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Abstract

In this paper a model describing four-dimensional spinor electrodynamics localized on
a domain wall is discussed. It is shown that in the effective four-dimensional theory there
is a divergence in the amplitude and cross-section of the standard process of quantum
electrodynamics – light by light scattering, which contradicts the experimental data and
predictions of the Standard Model. This divergence is caused by the contributions of higher
fermion modes and can not be removed by means of the standard renormalization procedure.

In [1] an attempt was made to construct a model with infinite extra dimension, describing
spinor electrodynamics localized on a domain wall. It was found that due to the existence of
non-localized fermion modes the renormalized amplitude of the standard process of quantum
electrodynamics, – the light by light scattering, is divergent. This divergence can not be removed
by means of the standard renormalization procedure and it simply reflects the fact that in the
effective four-dimensional theory an infinite number of fermions with the same couplings to the
massless vector field contribute to the amplitude. In this short note we present the main results
of [1].

The five-dimensional action of the model presented in [1] has the following form:

S =

∫

[

iΨ̄1Γ
M (∂M − ieAM )Ψ1 − hΦΨ̄1Ψ1 + iΨ̄2Γ

M (∂M − ieAM )Ψ2 + hΦΨ̄2Ψ2− (1)

−M
(

Ψ̄1Ψ2 + Ψ̄2Ψ1

)

−
1

4
ξ2
(

Φ2
v − Φ2

)

FMNFMN

]

d4xdz,

where Ψ1 and Ψ2 are different five-dimensional fermion fields, h > 0, indices M,N = 0, .., 4,
Γµ = γµ, Γ4 = iγ5, FMN = ∂MAN − ∂NAM , the parameter ξ is chosen so that the dimension
of AM is [mass]. We also suppose that the background solution is such that AM ≡ 0, Φ(x, z) =
Φ0(z) represents the domain wall

Φ0 =
m√
λ

tanh

(

m√
2
z

)

, (2)

Φ → ±Φv at z → ±∞ and Φ2
v − Φ2 > 0. From the very beginning we also choose h√

λ
= 1√

2
(in

this case there is only one localized fermion mode, see [1]) and impose the gauge A4 ≡ 0.
First let us consider the vector field. The mechanism of localization of this field through

the overall coupling to the scalar field forming a domain wall is based on the ideas discussed
in [2, 3, 4]: an overall coupling of the gauge field to the scalar field to make the wave function
of the gauge field normalizable [2] and taking this scalar field to be the one which forms the
domain wall proper [4].

The equations of motion coming from the free part of the action of the gauge field (1) take
the form

−∂µFµν +A′′
ν −

√
2m tanh

(

m√
2
z

)

A′
ν = 0, ∂µA′

µ = 0. (3)
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It is easy to see that there exists the lowest massless mode

Aµ(x, z) = Caµ(x), (4)

where C is a constant, satisfying Maxwell’s equations

∂µfµν = 0. (5)

The effective action of the zero mode has the form

SA
eff = −

∫

ξ2m2C2

λ cosh2
(

m√
2
z
)dz

∫

1

4
fµνfµνd

4x. (6)

With the properly normalized wave function of this mode we get A0
µ(x, z) =

√
λ

2
3
4 ξ

√
m
aµ(x) and

SA
eff = −

∫

1

4
fµνfµνd

4x. (7)

Note that the constant wave function of the zero mode ensures the universality of charge, which
is important for constructing realistic models, see detailed discussion of this topic in [5].

All other modes of the vector field form the continuous spectrum, which starts at µ = m√
2
.

Thus, we get the lowest mode with the zero four-dimensional mass and the nonzero mass gap
between this mode and the continuous spectrum. But these (non-localized) modes will be
irrelevant for our analysis and we will drop them in the effective four-dimensional action.

The fermion sector of the model describes the generalization of the well-known Rubakov-
Shaposhnikov mechanism [6] resulting in a non-zero mass of a lowest localized fermion. To our
knowledge, for the first time this mechanism was proposed in [7]. Later it was discussed and
utilized in different models [8, 9, 10, 11]. Thus, the fermion part of the action (1) corresponds
to the model of [7], but in the absence of gravity, and coincides with the action of a simple
model discussed in the beginning of [10].

Let us consider the equations of motion coming from the fermion part of the action (ne-
glecting the vector field at the moment). They take the form

iγµ∂µΨ1 − γ5Ψ′
1 − hΦ0Ψ1 −MΨ2 = 0, (8)

iγµ∂µΨ2 − γ5Ψ′
2 + hΦ0Ψ2 −MΨ1 = 0, (9)

where ′ denotes ∂4. Let us take the following form of the solution to these equations:

Ψ1(x, z) = f(z)ψL(x), γ5ψL = ψL, (10)

Ψ2(x, z) = f(z)ψR(x), γ5ψR = −ψR. (11)

Substituting (10), (11) into (8), (9) we easily get:

Ψ1(x, z) = C1e
−h

R

z

0
Φ0(z′)dz′ψL(x), iγµ∂µψL −MψR = 0, (12)

Ψ2(x, z) = C1e
−h

R

z

0
Φ0(z′)dz′ψR(x), iγµ∂µψR −MψL = 0, (13)

where C1 is a normalization constant. The four-dimensional equations in (12) and (13) can be
combined into one equation by taking

ψL(x) + ψR(x) = ψ(x)

and we get the Dirac equation for a massive fermion

iγµ∂µψ −Mψ = 0. (14)
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The corresponding four-dimensional effective action for this mode can be easily obtained and
has the form

