for qualitative description of the physics in the
considered model. This corresponds to expanding the action (8) to quadratic order in the parti-
cle three-velocities V i, quadratic order in the spatial component of the aether, ui and to linear
order in the Newton potential φ. The latter appears in the standard Newtonian limit of the
metric

g00 = 1 + 2φ , g0i = 0 , gij = −δij(1 − 2ψ) , (11)

where for the moment we have neglected the cosmological expansion. We obtain

Spp = m

∫

dt

[

(V i)2

2
− φ− Y

(ui − V i)2

2

]

, (12)

where we have denoted
Y ≡ F ′(1) (13)

and omitted the constant term corresponding to the rest-mass. To understand the effect of LV,
we consider first the case when the aether fluctuations are negligible, ui = 0. In this case the
last term in (12) renormalizes the particle’s inertial mass

m 7→ m(1 − Y ) .

On the other hand, the gravitational mass (the source of φ in (12)) remains equal to m, which
clearly violates the equivalence principle. To guarantee the positivity of the kinetic energy we
impose the restrictions m > 0 and Y < 1.

Let us now consider the generic situation in the Newtonian limit for a dense medium com-
posed of DM particles. After introducing the mass density one can rewrite the action (12) in
the form:

Spp =

∫

d4x ρ

[

(V i)2

2
− φ− Y

(ui − V i)2

2

]

. (14)

One observes that inside the medium the aether perturbations acquire a quadratic potential
with the central value set by the velocity of the medium. Not to destabilize the aether the
potential must be positive, Y > 0. We can anticipate that due to this potential the aether
tends to align with the velocity of the medium. When alignment occurs, the last term in (14)
disappears, restoring the standard action for the fluid universally coupled to gravity. In other
words, the violation of equivalence principle will be screened inside a dense medium, realizing
an analog of the chameleon mechanism [19].

The action (14) must be supplemented by the non-relativistic limit of the Einstein-aether
action (2). For simplicity, in the rest of this section we will restrict to the case c2 = c3 = c4 = 0
and describe the results to leading order in c1 � 1, c1 . Y . In this approximation, the action
(2) at post-Newtonian order reads

Sæ =
M2

0

2

∫

d4x
[

4φ∆ψ − 2ψ∆ψ + c1u
i∆ui

]

. (15)

Consider a spherical DM halo of size Rh with constant density ρ. According to (14) the
aether perturbations inside the halo acquire the effective mass

m2
eff =

Y ρ

M2
0 c1

. (16)
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Our study shows that there are two different dynamical regimes. First regime takes place for
small enough halos,

Rh � m−1
eff , (17)

so that the range of the aether interactions exceeds the halo size. Then in (14) one can neglect
the ui-term in the effective potential and obtain that dark matter particles are attracting with
the enhanced gravitational force:

F =
FN

1 − Y
, (18)

where FN -standard Newton force. As a consequence of an enhanced gravity we have accelerated
Jeans instability:

δ ≡ δρ

ρ
∝ tγ , γ =

1

6

[

− 1 +

√

25 − Y

1 − Y

]

. (19)

Now consider the second case, when the size of the halo is larger than the inverse of the
aether mass in its interior,

Rh � m−1
eff . (20)

Due to the Yukawa screening, the aether field is frozen at the minimum of its potential, ui = V i

over most of the halo volume. In this case two lumps of DM are attracting with the standard
Newtonian force: F = FN .

One concludes that for large halos the deviations from GR are completely screened. Also in
this case we have ordinary growth of the Jeans instability, δ ∝ t2/3. Also the size of the Hubble
horizon exceeds m−1

eff during all the relevant stages, so we can make a conclusion that the effects
of Lorentz violating are screened at this scale and expect standard homogeneous cosmology.

4 Lorentz violating dark matter: cosmological consequences

To systematically develop the consequences of the aether – DM interaction beyond the Newto-
nian limit it is convenient to use a relativistic fluid description of DM. Without going deeply
into the detail let us perform only results of our investigations. The reader who is interested
in the technical details may find all the relevant information in the [20]. In our model the Uni-
verse is filled by the radiation (γ), cold baryons (b),cosmological constant (Λ) and dark matter,
interacting with the aether (dm).

