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Abstract

We present a class of generally covariant ghost-free nonlocal gravity models generating
a stable Einstein space background with an arbitrary value of the effective cosmological
constant and having a good general relativistic limit in an asymptotically flat spacetime.
The Euclidean version of the Schwinger-Keldysh formalism underlying the construction of
the causal effective equations for the quantum expectation value of the metric field in these
models is discussed. Though for cosmological (not asymptotically flat) problems they fail to
have a general relativistic limit, indirectly this limit can be recovered in a special conformal
frame nonlocally related to their original metric variables.

1 Introduction.

One of the main challenges of modern physics is the problem of dark energy (DE) – the mech-
anism which is supposed to explain observable cosmic acceleration [1]. Numerous efforts aimed
to reconcile evidences for this phenomenon with gravity theory ([2, 3, 4, 5], etc.) suffer from the
fine tuning problem associated with the hierarchy of the cosmic acceleration scale vs the fun-
damental Planck scale. Though this problem served as a motivation to go beyond the simplest
appropriate modification of general relativity (GR) – explicit cosmological term, in this or that
way it is creeping into almost all models of DE. Most of them in fact look as a sophisticated way
to incorporate into their action in addition to the Planck scale the horizon scale (whether it is
a graviton mass of massive gravity [5], multi-dimensional Planck mass in braneworld theories
or the DGP scale in brane induced gravity models [4], etc.).

Somewhat separately stands the Deser-Woodard model of nonlocal cosmology with the
nonlocal action of the form [6]

S ∼
∫

dx g1/2 R f

(

1

�
R

)

, (1)

with a rather generic function f(X) of the dimensionless nonlocal argument X ≡ �
−1R. Re-

cently this model had a series of sound applications in the theory of the early and present
Universe [7, 8, 9]. However, tuning the predictions in this model to observation suggests a
concrete choice of the function f(X) close to a hyperbolic function, which of course sounds very
contrived to match this theory with some fundamental particle field model.

To circumvent this fine tuning difficulty one could adopt another, perhaps more promising,
line of reasoning. If a concrete fixed scale incorporated in the model is not satisfactory, then
one could look for a model that admits cosmic acceleration scenario with an arbitrary scale.
Then its concrete value compatible with observations should arise dynamically by the analogue
of symmetry breaking to be considered separately. Even this very unassuming approach is
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full of difficulties, because modified gravity models featuring this property (like unimodular
gravity [10], f(R)-gravity [3], Lorentz breaking theory [11], etc.) generally violate some of its
conventional symmetries and have additional degrees of freedom which might lead to ghost
instabilities and make the theory inconsistent. This problem is central to numerous attempts
to modify Einstein theory especially under the requirement to preserve its general covariance,
and it will be a central question of this paper.

Here we discuss a recently suggested nonlocal infrared modification of the metric sector of the
theory [12, 13], which is likely to implement the above approach. It is based on the realization of
the old idea of a scale-dependent gravitational coupling – nonlocal Newton constant [14, 15, 16]
– and amounts to the construction of the class of diffeomorphism invariant, ghost-free models
and generating the de Sitter (dS) or anti-de Sitter (AdS) background with an arbitrary value

of its effective cosmological constant Λ. In addition to fine-tuning argumentation of the above
type, the driving force of this approach is the understanding of the fact that, to resolve such
issues of DE as cosmic coincidence problem, this scale cannot be encoded in the fundamental
or effective action of the theory (like, for instance, explicit Λ-term, massive graviton or R +
R2/Λ models [17]), but rather should arise dynamically by the analogue of symmetry breaking
(see, for example, [18]). Interestingly, as a bonus for the construction of the ghost-free cosmic
acceleration we also get in our model a new mechanism of dark matter (DM) simulation.

Very briefly, this is the following alternative of the Deser-Woodard model

∫

dx g1/2 Rf

(

1

�
R

)

⇒
∫

dx g1/2 Rµν f(�, R....)Rµν (2)

with some operator function f(�, R....) (involving also a nonlocal and nonlinear dependence on
the curvature). This function will be made concrete and justified first on the flat-space back-
ground (Sect.2) and then extended to generic Einstein space solutions under the requirement of
their stability (Sect.4). In Sect.3 we discuss the treatment of nonlocality within the Euclidean
version of the Schwinger-Keldysh formalism [19, 20] for the quantum expectation values of the
metric field, when the action of the form (8) is considered as the quantum effective action of the
underlying fundamental quantum gravity theory. Sect. 5 is devoted to the problem of crossover
to the general relativistic limit and recovery of the latter in the new conformal frame of the
theory. Concluding Sect.6 contains the summary of results and their possible ramifications
within critical gravity models [21] and black hole thermodynamics.

