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Abstract

We describe the test planet and photon orbits of the third kind inside a rotating and
electrically charged Kerr-Newman black hole, which are stable, periodic and neither come
out of the black hole nor terminate at the singularity. The third kind orbits exist in between
the central singularity and the Cauchy horizon. Interiors of supermassive black holes may
be inhabited by advanced civilizations living on the planets with third-kind orbits.

Orbits of the third kind were described in [1, 2, 3, 4] under the assumption of the Kerr-
Newman metric validity inside a black hole event horizon. The motion of a test particle (e. g.,
a planet) with mass µ and electric charge ε in the background gravitational field of a Kerr-
Newman black hole (BH) with mass M , angular momentum J = Ma and electric charge e
is completely defined by three integrals of motion: the total particle energy E, the azimuthal
component of the angular momentum L and the Carter constant Q, related to the total angular
momentum of the particle and non-equatorial motion.

S. Chandrasekhar [5] designated only two general types of test particle orbits in the black
hole gravitational field: orbits of the first kind, which are completely confined outside the black
hole event horizon, and orbits of the second kind, which penetrate inside the black hole. Orbits
of the third kind are absent in the Schwarzschild case (a = 0, e = 0). In the Reissner-Nordström
case (e 6= 0, a = 0) there are orbits of the third kind only for charged planets. Respectively,
in the Kerr case (a 6= 0, e = 0) there are only non-equatorial of the third kind for planets and
photons. At last, in the most general Kerr-Newman case (a 6= 0, e 6= 0) there both equatorial
and non-equatorial orbits of the kind kinds for planets and photons.

Equations of motion for test particles (e. g. planets) in the Kerr-Newman metric in the
Boyer-Lindquist coordinates (t, r, θ, ϕ) are [6, 7]:

ρ2
dr

dλ
= ±

√

Vr, ρ2
dθ

dλ
= ±

√

Vθ, (1)

ρ2
dϕ

dλ
= L sin−2 θ + a(∆−1P − E), (2)

ρ2
dt

dλ
= a(L − aE sin2 θ) + (r2+a2)∆−1P, (3)

where λ = τ/µ, τ — is the proper time of a particle and

Vr = P 2 − ∆[µ2r2 + (L − aE)2 + Q], (4)

Vθ = Q − cos2 θ[a2(µ2 − E2) + L2 sin−2 θ], (5)

P = E(r2 + a2) + εer − aL, ρ2 = r2 + a2 cos2 θ, ∆ = r2 − 2r + a2 + e2. (6)

We use the normalized dimensionless variables and parameters: t ⇒ t/M , r ⇒ r/M , a ⇒ a/M ,
e ⇒ e/M , ε ⇒ ε/µ, E ⇒ E/µ, L ⇒ L/(Mµ), Q ⇒ Q/(M 2µ2). The effective potentials Vr
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and Vθ in (4) and (5) determine the motion of particles in the radial r-direction and latitudinal
θ-direction, respectively [7].

The generic non-equatorial orbits of the third kind in the case of rotating black hole (a 6= 0)
are periodic with respect to the separate coordinates r, θ and ϕ but non periodic in time
t. Namely, the r-periodicity means that the orbital radial coordinate r oscillates between the
minimal (perigee) and maximal (apogee) values, rp < r < ra. The values of rp and ra are defined
by zeroes (the bounce points) of the radial potential, Vr(rp,a) = 0 in (4). Respectively, the θ-
periodicity means that a latitudinal coordinate θ oscillates in the interval π/2 − θmax < θ <
π/2 + θmax, where the maximum angle of latitudinal elevation θmax relative to the equatorial
plane (θ = π/2) is defined by zeros (the bounce points) of the latitudinal potential Vθ(θmax) = 0
in (5). At last, the ϕ-periodicity means that the azimuth coordinate ϕ oscillates between some
ϕ0 and ϕ0 + 2π.

In the absence of strict time periodicity of non-equatorial particle orbits around the rotating
black hole, it is useful define the temporal quasi-periods for oscillation time of separate coordi-
nates, Tn,r, Tm,θ and Tk,ϕ), which will depend additionally on the initial orbit conditions and
the number of successive periodic circles (n,m, k) = 1, 2, 3 . . . (starting from some initial time
t0), with respect to corresponding coordinates r, θ and ϕ. These three temporal quasi-periods
are incommensurable in general, i. e, all ratios Tn,r/Tm,θ/Tk,ϕ are non the rational numbers.
For this reason the orbits of particles are non closed in space. The strict periodicity in time t
is realized only for the equatorial orbits (Q = 0) or in the non-rotating case (a = 0).

