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Abstract

Results of recent searches for new physics in CP violation in charm decays from the
BABAR experiment are presented. These results include a measurement of D0 - D0 mixing
and searches for CP violation in two-body D0 decays, a search for CP violation in the charm
decays D± → K0

S
K± and D±

s → K0
S
K±, K0

S
π±, and a search for direct CP violation in

the singly-Cabibbo suppressed D± → K+K−π± decays. These studies are based on the
final dataset collected by BABAR at the PEP-II B factory at SLAC in the period 1999-
2008. No evidence of CP violation is found in these charm decays. The measured mixing
parameter yCP = [0.72 ± 0.18(stat) ± 0.12(syst)]% excludes the no-mixing null hypothesis
with a significance of 3.3σ.

1 Introduction

The Cabibbo-Kobayashi-Maskawa (CKM) paradigm of CP violation (CPV ) in the Standard
Model (SM) has been tested by the BABAR and Belle experiments with high precision in many
overconstrained measurements. Nevertheless SM leaves many unanswered questions. CPV is
one of the three Sakharov necessary conditions to generate the asymmetry between matter-
antimatter (baryogenesis) observed in the Universe. The measured CKM weak phase is unable
to provide enough CPV to explain the observed baryon asymmetry. New CPV sources are
needed from New Physics (NP ) beyond the SM .

At the B-factories important areas of search for NP are processes which are expected at
low level in SM and which could be enhanced by NP . In these NP searches at low energies,
charm physics plays currently an important and increasing role. The BABAR, Belle and CDF
measurements of flavor mixing in the neutral D meson system [1] show evidence of D0 - D0

mixing at 1 % level. These results are in agreement with SM predictions [2, 3, 4] and sets
constraints on possible contributions from many NP models [5].

Recently the LHCb collaboration has reported a first evidence of CP violation in D0 decays
to K+K− and π+π− [6]. This evidence has been confirmed by the CDF Collaboration [7]. Given
the SM expectation that CPV in charm sector should be at the level of 10−3 (or lower) [2, 4],
this CPV evidence was rather unexpected at the present experimental sensitivity. Marginally
compatible with the SM expectations, this CPV may be a manifestation of NP or of significant
enhancements of penguin diagrams in charm decays [8, 9, 10, 11, 12].

In this talk I present recent BABAR measurements concerning mixing and CP violation in
charm sector. All new results presented here are preliminary.
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2 D0- D0 Mixing and CP Violation in Two-Body D0 decays

Mixing in charm sector is unique because it involves virtual down type quarks. It arises from
both short range and long range contributions. The short range contribution is expected to be
very small because of CKM and GIM suppressions. The dominant long range contribution is
non perturbative and hard to evaluate. This implies large theoretical uncertainties in the SM
calculations of the mixing parameters x and y [3, 13, 14]. SM expectations values for x and y
are ≤ 10−3 but higher values are predicted in some NP models [15, 16].

In a recent BABAR analysis [17] charm mixing and CP violation are measured using the
ratio of lifetimes obtained in the D0 decays to the two-body final states K∓π±, K−K+, and
π−π+. The analysis is based on an integrated luminosity of 468 fb−1 collected by the BABAR

detector [18]. Five different signal channels are considered [19]: three flavor tagged channels
D∗+ → D0π+

s with D0 → K+K−, D0 → π+π−, and D0 → K−π+,K+π− and two flavor
untagged channels D0 → K+K− and D0 → K−π+, K+π−, where π+

s is a slow pion track used
in the tagging algorithm.

The experimental observables yCP [20] , sensitive to mixing, and ∆Y , sensitive to CPV , are
measured. These observables are defined as:

yCP ≡
Γ+ + Γ̄+

Γ
− 1 and ∆Y ≡

Γ+ − Γ̄+

2Γ
, (1)

where Γ+ (Γ̄+) is the average width of the D0 (D0) when reconstructed in the CP -even eigen-
states (K+K−, π+π−). Γ is the average D0 width describing the decays to the CP-mixed final
states K∓π± [21].

Neglecting contribution of direct CP violation estimated at a level below our sensitivity [22]
and taking into account that the CP violating weak phase φ in SM to a good approximation
does not depend on the final states [23], the observables yCP and ∆Y in terms of the mixing
parameters x and y can be written as:

yCP = y cos φ +
AM

2
x sinφ

∆Y = −x sinφ +
AM

2
y cos φ , (2)

where AM = (|q/p|2 − |p/q|2)/(|q/p|2 + |p/q|2) measures the CP asimmetry in mixing. The
complex parameters p and q relate the mass eigenstates of neutral mesons , |D1,2 >, to the
flavor eigenstates, |D0 > and |D0 >, through the relation |D1,2 >= p|D0 > ±q|D0 >. With no
CP violation yCP = y and ∆Y = 0.