2 Flat-space background onset

Here we begin our search for a nonlocal modification of the Einstein theory within the concept
of the effective scale-dependent gravitational constant. At a qualitative level this concept was
introduced in [14] as an implementation of the idea that the effective cosmological term in
modern cosmology is very small not because the vacuum energy of quantum fields is so small,
but rather because it gravitates too little. This degravitation is possible if the effective gravita-
tional coupling constant depends on the momentum scale and becomes small for fields nearly
homogeneous at the horizon scale. Naive replacement of the Newton constant by a nonlocal
operator suggested in [14] violates diffeomorphism invariance, but this procedure can be done
covariantly due to the following observation [15]. The Einstein action in the vicinity of flat-space
background can be rewritten in the form

SE =
M2

P

2

∫

dx g1/2

(

−Rµν 1

�
Gµν + O[R3

µν ]

)

, (3)
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where Gµν = Rµν − 1
2gµνR is the Einstein tensor and 1/� is the Green’s function of the covari-

ant d’Alembertian acting on a symmetric tensor1. This expression is nothing but a generally
covariant version of the quadratic part of the Einstein action in metric perturbations hµν on
a flat-space background. When rewritten in terms of the Ricchi tensor Rµν ∼ ∇∇h + O[h2]
this expression becomes nonlocal but preserves diffeomorphism invariance to all orders of its
curvature expansion.

Thus, the idea of a nonlocal scale dependent Planck mass [14] can be realized as the re-
placement of M 2

P by a nonlocal operator – a function M 2(�) of �,

M2
P Rµν 1

�
Gµν ⇒ Rµν M2(�)

�
Gµν , (4)

which would realize this idea at least within the lowest order of the covariant curvature expan-
sion. This modification put forward in [14, 15] did not, however, find interesting applications
because it has left unanswered a critical question – is this construction free of ghost instabil-
ities for any nontrivial choice of M 2(�)? Here we try to fill up this omission and put some
constraints on M 2(�).

To begin with, if we adopt the above strategy, then the search for M 2(�) should be encom-
passed by the correspondence principle. According to it nonlocal terms of the action should
form a correction to the Einstein Lagrangian arising via the replacement

R ⇒ R + RµνF (�)Gµν . (5)

The nonlocal form factor of this correction F (�) should be small in the GR domain, but it must
considerably modify dynamics at the DE scale. Motivated by customary spectral representations
for nonlocal quantities like

F (�) =

∫

dm2 α(m2)

m2 − �
(6)

we might try the following ansatz,

F (�) =
α

m2 − �
, (7)

corresponding to the situation when the spectral density α(m2) is sharply peaked around some
m2. As we will see, for m2 6= 0 this immediately leads to a serious difficulty. Schematically
the inverse propagator of the theory – the kernel of the quadratic part of the action in metric
perturbations hµν – becomes ∼ −�+α�

2/(m2−�) where the squared d’Alembertian �
2 follows

from four derivatives contained in the term bilinear in curvatures. Then its physical modes are
given by the two roots of this expression – the solutions of the corresponding quadratic equation
� = m2

±. In addition to the massless graviton with m2
− = 0 massive modes with m2

+ = O(m2)
appear and contribute a set of ghosts which cannot be eradicated by gauge transformations
(for the latter were already expended on the cancelation of ghosts in the massless sector –
longitudinal and trace components of hµν).

