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Abstract

A problem of electron motion in dense matter and magnetic field is considered. It is
shown that the electron energies are quantized in case of immovable medium and constant
homogenous magnetic field. Obtained exact solutions are examined for the particular case
of the electron motion in a rotating neutron star with account for matter and magnetic field
effects. We argue that all of these considerations can be useful for astrophysical applications,
in particular for description of electrons and neutrinos motion in different environments.

Introduction. The studies of particle interactions in high energy physics as well as solving
problems of charged particles motion in electromagnetic fields of terrestrial experimental devices,
in astrophysics and cosmology base on using of different methods. The most effective tool is
associated with using of exact solutions of quantum field equations of motion. They were first
applied in quantum electrodynamics for studies of motion and radiation of the electron in a
magnetic field, i.e. the synchrotron radiation (see, for instance, [1]), and also for studies of the
electrodynamics and weak interaction in different configurations of external electromagnetic
fields [2]. This method is based on the Furry representation [3] in quantum electrodynamics.
Recently it has been shown, that the method of exact solutions can be also applied for the
problem of neutrinos and electron motion in presence of dense matter (see [4] for a review on
this topic). In [5, 6] the exact solution for the modified Dirac equation for a neutrino moving
in matter was derived and discussed in details. In [7] the corresponding exact solution for an
electron moving in matter was obtained. Analogous problem for electron in magnetized matter
was solved in [8]. The problem of neutrino propagation in transversally moving matter was first
solved in [9], and in [10] we considered neutrino propagation in a rotating matter accounting
for the effect of nonzero neutrino mass.

Note that a study of the neutrino dispersion relations, neutrino mass generation and for
derivation of the neutrino oscillation probabilities in matter also use the modified effective Dirac
equations for a neutrino interacting with various background environments within different
models (see [11] in details). In [12] different processes with neutrino in the presence of matter
were studied on the same basis. In [13] the modified Dirac equations with anomalous vector
and pseudovector interactions were considered within a framework for treatment of low-energy
effects of spontaneous CPT violation and Lorentz breaking.
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In this paper we develop the method of exact solutions for the problem of charged leptons
propagating in matter and strong magnetic fields. This review is based on our recent paper [8].

Modified Dirac Equation for electron moving in matter and magnetic field. We
consider an electron propagating in immovable medium composed of neutrons and homogenous
and constant magnetic field. This can be regarded as the first approach to modelling of an
electron propagation inside a rotating neutron star. For distinctness we consider here the case
of an electron, whereas generalization for other charged particles is just straightforward. The
modified Dirac equation for the electron wave function exactly accounting for the electron
interaction with matter and magnetic field [5] (see also [6]):
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where eg is a module of the electron charge. This is the most general form of the equation for
the electron wave function in which the effective potential V,, = %(1 —4sin? Oy ++°) f, includes
the neutral current interaction of the electron with the background particles, and which can
also account for effects of matter motion and polarization.

Note, that in general case it is not a trivial task to find solutions of this equation. For the
electromagnetic field and effective matter potential we obtain
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where G = %, n is matter number density. The Hamiltonian form of equation (1) is
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where A = (—%, %, 0) and the relation 7%y = —75¢ was used. This form of the Hamiltonian

makes quite transparent the solution describing spin properties of the electron.

Spin operator. Note that the longitudinal polarization operator commutes with the Hamil-
tonian, [T 0 H | = 0. Therefore for any of its eigenvectors the Hamiltonian can be presented in
the following form
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where TV is one of the eigenvalues of the spin operator 70. Note that in the presence of the
matter potential proportional to Gn the transverse polarization operator does not commute
with the Hamiltonian. This is a consequence of v presence in (4).

Energy spectrum of electron in matter and magnetic field. To find the electron
energy spectrum pg in the matter and constant magnetic field, HU = po¥, we use the chiral
representation of the y-matrices and solve the equation
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where pg = pg + 2Gnsin? fyy. The solutions can be written in the form
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where € = £1 is the ”sign” of the energy.



It is significant to note an interesting feature of the electron energy spectrum in the mag-
netized matter following from (7). It is well known, that the energy spectrum of the electron
in the magnetic field is degenerated in respect of spin quantum number (each electron Landau
energy level in the magnetic field corresponds to both spin orientations). The presence of the
matter (of any non-vanishing density n # 0) removes the spin degeneracy. This phenomenon
can be attributed to the parity violation in weak interactions. But the infinite degeneracy of
the Landau levels associated with quantum number ps is still preserved.