As it was discussed above, study of the Newtonian limit hint us that model with LV dark
matter should coincide with ΛCDM at the homogeneous level. Taking the FRW metric

ds2 = a2(τ)(dτ 2 − dx2) , (21)

with the conformal time τ , we find the dark matter density behaves as in the standard FRWL-
cosmology:

ρ[dm] ∝ a−3 , (22)

and contribute the Friedmann equation2,

H2 ≡ ȧ2

a4
=

8πGcosm

3

(

ρ[dm] + ρ[b] + ρ[γ] + ρ[Λ]

)

. (23)

This has the same form as in GR, with the gravitational constant renormalized due to the
contribution of the aether (khronon) in the action for gravity (cf. [14]),

Gcosm =
1

8πM2
0

[

1 +
β + 3λ

2

]−1

. (24)
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Figure 1: Time dependence of the dynamical scales determining the evolution of the cosmolog-
ical perturbations. τeq is the time of radiation–matter equality and τ0 — the present time. See
the main text for other notations.
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Figure 2: Schematic representation of the matter power spectrum in the LV dark matter model
(upper curve) compared to the power spectrum in ΛCDM (lower curve). The same qualitative
behaviour is common to the dark matter and baryons. The quantities kY,0, kY,eq, κ are defined
in (26), (27), (28). The figure corresponds to the case kY,0 < 1/τeq.

One clearly see that the expansion history of the Universe with LV dark matter is essentially
indistinguishable from that of ΛCDM. The difference between these two theories appears at the
level of cosmological perturbations.

2The dot denotes henceforth differentiation with respect to the conformal time.
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At the language of the cosmological perturbations the dynamics in the Newtonian limit
translates into the existence of an additional scale (see Fig.1),

kY ≡
(

Y ρ̄[dm]a
2

α(1 − Y )M 2
0

)1/2

, (25)

which plays the key role in the mode evolution. This new scale is directly related to the density
of DM and determines the critical wavenumber below which the effects of LV are screened.
Factoring out the explicit time dependence we can write,

kY =
kY,0

√

a(τ)
, kY,0 ≡ H0

[

3Y Ωdm

α(1 − Y )

(

1 +
αB
2

)]1/2

, (26)

where H0, Ωdm are the present-day Hubble constant and DM density fraction.
When modes are outside new ”screening horizon”, they exhibit the dynamics, coinciding

with that of ΛCDM and effects of LV are hidden. Next, when the scale kY is red-shifted to
the value k, the effects of LV become unscreened and the modes start to grow faster due to
amplification of gravity.

As a consequence of such dynamics, we have scale-depending change in the shape of the
matter power-spectrum (see Fig. 2 ). The change in the slope of power spectrum depends only
in the parameter Y , describing LV in DM, while the range of scales where this change occurs is
determined both by Y and the khronon parameters α, β, λ. This change takes place for modes
in the range

kY,0 < k < kY,eq ≡ kY,0
√

a(τeq)
, (27)

and the power-index of enhancement is

κ = −5

2
+

√

25

4
+

6Y

1 − Y

Ωdm

Ωdm + Ωb
, (28)

where Ωb is the present-day baryons density fraction.
The qualitative analysis of this section is confirmed by the numerical calculations. We

consider the effects of different sets of parameters on the spectra of perturbations at the present
moment of time. The different choices are listed in Table 1 together with the corresponding
values of the screening scales kY,0 and kY,eq (see Eqs. (26), (27) for definitions). All parameter
choices are consistent with the gravitational tests described above. The initial spectrum is taken
to be flat with the same normalization in all cases.

α β λ Y kY,0 (h Mpc−1) kY,eq (h Mpc−1)

a 2 · 10−2 10−2 10−2 0.2 9.2 · 10−4 6.5 · 10−2

b 2 · 10−4 10−4 10−4 0.2 9.1 · 10−3 0.65

c 2 · 10−4 10−4 10−4 0.02 2.6 · 10−3 0.18

d 10−7 0 10−7 0.2 0.41 29

Table 1: The values of the parameters used in numerical simulations.