Therefore, only the case of m2 = 0 remains, and as a first step to the nonlocal gravity we
will consider the action

S =
M2

2

∫

dx g1/2

(

−R + α Rµν 1

�
Gµν

)

. (8)

On the flat-space background this theory differs little from GR provided the dimensionless
parameter α is small, |α| � 1. The upper bound on |α| should follow from post-Newtonian
corrections in this model. The additional effect of α is a small renormalization of the effective

1We use sign conventions for the Einstein action in the Euclidean signature spacetime and curvature tensor
conventions, Rµν = Rα

µαν = ∂αΓα

νµ − ∂νΓα

αµ + ... .
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Planck mass. Comparing the second term of (8) with (3) we have in the linearized theory the
following relation

S = −M2(1 − α)

2

∫

dx g1/2R + αO[h3
µν ], (9)

which allows one to relate the constant M to MP ,

M2 =
M2

P

1 − α
. (10)

3 Treatment of nonlocality: Schwinger-Keldysh technique vs

Euclidean QFT

At this point we have to discuss the treatment of nonlocality in (8). In principle, handling
fundamental theories with a nonlocal action is a sophisticated and very often an open issue,
because their nonlocal equations of motion demand special care in setting boundary conditions.
Contrary to local field theories subject to a clear Cauchy problem setup and local canonical
commutation relations, nonlocal theories can have very ambiguous rules which are critical for
physical predictions. In particular, the action (8) above requires specification of boundary
conditions for the nonlocal Green’s function 1/� which will necessarily violate causality in
variational equations of motion for this action. Taken literally with any choice of boundary
conditions for 1/�, the action (8) effectively symmetrizes the kernel of this Green’s function,
so that nonlocal terms in equations of motion never have retarded nature and, therefore, break
causality, as is easily seen from the equation

δS

δgµν(x)
∝ ∇∇

∫

dy
[

G(x, y) + G(y, x)
]

R(y) + ... . (11)

To avoid these ambiguities and potential inconsistencies we will once and for all assume
that our nonlocal action is not fundamental. Rather it is a certain approximation for the
quantum effective action – the generating functional of one-particle irreducible diagrams – whose
argument is the mean quantum field. This functional is necessarily nonlocal, and its nonlocality
originates from quantum effects (by various mechanisms widely discussed in literature including
[22]). In this case boundary conditions for nonlocal operations are uniquely fixed by the choice
of the initial (and/or final) quantum state, and manifest breakdown of causality in variational
equations for this action is harmless under a proper treatment of their nonlocal terms.

To begin with, this causality breakdown does not immediately signify inconsistency in the
calculation of scattering amplitudes or in-out matrix elements. These amplitudes are determined
by Feynman diagrammatic technique and do not have manifest retardation properties because
they are not directly physically observable. Physically observable quantities like probabilities
are bilinear combinations of scattering amplitudes and can always be represented as expectation
values 〈 IN | Ô | IN 〉 of certain quantum operators Ô in the initial quantum state | IN 〉. For
example, the probability of transition from this state to some final state |fin 〉, P IN→fin =

〈 IN |fin 〉〈fin | IN 〉 = 〈 IN | P̂ fin| IN 〉, is an expectation value of the projector P̂ fin ≡ |fin 〉〈fin |
onto this final state. In contrast to in-out matrix elements these expectation values are subject to
Schwinger-Keldysh diagrammatic technique [19] which guarantees causality of 〈 IN | Ô(x) | IN 〉.
This property can be formulated as a retarded response of this average to the variation of the
classical external source J(y) coupled to the quantum fields in terms of which the observable
Ô(x) is built,

δ〈 IN | Ô(x) | IN 〉
δJ(y)

= 0, x0 < y0. (12)
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This property is also not manifest and turns out to be the consequence of locality and unitar-
ity of the original fundamental field theory (achieved via a complex set of cancellations between
nonlocal terms with chronological and anti-chronological boundary conditions). However, there
exists a class of problems for which a retarded nature of effective equations of motion explicitly
follows from their quantum effective action calculated in the Euclidean spacetime [20]. This is
a statement based on Schwinger-Keldysh technique [19] that for an appropriately defined initial
quantum state |IN〉 the effective equations for the mean field gµν = 〈IN | ĝµν |IN〉 originate
from the Euclidean quantum effective action Γ = ΓEuclidean[gµν ] by the following procedure
[20]2. Calculate the nonlocal SEuclidean[gµν ] and its variational derivative. In the Euclidean
signature spacetime nonlocal quantities, relevant Green’s functions and their variations are
generally uniquely determined by their trivial (zero) boundary conditions at infinity, so that
this variational derivative is unambiguous in Euclidean theory. Then make a transition to the
Lorentzian signature and impose the retarded boundary conditions on the resulting nonlocal
operators,

δΓEuclidean

δgµν(x)

∣

∣

∣

∣

retarded

++++ ⇒ −+++

= 0. (13)

These equations are causal (gµν(x) depending only on the field behavior in the past of the point
x in full accordance with Eq.(12)) and satisfy all local gauge and diffeomorphism symmetries
encoded in the original SEuclidean[gµν ].3

Figure 1: Tadpole diagram of the one-loop contribution to the IN-IN effective equation.