A simultaneous extended unbinned Maximum Likelihood (ML) fit to the two-dimensional
distribution of the proper time and proper time error in tagged and untagged modes is per-
formed: the average D0 lifetime τ is extracted from K∓π± final states and the effective lifetime
τ+ (τ̄+) is extracted from D0 (D0) decays to the final states K−K+ and π−π+. Main sources of
background are misreconstructed charm events and the combinatorial background candidates
consisting of random tracks. Using the reciprocals of the three measured lifetimes in Eq. 1 we
obtain:

yCP = (0.72 ± 0.18 ± 0.12)% and ∆Y = (0.09 ± 0.26 ± 0.09)% ,

where the first uncertainty is statistical and the second systematic. Projections of lifetime fit
are in Fig. 1.

These results exclude no-mixing hypothesis at 3.3σ significance and show no evidence of
CPV . The yCP value is consistent with the mixing parameter y measured in the decays D0 →
K0

S
h+h− (where h = K,π) [24] as expected in absence of CPV . This yCP measurement is

the most precise single measurement up to date. These results are in agreement with SM
predictions.
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Figure 1: Proper time fit projections with the fit results overlaid. The combinatorial back-
ground distribution (Comb) is stacked on the top of the misreconstructed-charm background
distribution (Charm). Under each plot are shown the normalized Poisson pulls; ”unt” refers to
the untagged dataset. The gray band is the PDG D0 lifetime ±σ[25].

3 CP Violation in D
± → K

0
S
K

± and D
±
s → K

0
S
K

±, K
0
S
π
±

The channels D± → K0
S
K± can proceed through Cabibbo-Favored (CF) and Doubly-Cabibbo-

Suppressed (DCS) transitions. The CF transition is largely dominating and the SM expectation
for direct CP is negligible. The channels D±

s → K0
S
K± ,K0

S
π± can proceed through two Singly-

Cabibbo-Suppressed (SCS) transitions, both of comparable amplitudes. The relative weak phase
between the two decay amplitudes can generate interference effects and induce direct CPV .

In these channels with a K0 (or K0) in the final state a time-integrated CPV of ≈ (±0.332±
0.006)% is induced by the K0K0 mixing [25]. The sign of this asymmetry is positive (neg-
ative) in presence in the final state of a K0 (K0). The exact value of this CPV asymmetry
contribution depends on the requirements on the reconstructed K 0

S
→ π+π− decays and the

decay kinematics [26].
Previous results of searches for direct CP violation in these decay modes by CLEO-c [27]

and Belle [28] Collaborations are all in agreement with SM expectations.
Direct CP asymmetry in these charm decay modes has been recently searched for by

BABAR [29] using a dataset of 469fb−1. The following direct CP -violating parameter ACP

is measured for each decay channel:

ACP =
Γ(D+

(s) → K0
S
(π+,K+)) − Γ(D−(s) → K0

S
(π+,K+))

Γ(D+
(s) → K0

S
(π+,K+)) + Γ(D+

(s) → K0
S
(π+,K+))

, (3)

where Γ is the partial width of the decay channel.
The measured CP asymmetry A an be written as A = ACP + AFB + Aε, where ACP is

the direct CP asymmetry contribution, AFB is a forward/backward asymmetry contribution
in cc̄ production from γ − Z0 interference and higher order QED processes, and Aε is the
asymmetry contribution induced by the detector in tracking, particle identification, and in
material interactions. AFB asymmetry is an odd function of the cosine of the polar angle of
the D±

(s) meson momentum in the e+e− center of mass (CM) system, cos θ∗D. ACP and AFB are
both measured while data have been corrected for Aε with a control sample. The data-driven
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method used to correct for Aε is described in Ref.[30].
A simultaneous binned ML fit to the D+

(s) and D−
(s) mass distributions is performed in

10 equally spaced bins of cos θ∗D with bin 0 at [-1.0, -0.8]. Since ACP is independent of the
kinematic variable cos θ∗D, the asymmetry A(+| cos θ∗D| ) measured in a positive cos θ∗D bin and
the asymmetry A(−| cos θ∗D| ) measured in its symmetric (negative) counterpart cos θ∗

D bin give
the same contribution to ACP . On the other hand since AFB is an odd function of cos θ∗D , the
contribution to AFB from symmetric cos θ∗D bins have the same magnitude and opposte sign.
So ACP and AFB as a function of cos θ∗D can be written in the form:

AFB(| cos∗ θD|) =
A(+| cos θ∗D|) −A(−| cos θ∗D|)

2

ACP (| cos∗ θD|) =
A(+| cos θ∗D|) + A(−| cos θ∗D|)

2
, (4)

The values of ACP and AFB asymmetries are shown in Fig. 2.