The comparison between the matter power spectrum in the LV models and in ΛCDM is
shown in Fig. 3. The left panel shows the cases when the present screening momentum kY,0 is
lower than kmax — the position of the power spectrum maximum. We clearly see the change
in the slope of the spectrum in the interval kY,0 < k < kY,eq accompanied by the shift of the
position of the maximum. The effect is significant for values of the parameter Y as low as a few
per cent, which suggests that these values can be tested observationally. The right panel shows
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Figure 3: Matter power spectrum for several values of the parameters listed in Table 1. The
case of ΛCDM is shown for comparison.
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Figure 4: Ratio between the amplitudes of perturbations in the baryonic and dark matter
components. The curves correspond to the parameters listed in Table 1.

the situation when kY,0 is larger than kmax, corresponding to very small values of the khronon
parameters α, β, λ and relatively strong LV in DM, see Table 1. The position of the maximum
does not move in this case but the change in the slope is still visible.

Figure 4 shows the ratio between the amplitudes of perturbations in the baryonic and DM
components. As expected from the analytic considerations, this ratio drops from 1 at k < kY,0

to (1 − Y ) at larger momenta implying a scale dependent bias between baryons and DM.
Finally, Fig. 5 presents the k-dependence of the “relative anisotropic stress” — the difference

between the two gravitational potentials φ and ψ in the conformal Newton gauge,

ds2 = a(τ)2[(1 + 2φ)dτ 2 − δij(1 − 2ψ)dxidxj] . (29)

We observe that at small momenta it has a plateau with the magnitude set by the parameter
β. Note, that this effect exists only for non-zero β values. The plateau extends up to k ≈ kY,0,
beyond which the anisotropic stress drops as the approximate power–law k−2. The persistence
of the anisotropic stress up to relatively large momentum, kY,0 � H0, is a peculiar signature of
the present model that contrasts with the more common situation where the anisotropic stress
quickly decays for subhorizon modes.
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Figure 5: Relative difference between the two scalar gravitational potentials for several choices
of parameters listed in Table 1.

5 Summary and discussion

In this short review we have presented the results of testing the Lorentz invariance of dark
matter (DM) with cosmological observations. Our description is based on the Einstein-aether/
khronometric model, which provides an effective description of Lorentz invariance violation
(LV) in gravitational theories. In those models, LV is encoded in a new field (aether) whose
expectation value determines a local preferred frame. We generalized DM dynamics to include
the LV effects. Those effects amount to different couplings between DM and the aether field.
For cosmological perturbations in the linear regime all the LV effects in the DM sector can be
summarized in a single parameter Y . This constant is to be added to the parameters of the
aether sector (see Eqs. (2), (3) and (5)), which are constrained by local tests of gravity. We
considered the Newtonian limit of the model and demonstrated that LV implies modification of
the inertial mass for small DM halos thus leading to the violation of the equivalence principle.
For large halos this effect is screened by a variant of the chameleon mechanism.

The homogeneous expansion history of the Universe for LV DM was found to be exactly the
same as in ΛCDM. However, the evolution of linear cosmological perturbations presents three
major effects permitting us to distinguish between the two scenarios. The first effect is the
accelerated growth of inhomogeneities for the modes affected by the violation of the equivalence
principle. These are the modes that are short enough so that the chameleon mechanism does
not switch on. This effect eventually leads to the increase in the slope of the matter power
spectrum with respect to ΛCDM in a range of momenta. The enhancement depends only on
the parameter Y , whereas the range of momenta is determined also by the aether parameters
(cf. Fig. 3). The second effect is the appearance of a new bias between the fluctuations of
dark and ordinary baryonic matter. Importantly, the bias exhibits scale-dependence already at
the linear level (cf. Fig. 4). Finally, the model predicts non-zero anisotropic stress resulting in
the difference between the perturbations of the two gravitational potentials in the conformal
Newton gauge. Its present-day power spectrum extends to wavelengths quite inside the current
horizon (cf. Fig. 5).

A qualitative comparison between the predictions of the model and those of ΛCDM suggests
that the existing data (including local tests of gravity) have the potential to constrain deviations
from Lorentz invariance in DM at the level of a few per cent or even better, Y . 0.01. This
limit depends on the parameters of the aether sector and may be stronger or weaker for certain
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regions in the parameter space. Detailed numerical simulations are required to set the precise
bounds. This work is currently in progress.
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