In the one-loop approximation the relation (13), that was proven to the first order of pertur-
bation theory in [23] and to all orders in [20], originates as follows. The one-loop equation for
the mean IN-IN field g(x) contains the quantum contribution depicted by the tadpole diagram
of Fig.1

δS

δg(x)
+

i

2

∫

dy dz
δ3S

δg(x) δg(y) δg(z)
GIN−IN (y, z) = 0, (14)

GIN−IN (x, y) = 〈IN | ĝ(x) ĝ(y) | IN〉, (15)

with the IN-IN Wightman Green’s function GIN−IN (x, y) alternative to the conventional Feyn-
man propagator. As was shown in [20] for the Poincare invariant vacuum state (associated with

2We formulate this statement directly for the case of gravity theory with the expectation value of the metric
field operator ĝµν(x), though it is valid in a much wider context of a generic local field theory [20].

3A similar treatment of a nonlocal action in [7] was very reservedly called the ”integration by parts trick”
needing justification from the Schwinger-Keldysh technique. However, this technique only provides the causality
of effective equations, but does not guarantee the Euclidean-Lorentzian relation (13). The latter is based, among
other things, on the choice of the |IN〉-state.
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a plane wave decomposition of the IN-operators) the following relation holds

i

2

∫

dy dz
δ3S

δg(x) δg(y) δg(z)
GIN−IN (y, z) =

δΓ 1−loop
E

δg(x)

∣

∣

∣

∣

∣

retarded

++++⇒−+++

(16)

Γ 1−loop
E =

1

2
Tr ln

δ2SEuclidean

δg(x) δg(y)
. (17)

This confirms the relation (13) with the full one-loop Euclidean effective action ΓEuclidean =

SEuclidean + Γ 1−loop
E .

We will assume that our model falls into the range of validity of this procedure, which implies
a particular vacuum state |in〉 and the one-loop approximation. The extension of this range
is likely to include multi-loop orders and the |in〉-state on the (A)dS background considered
below, for which this state apparently coincides with the Euclidean Bunch-Davies vacuum.

At the heuristical level the justification for this extension follows from Fig.2 depicting the
compact Euclidean spacetime used as a tool for constructing the Euclidean vacuum within
a well-known no-boundary prescription [24]. Attaching a Euclidean space hemisphere to the
Lorentzian de Sitter spacetime makes it compact instead of the original asymptotic de Sitter
infinity. Thus it simulates by the path integral over regular field configurations on this spacetime
the effect of the Euclidean de Sitter invariant vacuum. The role of spacetime compactness is
very important here because it allows one to disregards possible surface terms originating from
integrations by parts or using cyclic permutations under the functional traces in the Feynman
diagrammatic technique for the effective action.

Figure 2: Euclidean de Sitter hemisphere denoted by dashed lines is used as a tool for constructing the
Euclidean de Sitter invariant vacuum by the path integral over regular fields on the resulting compact
spacetime.

Thus, the action (8) is understood as the Euclidean one (this explains our sign choice in the
Einstein term) with zero boundary conditions for 1/� at infinity. It can be localized in terms of
the auxiliary tensor field subject to the same Dirichlet boundary conditions4, and in the resulting
local representation directly applied to the FRW cosmology. This shows that close to a certain

4This field formally carries ghosts, but this does not indicate physical instability because it never exists as a
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moment t0 corresponding to the present epoch the model easily yields a (quasi) de Sitter point of
the cosmological evolution [13], its Hubble factor H = ȧ/a and the equation of state parameter
w = −1 − 2Ḣ/3H2 satisfying the relations w(t0) = −1, ẇ(t0) = O(1) × H(t0) < 0, which
make the model qualitatively compatible with the observable DE data. These preliminary
estimates could have served as a starting point for a quantitative comparison with the DE
scenario. However, a formal application of (8) to the FRW setup disregards nontrivial boundary
conditions in cosmology. To see this, note that on the de Sitter background (which is a zeroth-
order approximation for the cosmic acceleration scenario) the Ricci curvature Rµν = Λgµν is
covariantly constant, and the nonlocal part of (8) is divergent,

Rµν 1

�
Gµν

∣

∣

∣

∣

(A)dS

= ∞, (18)

because gµν is a zero eigenvector of �. This means that the action (8) should be modified to
circumvent this difficulty.