Figure 2: ACP (top) and AFB (bottom) asymmetries for D± → K0
S
K± (left), D±

s → K0
S
K±

(center), and D±
s → K0

S
π± (right) as a function of | cos∗ θD| in the data sample. The solid

line represents the central value of ACP and the gray region is the ±σ interval, both from a χ2

minimization assuming no dependence of ACP on | cos∗ θD|.

For each decay mode Table 1 shows the ACP value from the fit, the bias corrected ACP

value and in the last raw the ACP value after subtracting the expcted ACP contribution due to
K0-K0 mixing. These results are consistent with zero and with the SM predictions within 1 σ.

4 CP Violation in the Decays D± → K+K−π±

Searches for direct CP violation in the SCS decays D± → K+K−π± have been recently per-
formed by BABAR, using a dataset of 476fb−1 [31]. This sample contains enough 3-body SCS
decays to probe CP at the level of SM predictions. The decay D+ → K+K−π+ [19] is domi-
nated by quasi-two body decays with resonant intermediate states, giving possibility to study
direct CPV in a particular resonance or in different regions of the Dalitz plot (DP ). In previous
analyses of these 3-body decay modes performed by CLEO-c [32] and LHCb [33] Collaborations
no evidence for CPV has been found in agreement with SM prediction.
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Table 1: ACP measurements. Uncertainties, where reported, are statistical the first and sys-
tematic the second (BABAR Preliminary).

D
±
→ K

0
SK

±
D

±
s → K

0
SK

±
D

±
s → K

0
Sπ

±

ACP value from the fit (+0.16 ± 0.36)% (0.00 ± 0.23)% (+0.6 ± 2.0)%

Bias Corrections for:
Toy MC experiments +0.013% −0.01% −

PID selectors −0.05% −0.05% −0.05%
K

0
S−K

0
L interference +0.015% +0.014% −0.008%

ACP final value (+0.13 ± 0.36 ± 0.25)% (−0.05 ± 0.23 ± 0.24)% (+0.6 ± 2.0 ± 0.3)%

ACP contribution (−0.332 ± 0.006)% (−0.332 ± 0.006)% (+0.332 ± 0.006)%

from K
0
−K

0 mixing

ACP final value (charm only) (+0.46 ± 0.36 ± 0.25)% (+0.28 ± 0.23 ± 0.24)% (+0.3 ± 2.0 ± 0.3)%

Signal reconstruction efficiency is determined with a sample of Monte Carlo (MC) simulated
events from the distribution of reconstructed events as a function of the CM polar angle of the
D meson (cos θCM ) and of the m2(K−π+) vs m2(K+K−) DP . The ratio of efficiency-corrected

signal yields, R =
N

D+/ε
D+

N
D−/ε

D−
= 1.020 ± 0.006 is used to allow for asymmetries in the MC event

production due to physics or detector induced effects.
Time-integrated CP asymmetry (charge asymmetry) is defined in a given bin as:

A ≡
ND+/εD+ − ND−/εD−

ND+/εD+ + ND−/εD−

(5)

Selection efficiencies are corrected to account for differences between data and MC simu-
lated events in the reconstruction asymmetry of charged pion tracks and in the production
model of charm mesons. The charge asymmetry A contains contributions from both the for-
ward/backward asymmetry AFB and the direct CP asymmetry ACP . To remove the contribu-
tion AFB, the charge asymmetry is averaged over four symmetric bins in cos θCM . The averaged
values of ACP in the four bins are shown Fig. 3. The central value ACP = (0.35 ± 0.30 ± 0.15)
% is obtained with a χ2 minimization. The probability that the asymmetries are null in all the
four bins is 21%.

Figure 3: Charge asymmetry ACP as a function of | cos θCM | in data. The solid line represents
the central value of ACP and the dashed lines represent the ±σ interval, both determined from
a χ2 minimization assuming no dependence on | cos θCM |.

A model-independent technique to search for CP violation in DP is to compare CP asym-
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Table 2: Yields, efficiencies,, and CP asymmetry in four different regions of the DP. First
uncertainty in the CP asymmetry is statistical, the second is systematic (BABAR Preliminary).

metries in different regions of the DP . The results of ACP asymmetry measured in four regions
of DP are given in Table 2. Measured CP asymmetries are consistent with zero.

