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Abstract

We examine a flat (N +1)-dimensional universe with Gauss-Bonnet gravity filled in with
a homogeneous magnetic field and take an interest in the behavior of cosmological solutions
near the singularity.

1. Overview.

In the sixties of the last century Belinskii, Khalatnikov and Lifshitz (BKL) ascertained that
Kasner solution being a general solution for a vacuum Bianchi I Universe becomes unstable
in the case of metric with positive spatial curvature (belonging to Bianchi IX class) and is
replaced by a complicated sequence of transient ”Kasner epochs” — BKL oscillations [1]. Later
it was found that some classes of an anisotropic matter can induce similar type of cosmological
behavior even in flat Bianchi I case. This can be shown for a magnetic field by LeBlanc [2] and
for a general vector field by Kirillov et al [3].

At present, different modifications of General Relativity are widely used in cosmology.
Therefore it is interesting to clear up does the oscillatory BKL-like regime exist in cosmological
models with modified gravity. In this work we deal with Lovelock gravity; specifically, we con-
sider Gauss-Bonnet term. Lovelock gravity gives corrections to GR only in higher-dimensional
space-time; besides, cosmology with Gauss-Bonnet term in the (4+1)-dimensional case has some
pathological features; so, in what follows we shall examine (N +1)-dimensional space-time with
N > 5.
2. Model and basic equations.

We start from the action1

S = − 1

16π

∫
dN+1x

{
RαβγδR

αβγδ − 4RαβRαβ + R2 + FαβFαβ
}

, (1)

where R,Rαβ , Rαβγδ , Fαβ are the (N + 1)-dimensional scalar curvature, Ricci tensor, Riemann
tensor and the Faraday tensor respectively. The gravitational equations are given by:

2RRµ
ν − 4Rµ

γRγ
ν − 4RαβRµ

. ανβ + 2RµαβγRναβγ − 1

2
δµ
ν

(
RαβγδR

αβγδ − 4RαβRαβ + R2
)

=

=
1

4π

(
FνγF γµ +

1

4
δµ
ν FαβFαβ

)
(2)

It is convenient to use the following metric parametrization:

ds2 = dt2 −
∑

k

e2ak(t) dx2
k (3)
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1Here and after Greek indices run from 0 to N and Latin indices from 1 to N.
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Thereupon equations (2) take the form:

FαγF γβ = 0, α 6= β (4)

∑

i<j<k<l

ȧiȧj ȧkȧl = − 1

12

∑

i,j

F 2
ije

−2(ai+aj) (5)

∑

i6=n

(
äi + ȧ2

i

) ∑

j<k

j,k 6=i,n

ȧjȧk + 3
∑

i<j<k<l

i,j,k,l6=n

ȧiȧjȧkȧl =
1

4



∑

k 6=n

F 2
nke

−2(ak+an) −
∑

i<j

i,j 6=n

F 2
ije

−2(ai+aj)


 (6)

The dot denotes the derivative with respect to t. From (4) it follows that some of the components
of the Faraday tensor must be equal to zero identically; the number χ of non-zero components
equals to N/2 for an even dimensions and (N − 1)/2 for an odd dimensions.
3. Vacuum solution.

N. Deruelle [4] examined vacuum models with N = 4, 5 and revealed a Kasner-like cosmo-
logical solution:

ds2 = −dt2 + C2
kt2pkdx2

k (7)

where Ck are arbitrary constants and parameters pk obey the relations:
∑

n

pn = 3,
∑

i<j<l<m

pipjplpm = 0 (8)

A. Toporensky and P.Tretyakov [5] verified this solution for N = 6, 7; S.Pavluchenko [6] gener-
alized this solution for all N and also to the Lovelock case.
4. Stability of the Kasner-like regime.