4 Nonlocal gravity with a stable (A)dS background: DE and
DM

We will regulate the action (8) by adding to the generally covariant � the matrix-valued po-
tential term built of a generic combination of tensor structures linear in the curvature,

S =
M2

2

∫

dx g1/2

(

−R + α Rµν 1

� + P̂
Gµν

)

, (19)

P̂ ≡ P µν
αβ = aR

(µ ν)
(α β) + b

(

gαβRµν + gµνRαβ

)

+ cR
(µ
(αδ

ν)
β) + dR gαβgµν + eRδµν

αβ . (20)

Here we use the condensed notation for the Green’s function of the operator �+ P̂ ≡ � δ µν
αβ +

P µν
αβ , acting on a symmetric tensor field as

1

� + P̂
Gµν ≡

[ 1

� + P̂

]αβ

µν
Gαβ (21)

and a, b, c, d and e represent arbitrary parameters to be restricted by the requirement of a
stable (A)dS solution in the model. Of course, such a modification of the original action (8)
leaves its linear approximation on a flat background intact, because it deals with O[h3

µν ]-terms.

Now the Green’s function 1/(� + P̂ ) acting on the Einstein and Ricci tensors in (19) is
well defined even for the (A)dS background with the covariantly constant Rµν = Λgµν and
Rαµβν = Λ

3 (gαβgµν − gανgβµ), for which

P µν
αβ =

A + 4B

4
Λgαβgµν − CΛ

(

δµν
αβ − 1

4
gαβgµν

)

, (22)

A = a + 4 b + c, B = b + 4 d + e, (23)

C =
a

3
− c − 4e, (24)

so that P̂ gµν ≡ P αβ
µν gαβ = (A + 4B) Λgµν .

free field in the external lines of Feynman graphse [13]. The actual particle content of the theory is determined in
terms of the original metric field gµν and indeed turns out to be ghost-free on the flat-space background, because
the quadratic part of the action coincides with the Einstein’s one. A similar mechanism excluding ghosts by
boundary conditions was recently used in the conformal gravity model of [25].
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The properties of this model are as follows. First, under a certain restriction on parameters
of P̂ the model (19) has (A)dS solution with an arbitrary value of the cosmological constant Λ.
Since

δS

δgµν

∣

∣

∣

∣

(A)dS

= −1

2
M2Λ

(

1 +
α

A + 4B

)

gµνg1/2, (25)

the equation of motion holds with an arbitrary value of Λ when

α = −A − 4B. (26)

This property of the model was generalized in [26] to generic Einstin space backgrounds with

Eµν ≡ Rµν − 1

4
gµνR = 0. (27)

Note that the existence of the Einstein space solution with an arbitrary Λ is neither the
result of the local Weyl invariance of the theory, nor even its global scale invariance. Rather
this is a corollary of the relation (26) which, in particular, guarantees the vanishing on-shell
value of the action S |(A)dS = 0. Thus, this solution is another vacuum – a direct analogue of
the flat-space one.

Another remarkable consequence of Eq.(26) is the stability of the Einstein space against
ghost and tachyon excitations. The check of this property is based on the calculation of the
quadratic part of the action S(2) on this background in the DeWitt gauge,

χµ ≡ ∇νh
µν − 1

2
∇µh = 0. (28)

Curious fact is that in this gauge it depends only on the traceless part of hµν , h̃µν = hµν− 1
4 gµνh,

and is very simple [26]

S(2)

∣

∣

∣

Eµν=0
= −M2

eff

2

∫

d4x g1/2
(

D1h̄
µν

) 1

D2

(

D1h̄µν

)

. (29)

M2
eff = M2 A2 − α2

α
(30)

D1 ≡ � + 2 Ŵ − 1

6
R 1̂, (31)

D2 ≡ � + a Ŵ − C

4
R 1̂, (32)

so that the equality of two differential operators D1 = D2 guarantees a local nature of S2. Thus
the demand of unitarity leads to the additional constraints on the parameters of the model

a = 2, (33)