S = C2
1

∫

e−2h
R

z

0
Φ0(z′)dz′dz

∫

(

iψ̄γµ∂µψ −Mψ̄ψ
)

d4x. (15)

If C1 is chosen in a proper way, we get a canonically-normalized four-dimensional effective action
having the standard form

Seff =

∫

(

iψ̄γµ∂µψ −Mψ̄ψ
)

d4x. (16)

Thus, we get the localized mode, which describes a massive four-dimensional fermion.
Of course, there are other fermion modes in the model under consideration. For the case

h√
λ

= 1√
2

they also form the continuous spectrum, which starts at
√

m2

2 +M2. Contrary to

the Kaluza-Klein modes of the vector field, these modes will be important for our analysis.
We will not focus here on the technical aspects of the mode decomposition procedure and on
the derivation of the four-dimensional effective action, one can find detailed calculations in
[1]. We just present the part of the effective four-dimensional action of the model, describing
interactions of the massless vector field (the photon) with the lowest localized fermion and the
fermion modes from the continuous spectrum. It has the form

Seff =

∫

d4x

[

iψ̄γν (∂ν − ie4aν)ψ −Mψ̄ψ −
1

4
fρνfρν + (17)

+

∞
∫

q

m
2

2
+M2

dµ

2
∑

i=1

2
∑

j=1

(

iψ̄
(µ,j)
i γν (∂ν − ie4aν)ψ

(µ,j)
i − µψ̄

(µ,j)
i ψ

(µ,j)
i

)

]

where e4 =
√

λ

2
3
4 ξ

√
m
e, ψ = ψL +ψR and aν are the lowest modes of the fermion and vector boson

fields (these fields can be identified with the electron and the photon respectively). One can
see that each Kaluza-Klein level, except the lowest one, contains four four-dimensional fermions
with the equal masses µn and with the same coupling to the zero mode of the gauge field. This
degeneracy is of the same nature as the doubling in the UED models, see, for example, [12].

Now we are ready to consider the consequences of the model at hand. To simplify the
analysis, let us pass from the continuous spectra to discrete spectra replacing

∫

dµ →
∑

n

∆µ.

We can perform the calculation of particular processes in such a discretized theory and then
take the limit ∆µ → 0. For simplicity, we also introduce a cut-off scale M̃ such that M̃ is the
heaviest mode which can contribute to a process. Thus, we get

M̃
∫

q

m
2

2
+M2

dµ →
N+1
∑

n=1

∆µ, ∆µ =
M̃ −

√

m2

2 +M2

N
, (18)

µ → µn =

√

m2

2
+M2 + (n− 1)∆µ, (19)

√

∆µψ
(µn ,j)
i → ψ

n,j
i . (20)

The latter transformation is necessary to acquire the canonical normalization of four-dimensional
fields. The discretized action, following from (17), takes the form

Seff =

∫

d4x

[

iψ̄γν (∂ν − ie4aν)ψ −Mψ̄ψ −
1

4
fρνfρν + (21)

+

N+1
∑

n=1

2
∑

i=1

2
∑

j=1

(

iψ̄
n,j
i γν (∂ν − ie4aν)ψ

n,j
i − µnψ̄

n,j
i ψ

n,j
i

)

]

.
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We will be interested in γγ → γγ scattering, where γ stands for a photon. According
to action (21), the corresponding amplitude in the lowest order in the coupling constant is
schematically represented in Figure 1. We will consider the case when the energy of the initial

A =

aν

aν

aν

aν

00

0

0

+
∑

i=1,2

∑

j=1,2

∑

n6=0

aν

aν

aν

aν

n, i, jn, i, j

n, i, j

n, i, j

Figure 1: Schematic representation of the elastic γγ scattering amplitude. The number marking
the fermion line corresponds to the number of the massive fermion mode which is represented
by this line.

photon in the c.m. frame is much smaller than m√
2
, in this case the creation of massive vector

bosons is kinematically forbidden. For ω � µ0 = M , where ω is the energy of the photon in the
c.m. frame, the renormalized contribution of each mode to the amplitude in the leading order
in ω

µn

is given by (see [13])

An =
ω4

µ4
n

F (θ), (22)

where the function F (θ) depends on the scattering angle θ and the polarizations of the photons,
n = 0 corresponds to the zero localized mode with µ0 = M . The explicit form of F (θ) will be
irrelevant for our analysis, but it can be found, for example, in [13]. Thus, we get

A = A0 + 4
N+1
∑

n=1

An =

(

ω4

µ4
0

+ 4
N+1
∑

n=1

ω4

µ4
n

)

F (θ). (23)

It is easy to show that this amplitude diverges in the limit ∆µ→ 0. Indeed,

A =

(

ω4

µ4
0

+ 4
N+1
∑

n=1

ω4

µ4
n

)

F (θ) > 4
N+1
∑

n=1

ω4

µ4
N+1

F (θ) = 4(N + 1)
ω4

µ4
N+1

F (θ) = (24)

= 4
ω4

M̃4

(

1 +
M̃ − µ1

∆µ

)

F (θ) −→
∆µ→0

∞,

leading to an infinite cross-section, even with the finite cut-off scale M̃ . This infinity is not the
same as the infinities, which arise in QED and which can be removed by applying the standard
renormalization procedure, the same growth of the amplitude would appear if we begun to
add extra ”electrons” into the standard QED. Technically this happens because the coupling
constant of each fermion to the photon remains finite in the limit N → ∞. It is reasonable to
suppose that analogous pathologies can arise in other models with infinite extra dimensions,
where a gauge field is supposed to be localized on a brane, and one should take this effect into
account when considering brane world models with infinite extra dimensions.
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