We considered the effect of the magnetic field as a perturbation. According to this solutions
of the equations (5),(6) can be regarded as a disturbed solutions relative to vacuum solutions (7)-
(8). As a consequence one should study stability of Kasner-like solutions. For this purpose it
is convenient to use special variable τ introduced by the relation

dτ = e
− 1

3

P

j

aj(t)

dt (9)

Equations (5),(6) then take the form:

∑

i<j<k<l

a′ia
′
ja

′
ka

′
l = − 1

12
e

4
3

P

j

aj ∑

i=1,χ

F 2
2i−1, 2ie

−2(a2i−1+a2i) (10)

∑

i<j<k

i,j,k 6=2n−1 (2n)

(
a′ia

′
ja

′
k

)′
=

1

6
e

4
3

P

j

aj


F 2

2n−1, 2n
e−2(a2n−1+a2n) − 2

∑

j=1,χ

j 6=n

F 2
2j−1, 2j

e−2(a2j−1+a2j)


 (11)

The dash denotes the derivative with respect to τ . Power-law behavior of the components of
the metric tensor with respect to t corresponds to a linear behavior with respect to τ :

gkk(t) = Ckt
2pk −→ gkk(τ) = pkτ + C̃k, Ck, C̃k = const, (12)

parameters pk obey the relations (8). If a disturbed solution remains close to a Kasner-like
solution beginning with some moment of time and approaches to the latter as τ → ±∞ we call
the respective Kasner-like solution (asymptotically) stable.

Equations (8) specify (N − 2)-dimensional surface in the space of parameters pk; all param-
eters lying on that surface correspond to Kasner-like solutions. Our analysis shown that those
of the parameters on this surface that obey the inequalities

p2n−1 + p2n > 2, n = 1, χ (13)
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determine Kasner-like solutions which are stable for τ → +∞ (future stable solutions). Analo-
gously, parameters on the described surface that subject to the inequalities

p2n−1 + p2n < 2, n = 1, χ (14)

determine Kasner-like solutions which are stable for τ → −∞ (past stable solutions). This
result is well confirmed by numerical calculations. Figure 1 shows past stable solution (a) and
future stable solution (b) for N = 5; in the case (b) we used variable t instead of τ , because due
to (9) derivatives a′

k(τ) grows up too rapidly and that makes impossible to carry out evaluations
correctly.
5. Oscillatory regime.

We found numerically solutions of the equations (10),(11) which are far from any Kasner-like
solutions over all time of evolution; these solutions has explicit oscillatory structure. On the
Figure 2 oscillatory solution for the case of flat (5 + 1)-dimensional Gauss-Bonnet cosmological
model with a homogenous magnetic field and BKL-oscillations are shown for comparison. These
regimes differ greatly. For instant, the former has no Kasner epochs or something like this at
all; in that case two of five functions oscillate, and the others grows up monotonically but very
slowly. We checked this result for N = 5, 6, 7, 8 dimensions and wide range of initial data and
got the same picture.

We have been able to obtain an appropriate analytical approximation of oscillatory solution.
Let us assume that a1(τ), a2(τ) are oscillatory functions; detailed analysis of numerical solutions
makes it possible to think that

a′3(τ) ≈ a′4(τ), a′5(τ) ≈ 0 (15)

with a good accuracy for a large enough τ . Due to this assumption equations (10),(11) are
simplified significantly. Then it is easy to show that

a1,2(τ) = ±C0τ
2 + τ

[
C1J 2

3

(
2ξτ3/2

3

)
+ C2Y 2

3

(
2ξτ3/2

3

)]
+ D1,2, (16)

a3(τ) = η
√

τ + D3, a4(τ) = η
√

τ + D4, a5(τ) = D5 (17)

where J 2
3

and Y 2
3

are the Bessel functions of the first and second kind respectively; C0, C1, C2,

D1, . . . , D5, η are constant. Figure 3 illustrates comparison of numerical solution and analytical
solution (16)-(17).
6. Conclusions.

1. Treatment the effect of the magnetic field as a perturbation lead us to the conclusion
that there are two classes of vacuum Kasner-like solutions which are stable relative to this
perturbation.

2. We revealed oscillatory regime which differ essentially from the well-known BKL oscilla-
tions and found its analytical approximation.
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Figure 1: Stability of the Kasner-like regime.
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Figure 2: Oscillatory regime.

a) b)

Figure 3: a) Comparison of numerical (a2) and analytical (A2) solutions. b) Relative difference of numerical
(a2) and analytical (A2) solutions.

A2(τ) = −τ2 + 0.7τJ 2

3

(
10τ

3

2

)
+ 0.7τY 2

3

(
10τ

3

2

)
+ 15.2.
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