C ≡ a

3
− c − 4e =

2

3
, (34)

and the positivity requirement for Geff ≡ 1/8πM 2
eff (the condition (33) is not necessary on

maximally symmetric background with Ŵ = 0 and, thus, was derived in [26] in the course of
generalizing the model of [12, 13] to generic Einstein spaces). This requirement selects the range
of the parameter B, B < −α/2 and B > 0 for a positive α, and even more interesting compact
range of B for a negative α,

0 < B < −α

2
, α < 0. (35)
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Free propagating modes of the theory satisfy the linearized equations obtained from the
Euclidean action by the recipe (13). For a particular case of the Einstein space – the (A)dS
background – they read

(

−� +
2

3
Λ

)

hµν +
1

2
gµν

(

� +
2

3
Λ

)

h

+
1

2
gµνR(1) + 2∇(µΦν) − gµν∇αΦα = 0, (36)

R(1) ≡ ∇µ∇νh
µν − �h − Λh, (37)

Φµ ≡ χµ − 1

2
∇µ 1

� + 2Λ

∣

∣

∣

ret
R(1). (38)

The trace of this equation according to (13) gives the homogeneous equation for R(1) with a
retarded nonlocality, which is equivalent to the local initial Cauchy problem �R(1) = 0 with
zero initial data in the remote past [13]. Therefore R(1)(x) ≡ 0, whence in the DeWitt gauge

χµ = 0 we have (�+2Λ)h = 0. Then the residual gauge transformations ∆fhµν = 2∇(µfν) with
the parameter fµ satisfying the equation (� + Λ)fµ = 0 can be used to select two polarizations
– non-ghost physical modes. In particular, the boundary conditions for h can be nullified, so
that h identically vanishes and makes in view of the DeWitt gauge the propagating free modes
transverse and traceless as in the Einstein theory with the Λ-term.

In the presence of matter sources with a stress tensor Tµν of a compact support the causal
effective equations for retarded gravitational potentials become local in the DeWitt gauge,

(

−� +
2

3
Λ

)

hµν +
1

2
∇µ∇νh − Λ

6
gµνh =

2

M2
eff

Tµν . (39)

Modulo the gauge transformation their solution takes the following form – the result of a careful
commutation of covariant derivatives with (−� + 2

3 Λ)−1,

hµν =
8πGeff

−� + 2
3Λ

(

Tµν + gµν
� − 2Λ

� + 2Λ

Λ

3�
T

)

. (40)

The tensor structure here differs from the GR analog Tµν − 1
2gµνT , which for non-relativistic

sources gives O(1) correction. What is much more interesting, it yields an unexpected bonus in
the form of the dark matter simulation – 1/|α|-amplification of the gravitational attraction due
to the replacement of the Newton gravitational constant GN by Geff ∼ GN/|α| with |α| � 1.
This is possible when |B| ∼ α for a positive α and necessarily happens in the case (35) of a
negative α, because the factor α/8B(2B + α) ≥ 1/|α| and

Geff ≥ 1 − α

|α| GN � GN . (41)

On the other hand, with |B| ∼ √
α in the case of a positive α both Newton and effective

gravitational coupling constants can be of the same order of magnitude, GN/Geff = O(1) even
for α � 1, which together with (41) leaves a large window for a possible strength of DM
attraction relative to GR behavior.

The theory (19) seems to have two phases. For short distances corresponding to the range
of wavelengths with ∇∇ ∼ � � R this is a GR phase on the zero curvature background with
small O(α) × R/� corrections of higher orders in spacetime curvature (collectively denoted by
R). This regime would apply to galactic, Solar system and other small scale phenomena and is
likely to pass all general relativistic tests for a sufficiently small α.

Another phase of the theory should correspond to the infrared wavelengths range ∇∇ � R
in which a stable (A)dS background exists and the modified gravitational potential of matter
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sources is given by Eq.(40). This equation is valid for the perturbation range |δRµ
ν | ∼ |∇∇hµ

ν | �
Λ and |hµ

ν | � 1 equivalent to very small matter densities |T µ
ν | � M2

P Λ characteristic of galaxy,
galaxy cluster and horizon scales for which DE and DM modification of gravity theory becomes
important. Thus, nonlocal gravity is expected to interpolate between GR theory and its strongly
coupled infrared modification which is likely to generate a stable ghost-free stage of cosmic
acceleration and, perhaps, even simulate the DM effect on rotation curves.