We also measure the normalized residuals ∆ of efficiency-corrected and background sub-
tracted DP for D+ and D− for equally populated bins. ∆ is defined as

∆ ≡
n(D+) − R n(D−)

√

σ2(D+) + R2σ2(D−)
, (6)

where n is the yield in a bin in the DP and σ its uncertainty.
∆ distribution is fitted to a Gaussian function. For 100 bins we obtain a Gaussian residual

mean of 0.08±0.15 and a width of 1.11±0.15. The probability that the two DP ’s are consistent
with no CP asymmetry is 72%.

Angular moments of the cosine of the helicity angle θH of the D decay products reflect the
spin and mass of intermediate resonant and non resonant states [34]. The helicity angle θH in
the decay D → (r → AB)C is defined as the angle between the momenta of B and parent D
in the AB rest frame. We can search for CP in the DP in a model-independent way by com-
paring the angular moments between D+ and D− [35]. Angular moments of order l are defined
as the efficiency-corrected and background-subtracted two-body invariant mass distributions
(m(K+K−), m(K−π+)) weighted by spherical harmonic moments w(l) = Y 0

l (cos θH). Weights
in two-body invariant mass intervals are defined as:

W
(l)
i ≡

(

∑

j w
(l)S
ij −

∑

k w
(l)B
ik

)

< εi >
, (7)

where i is bin index, and j, k event indices. S and B refer to signal and background, and < εi >
is the average efficiency in bin i.

Normalized moment residuals Xl for D+ and D− are calculated for l from 0 to 7:

Xl =

(

W
(l)
i (D+) − RW

(l)
i (D−)

)

√

σ
(l)2

1 (D+) + R2σ
(l)2

1 (D−)

(8)

The χ2 is calculated over all the mass bins in K+K− and K−π+ moments with

χ2 =
∑

i

∑

l1

∑

l2

X
(l1)
i ρ

(l1l2)
i X

(l2)
i , (9)

where ρ
(l1l2)
i is the correlation coefficient between X

(l1)
i and X

(l2)
i .

With a number of degrees of freedom NDF equal to 287 the χ2/NDF in the K+K− and
K−π+ moments is 1.10 and 1.09, consistent with no CPV at 11% and 13 %, respectively.

BABAR also searched for CPV in a model-dependent DP analysis of the D+ → K+K−π+

decay [19]. The DP amplitude A in the isobar model is written as a set of two-body intermediate
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Table 3: CPV parameters from the DP fit. First uncertainties are statistical, the second sys-
tematic (BABAR Preliminary).

states r : A =
∑

r Mre
iφrFr, where Mr and φr are real and Fr = Fr(m(K+K−),m(K−π+)) are

dynamical functions describing the intermediate states. In case of amplitudes with small con-
tributions the complex coefficient has been parameterized in a Cartesian form: xr = Mr cos φr

and yr = Mr sinφr. The K∗(892)0 has been chosen as the reference amplitude. Assuming no
CPV the relative fractions of resonances and a constant non resonant amplitude over the entire
DP contributing to the decay have been determined with an unbinned ML fit.

To allow for possible CPV in the decay, the resonances of the D+ (D−) decays contributing
with a fit fraction of at least 1% have been parameterized with different amplitudes and phases
in their decay amplitudes. A simultaneous fit to the D+ and D− samples have been performed,
parameterizing each resonance with four parameters, Mr, φr, rCP , and ∆φCP . The CPV

parameters are rCP = |Mr|2−|M̄r|2

|Mr|2+|M̄r|2
and ∆φCP = φr − φ̄r.

The Cartesian form of the CP violating parameters are ∆xr and ∆yr with xr(D
±) = xr ±

∆xr/2 and yr(D
±) = yr ± ∆yr/2. Fit results are shown in Table 3.

All CPV parameters from DP fit are consistent with zero and with SM expectations.

5 Conclusions

I have presented recent improved BABAR measurement of mixing and a search of CP violation in
two-body D0 decays, a search for direct CP violation in D± → K0

S
K± and D±

s → K0
S
K±, K0

S
π±,

and searches for CP violation in the decays D± → K+K−π± both using model-independent
and model-dependent analysis techniques. All results in these analyses are well described within
the SM and no effect related to NP has been found. The measured mixing parameter yCP =
[0.72 ± 0.18(stat) ± 0.12(syst)]% excludes the no-mixing null hypothesis with a significance of
3.3σ.
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