For circular orbits of test particles with r = const, equations of motion (4) and (5) provide
the conditions:

Vr(r) = 0, V ′

r (r) ≡
dVr

dr
= 0. (7)

The circular orbits would be stable if V ′′

r < 0, i. e. at the maximum of the effective potential.
In the case of a rotating black hole (with a 6= 0), a particle in the orbit with r = const may
additionally move in the latitudinal θ-direction, if Q 6= 0. These non-equatorial orbits are called
spherical orbits [8]. Purely circular orbits correspond to the particular case of spherical orbits
with the parameter Q = 0, which are completely confined in the black hole equatorial plane.

In the general Kerr-Newman case there are four possible solutions (some of them may be
unstable) of Eqs. (7) for the azimuthal momentum Li and the total energy Ei of test particles
with a charge ε on the spherical orbits with r = const. Analytical expressions for Li and Ei are
rather cumbersome and presented in [9]. For neutral massive particles (ε = 0) from Eqs. (7)
we find two pairs of solutions for E and b = L/E for spherical orbits [10]:

E2

1,2 =
∓2D2 + β1r

2 + a2[2(r − e2)∆ − r2(r − 1)2]Q

r4[(r2 − 3r + 2e2)2 − 4a2(r − e2)]
, (8)

b1,2 =
±D2r − a2(r − e2){β2r + [a2 − r(r − e2)]Q}

a(r − e2){r[(∆ − a2)2 − a2(r − e2)] + a2(1 − r)Q}
,

where
β1 = (r2 − 3r + 2e2)(r2 − 2r + e2)2 − a2(r − e2)[r(3r − 5) + 2e2],

β2 = e4 − a2(r − e2) + 2e2r(r − 2) − r2(3r − 4), (9)

D2

2 = [a(r − e2)∆]2[(r − e2)r4 − r2(r2 − 3r + 2e2)Q + a2Q2].

It can be shown that stable spherical orbits are realized for the first pair of solution (E1, b1) with
0 < Q < Qmax, where Qmax is a root of the marginal stability equation V ′′

r = 0. All spherical
orbits with Q < 0 are unstable (see also [8]). The stable spherical photon orbit corresponds
to the ultrarelativistic limit for massive particle energy on the spherical orbit, E → ∞, which
is equivalent to the case µ = 0 [10]. Note that corresponding spherical (or circular) r = const
photon orbits outside the black hole horizon are all unstable [7, 8].
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The Fig. 1 presents examples of the third kind non-equatorial orbits of a test planet and a
photon inside the Kerr black hole, calculated by numerical integration of equation of motion
(1) – (3) in the Boyer-Lindquist frame. Respectively, Fig. 2 presents numerically calculated
examples of the third kind non-equatorial orbits for test planet and photon inside the Kerr-
Newman black hole, viewed in the Locally Non-Rotating Frame (LNRF) [7].

We hypothesize [9, 10] that the advanced civilizations of third type (according to N. S. Kar-
dashev scale [11]) may live safely inside the supermassive black holes in the galactic nuclei being
invisible from the outside. Yet, some difficulties (or advantages?) of a life inside black hole are
worth mentioning, such as a possible causality violation [6, 12] and mass inflation in close vicin-
ity of the Cauchy horizon [13]. The existence of third kind orbits inside the event horizon may
be verified or falsified in principle (without a traveling inside black holes) by observations of
white holes counterparts.
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Figure 1: A non-equatorial stable periodic orbit of a planet (the external curve) and a photon
orbit (the internal curve, with b = L/E = 1.5, q = Q/E2 = 0.09) inside the Kerr black hole
(a = 0.9982, e = 0) in the in the Boyer-Lindquist frame. The thickness of trajectories are
growing in the direction of motion. In particular, the first temporal quasi-periods (duration
of the first coordinate oscillations from the starting time t0 = 0) for the shown photon orbit
(T1,r, T1,θ, T1,ϕ) = (0.49, 0.33, 2.95), the perigee and apogee photon radii (rp, ra) = (0.24, 0.35)
and the maximal elevation angle with respect to equatorial plane θmax = 14.6◦.

Figure 2: A non-equatorial stable periodic orbit of planet (the external curves) with E = 0.568,
L = 1.13, Q = 0.13, (rp, ra) = (0.32, 0.59) and photon orbit (the internal curves) with
b = L/E = 1.38, q = Q/E2 = 0.03, (rp, ra) = (0.13, 0.29) inside a black hole (a = 0.9982,
e = 0.05) in the Locally Non-Rotating Frame (LNRF) [7], viewed from the north pole (left
panel) and from the outside (right panel). The first temporal quasi-periods are for photon
(T1,r, T1,θ, T1,ϕ) = (0.51, 0.45, 32.8) and for planet (T1,r, T1,θ, T1,ϕ) = (4.06, 4.03, 25.2), respec-
tively. Few next successive radial quasi-periods for planet are Tn,r = 3.87, 3.65, 3.63, 3.88 for
n = 2, 3, 4, 5.
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