5 The problem of the GR phase

Unfortunately, however, the tensor structure Tµν − 1
2gµνT in (40) does not arise in the short

distance limit ∇∇ ∼ � � R – rather we have Tµν without the trace term. This means that
the theory does not really have a GR phase for any however small value of α even despite the
O(α) modification of the original Einstein theory (19). In fact, this follows from the equivalent
representation for its Euclidean action with the critical value (26) of the parameter α [27]

S = −M2
eff

2

∫

dx g1/2 Eµν 1

� + P̂
Eµν . (42)

in which the original Einstein term gets canceled in virtue of the identity

1

� − α
4 R

R = − 4

α
. (43)

This identity is valid in any smooth compact Euclidean spacetime without a boundary – the
Euclidean Schwinger-Keldysh framework appropriate for a cosmological setup (cf. discussion
above in Sect.3).

The representation (42) quadratic in Eµν immediately implies the existence of Einstein
space solutions with an arbitrary value of Λ. However, in the UV limit ∇∇ � R its variational
derivative

δS

δgµν
' M2

eff

2
g1/2

(

Rµν − 1

2
∇µ∇ν

1

�
R

)

+ O[E2 ] (44)

remains nonlocal and differs from the general relativistic expression even for α → 0. In par-
ticular, in the approximation linear in the curvatures matter sources are coupled to gravity
according to

Rµν − 1

2
∇µ∇ν

1

�
R + O[R2 ] =

1

M2
eff

Tµν . (45)

The local Ricci scalar term of the Einstein tensor is replaced here with the nonlocal expres-
sion which guarantees in this approximation the stress tensor conservation, but in contrast to
anticipations of [13] does not provide the GR phase of the theory.

The absence of the GR phase might seem paradoxical because the original action (19)
obviously reduces to the Einstein one in the limit α → 0. The explanation of this paradox
consists in the observation that the transition from (19) to the new representation (42) is based
on the identity (43) which is not analytic both in α and in the curvature. The source of this
property is the constant zero mode of the scalar operator � on compact Euclidean spacetimes
without a boundary. On such manifolds the left hand side of (43) is not well defined for α = 0.
The equivalence of the actions (19) and (42) was obtained only on this class of Euclidean
manifolds. The latter, in turn, were motivated in Sect.3 by extending the duality between
the Schwinger-Keldysh technique and Euclidean QFT [20] to the cosmological (quasi-de Sitter)
context.
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In contrast to this class of manifolds, the representations (19) and (42) are not equivalent
in asymptotically flat (AF) spacetime because Eq. (43) does not apply there. First, with zero
boundary conditions at infinity the scalar � does not have zero modes. Second, due to the
natural AF falloff conditions, R(x) ∼ 1/|x|4 and (1/�)δ(x − y) ∼ 1/|x − y|2, integration by
parts in the chain of identical transformations leading to (43) gives a finite surface term at
infinity |x − y| → ∞. This leads to an alternative equation

1

� − α
4 R

R
∣

∣

∣

AF
= O [R ] (46)

with a nontrivial right hand side analytic in α and tending to zero for a vanishing scalar
curvature. This explains why the model (19) on AF background has a good GR limit with
nonlinear curvature corrections controlled by a small α [15, 13].5

This undermines the utility of the model (19) as a possible solution of the dark energy
problem and simulation of dark matter phenomenon advocated in [13]. Absence of the GR limit
for α → 0 and for short distance regime ∇∇ � R becomes a critical drawback of this model6

caused by its infrared behavior – presence of a constant zero mode on a compact spacetime.
Possible solution of this problem could be a reformulation of the nonlocal action by projecting
out this zero mode from the definition of the Green’s function in (19) (see [29] for the technique
of such a truncation).