Let us emphasize one important relation between pgy and Ty that immediately follows from
the spectrum (7):
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where TP is one of the eigenvalues of the spin operator 7°. Note that this formula can be also
obtained by using the concept of *-spin introduced in [14].
The electron wave functions. In the paper [8] it has been shown that the solution of

the equation (3) due to symmetries can be sought in the form
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where r and ¢ are polar coordinates. This form of solution also based on the fact that the
operator of the total angular momentum J, = L, + S, where L, = za¢, S, = 203, commutes
with the Hamiltonian. The solutions are the eigenvectors of the total momentum operator
J, with the corresponding eigenvalues [ — 5. After substitution of (9) into (3)-(4) we get the
following system for x;(r):
d [ eB -
—(p2 — Q@ =4 24 == = 10
(ps — Gn)xa <dr ot 7’> X2 + mx3 = PoX1, (10)
d [I-1 eB
el =5 11
(dr " 5 7’) X1+ (p3 + Gn)xz + mxa = poxe (11)
d l e()B ~
mx1 + p3xs + <d + -+ —7“> X4 = PoX3, (12)
ror 2
d -1 €0B ~
- — - = . 13
mxz ( i 5 7’> X3 — P3X4 = PoX4 (13)
Now we define the creation and annihilation operators
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and get the system (15) - (18) in the following form
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To get the eigenvalues pg = po — 2Gn sin? Oy of the Hamiltonian (3) we take into consideration
properties of operators RT and R™:
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where L. are the Laguerre functions [1].
The solution of system (15) - (18) (the eigenvector of the Hamiltonian (4)) can be written
in the form
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Now we can get the energy spectrum and of the eigenvalues of spin operator 70
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It is easy to see, that the spectrum (7) obtained above is in agreement with expressions (22) and
(23). From this energy spectrum, it is straightforward that the well-known energy spectrum
in magnetic field (the Landau levels) is modified by interaction of the electron with matter.
However the radius of the classical orbits corresponding to a certain level (22) doesn’t depend
on the matter density:
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Note that this result is a simple consequence of the fact that the orbital part of the wave
functions (21) is not altered by the matter potential. To conclude this section we would like
to note, that the effect of electron trapping on circular orbits in magnetized matter exists, and
this can be important for astrophysical applications.

To finalize the section we note the properties of creation and annihilation operators. The
functions F! = \/egBL) (%7“2) constitute a basis in the Hilbert space with scalar product
defined as
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So that, we get for each s and [
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Hence for operators (14) we obtain (R™)* = —R* and (R")* = —R~, where symbol * implies
Hermitian conjugation of operators.

Spin coefficients and full wave function. Using of Hamiltonian and spin operator
properties it is easy to obtain the spin coefficients C; after some easy steps (more details see in
[8]). Finally, we obtain the wave function:
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and L is a normalizing factor.

Equations (27)-(29) represent the exact solution of (3) with the Hamiltonian (4) that de-
scribes the electron moving in matter and magnetic field. Note that in the case n = 0, these
formulas are reduced to well-known solutions for the electron wave functions in a constant
homogenous magnetic field [1]. The limit B — 0 gives the result obtained in the paper [7].

Application. Let us consider the problem of an electron (or another charged particle)
motion in a rotating matter with magnetic field can be solved. This problem is of interest in
different astrophysical contexts.

If the angular velocity w is small compare to the magnetic field, we can calculate the spec-
trum using a standard perturbation theory with the small parameter % < 1. If, for example,
we choose for the matter density, angular velocity and magnetic field the values peculiar for a
rotating neutron star (n = 103sm ™3, w = 27 - 103571, B = 10'%Gs), then the parameter is
really small,
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Now we can take the spectrum and wave functions found above (i.e. without rotation) as the
lowest order of perturbation series and find the correction term.

We consider the particular case of constant magnetic field and rotating uniform matter so
that the electromagnetic field and effective matter potential are given by
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For this case we obtain the problem (3) with the Hamiltonian H = Hy+ Hy, where Hy describes
the electron in magnetic field and matter without rotation and is given by formula (4), and
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Using again the chiral representation of the y-matrixes we obtain approximately taking into
account that 4sin? @y ~ 1 in the polar coordinates
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So, we get for the first correction to the energy spectrum (7) of the electron
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where C; are the spin coefficients from eq. (28), (29). After calculations and simplifying we get
(we put ps = 0):
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This shift of levels in the energy spectrum depending on the energy quantum number N =
0,1, 2... leads to a corresponding shift in a frequency of synchrotron radiation of electron inside
of dense rotating matter, that can be registered. Calculation of the next perturbation terms
(higher order) is an interesting task that could reveal new effects. However, we pointed out that
the small parameter (30) is really very small.



Conclusion. In this paper we found a class of exact solutions of the modified Dirac equation
for the electron in matter and strong magnetic field by using of increasing and decreasing
operators. In paper [8] we generalize this approach to a definite class of Dirac Hamiltonians.
One can use obtained solutions in studies of complicated models of particle interactions in
different astrophysical environments, for example, in studies of gamma-rays production during
collapse or coalescence processes of neutron stars (the one predicted within the fireball models
of GRBs [18]), as well as during a neutron star being ”eaten up” by the black hole, or in
investigations of other processes in environments discussed in [13]. Consideration of electrically
millicharged neutrino in external fields performed in paper [19] provides another interesting
application of obtained results.
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