Another possible way to circumvent this difficulty can be based on the conformal transfor-
mation to a new metric

g̃µν [ g ] = e2σ[ g ] gµν , (47)

which is assumed to be physical (that is directly coupled to matter) in contrast to the original
metric gµν playing the auxiliary role. With the conformal factor function

σ[ g ] ' 1

4

1

�
R, (48)

which is small in the UV limit, σ � 1, but has large second order derivatives7, ∇∇σ ∼ R, one
can express the covariant Einstein tensor of the new metric G̃µν in terms of the original metric
as

G̃µν = Gµν + 2
(

gµν�σ −∇µ∇νσ
)

+ gµνσ2
α + 2σµσν

= Rµν − 1

2
∇µ∇ν

1

�
R + O

[

(

∇ 1

�
R

)2
]

, σµ ≡ ∇µσ. (49)

We see that G̃µν in this limit in fact reproduces the left hand side of (45). Therefore, if we
couple matter to the new metric g̃µν in the total action as

Stotal[ g, φ ] = S[ g ] + Smatter[φ, g̃[ g ] ], (50)

5Basic example of a physically nontrivial Einstein space is the Schwarzchild-de Sitter background. A priori it
can also generate surface terms in (43), because its metric is not smooth simultaneously at the black hole and
cosmological horizons and has a conical singularity [28]. However, one can show that for any type of boundary
conditions at this singularity the relevant surface term vanishes and leaves Eq.(43) intact. A similar issue remains
open in the case of the Schwarzchild-AdS background for which the operator D̂ with R < 0 is not guaranteed
to be free of zero modes and does not provide a well defined representation (42) [26]. We are grateful to S.
Solodukhin for a discussion of this point.

6In [26] this was interpreted as the phase transition between the R = 4Λ > 0 and R = 0 phases – the absence
of crossover between these phases. We see that in fact this transition has a topological nature.

7Note that this expression is assumed to hold only in the formal UV limit of ∇∇ � R, so that the zero mode
of � should not invalidate it.
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then for g̃µν in the short distance limit we will recover the usual Einstein equations

R̃µν − 1

2
g̃µνR̃ =

1

M2
eff

T̃µν , T̃µν =
2

g̃1/2
g̃µαg̃νβ

δSmatter

δg̃αβ
(51)

where T̃µν is a matter stress tensor in the frame of the g̃µν -metric. When deriving this equation
we took into account smallness of σ and δσ/δgµν = O(σ) in the short distance limit ∇∇ � R.
Thus we get a GR phase in the conformally related frame of the theory. Unfortunately, however,
the magnitude of corrections to the GR behavior is no longer controlled by a small parameter
α, which makes application of this idea to realistic cosmology somewhat questionable.

6 Conclusions

Thus we have a class of generally covariant nonlocal gravity models which have a general
relativistic limit on an asymptotically flat background and also possess stable Einstein space
solutions with an arbitrary value of their cosmological constant. Their nonlocal action was
formulated in the Euclidean signature spacetime and is understood as an approximation to the
quantum effective action originating from fundamental quantum gravity theory. In the frame-
work of the Euclidean version of the Schwinger-Keldysh formalism [20] for quantum expectation
values we derived from this action the causal effective equations of motion for mean value of
the metric field in the physical Lorentzian-signature spacetime. Thus we have shown that the
(A)dS background of the theory carries as free propagating modes massless gravitons having
two polarizations identical to those of the Einstein theory with a cosmological term. We also
obtained linearized gravitational potentials of compact matter sources and showed that in the
long distance (A)dS phase their effective gravitational coupling Geff can be essentially different
from the Newton gravitational constant GN of the short-distance GR phase. When Geff � GN

the (A)dS phase can be regarded as a strongly coupled infrared modification of Einstein theory
not only describing the dark energy mechanism of cosmic acceleration but also simulating the
dark matter phenomenon by enhanced gravitational attraction at long distances.

Unfortunately, in contrast to AF spacetimes this model fails to have a general relativistic
limit in the cosmological problems for the mean metric field, treated within the Euclidean
version of the Schwinger-Keldysh formalism. The short-distance GR limit can be attained in
a special conformal frame (physical metric minimally coupled to matter) nonlocally related to
the original one. This limit, however, cannot be controlled by smallness of the parameter α
that was initially designed in [13] to moderate the effect of nonlocal corrections to the Einstein
theory.

Thus, direct cosmological applications of this class of models (19) for the accelerating Uni-
verse are not likely to be available now and deserve further development. However, these models
might be interesting as a nonlocal generalization of critical gravity theories [21] – holographic
duals of the logarithmic conformal models [30] – and in black hole thermodynamics. In par-
ticular, as advocated in [26], they have Schwarzschild-de Sitter black hole solutions with zero
entropy analogous to the zero entropy and energy black holes of [21]. All this makes the class
of nonlocal gravity models open for interesting future implications.
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