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Abstract

The model of a domain wall (”thick brane”) in noncompact five-dimensional space-
time is considered with geometries of AdS type generated by self-interacting scalar matter
composed of two fields in the presence of gravity. The mixing of scalar and gravitational
degrees of freedom leads to nonperturbative corrections to the spectrum in the scalar sector.
The possibility of localization of scalar modes on such ”thick branes” is investigated.

1 Introduction

The models of the BSM physics based on the hypothesis that our universe is a four-dimensional
space-time hypersurface (3-brane) embedded in a fundamental multi-dimensional space are
quite popular, see, for example, [1] and references therein. The influence of gravity is especially
interesting, which plays an important role in a (de) localization of matter fields on the brane [2]
- [8], [9]. As regarding to gravity the question arises under what circumstances the localization
of spin-zero matter fields on a brane is still possible when the minimal interaction with gravity
is present? This work is partially devoted to answer this question.

In our talk we consider a model of the domain wall formation with finite thickness (”thick”
branes) and gravity in five-dimensional noncompact space-time [11]. The formation of ”thick”
brane with the localization of light particles on it was obtained earlier in [10] with the help of two
self-interacting scalar fields, when their vacuum configurations have nontrivial topology. The
limit of turned off gravity happens to be smooth for background fields however the spectrum of
the scalar fluctuations is changed by nonperturbative corrections due to mixing of the scalar and
gravitational degrees of freedom. As it was previously shown [9], the existence of the centrifugal
potential leads to absence of localized Goldstone mode related to spontaneous breaking of the
translational symmetry. The question of phenomenological importance that arises is what
influence this mixing has on the mass of the light scalar produced by fluctuations of the second
scalar field which can be identified with Higgs-like boson observed at LHC.

2 Formulation of the model

Consider the five-dimensional space with a pseudo Riemann metric,

XA = (xµ, z), xµ = (x0, x1, x2, x3), ηAB = diag(+,−,−,−,−) (1)
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It is assumed that the size of extra dimension z is large or infinite.
Let’s supply this space with gravity providing it with a pseudo Riemann metric tensor gAB ,

which is reduced to ηAB in flat space and for the rectangular coordinate system. We define
the dynamics of two scalar fields Φ(X) and H(X) with a minimal interaction to gravity by the
following action functional,

S[g,Φ,H] =

∫
d5X

√
|g|L(g,Φ,H), L = −

1

2
M3

∗R+
1

2
(∂AΦ∂AΦ + ∂AH∂

AH) − V (Φ,H), (2)

where R stands for a scalar curvature, |g| is the determinant of the metric tensor, and M∗

denotes a five-dimensional gravitational Planck scale.
The equations of motion are

RAB −
1

2
gABR =

1

M3
∗

TAB , D2Φ = −
∂V

∂Φ
, D2H = −

∂V

∂H
, (3)

where D2 is a covariant D’Alambertian, and the energy-momentum tensor reads,

TAB = ∂AΦ∂BΦ + ∂AH∂BH − gAB

(
1

2
∂CΦ∂CΦ + ∂CH∂

CH − V (Φ,H)

)
. (4)

In order to build a thick 3+1-dimensional brane we study such classical vacuum configurations
which do not violate spontaneously 4-dimensional Poincare invariance. It’s convenient to present
a metric in the conformally flat form, gAB = A2 (z) ηAB.

For this metric the equations of motion read,
(
A′

A2

)′

= −
Φ′2 +H ′2

3M3
∗A

, −2A5V (Φ,H) = 3M 3
∗

(
A2A′′ + 2A(A′)2

)
, (5)

(
A3Φ′

)′
= A5∂V

∂Φ
,
(
A3H ′

)′
= A5 ∂V

∂H
. (6)

One can prove [11], that only three of these equations are independent. In the limit of zero
gravity the equations on classical backgrounds smoothly reproduce the corresponding equations
in the model without gravity.

3 Fluctuations around the background metric

The action (2) is invariant under diffeomorphisms. Infinitesimal diffeomorphisms correspond to
the Lie derivative along an arbitrary vector field ζ̃A(X), defining the coordinate transformation
X → X̃ = X + ζ̃(X).

Let us introduce the fluctuations of the metric hAB(X) and of the scalar fields φ(X), h(X)
around the background solutions, of the equations of motion,

gAB(X) = A2(z)(ηAB + hAB(X)); Φ(X) = Φ(z) + φ(X),H(X) = H(z) + h(X) (7)

Since 4D Poincare symmetry is not broken, we define the corresponding 4D part of the metric
metric fluctuations as hµν and introduce the notation for gravivectors h5µ ≡ vµ and graviscalars
h55 ≡ S. Lets rescale the vector fluctuations ζ̃µ = A2ζµ and the scalar ones ζ̃5 = Aζ5.

Now we expand the action to quadratic order in fluctuations. The full action after this
procedure is a sum,

L(2) = Lh + Lφ + LS + LV , (8)

where

√
|g|Lh ≡ −

1

2
M3

∗A
3
{
−

1

4
hαβ,νh

αβ,ν −
1

2
hαβ

,β h,α +
1

2
hαν

,α h
β
ν,β +

1

4
h,αh

,α

+
1

4
h′µνh

′µν −
1

4
h′2
}
, (9)
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√
|g|Lφ,χ ≡

1

2
A3(φ,µφ

,µ − φ′2 + χ,µχ
,µ − (χ′)2) −

1

2
A5
(∂2V

∂Φ2
φ2 + 2

∂2V

∂Φ∂H
φχ+

∂2V

∂H2
χ2
)

+
1

2
A3h′(Φ′φ+H ′χ), (10)

√
|g|LS ≡

1

4

(
−A5V S2 + S

(
M3

∗A
3
(
hµν

,µν − h,µ
,µ

)
+M3

∗

(
A3
)′
h′

+2
(
A3(Φ′φ+H ′χ)

)′
− 4A3(Φ′φ′ +H ′χ′)

))
, (11)

√
|g|LV ≡ −

1

8
M3

∗A
3vµνv

µν +
1

2
vµ
[
−M3

∗A
3
(
h,ν

µν − h,µ

)′

+2A3(Φ′φ,µ +H ′χ,µ) +M3
∗

(
A3
)′
S,µ

]
, (12)

where vµν = vµ,ν − vν,µ, h = hµνη
µν .

4 Separation of equations for physical degrees of freedom

To determine a physical sector we separate different spin components of the five-dimensional
gravitational field. It can be accomplished by description of ten components of 4-dim metric in
terms of the traceless-transverse tensor, vector and scalar components and expansions of vector
fields vµ into the transverse and longitudinal parts, [5, 12],

hµν = bµν + Fµ,ν + Fν,µ +E,µν + ηµνψ, vµ = v⊥µ + ∂µη, (13)

where bµν , Fµ and v⊥µ obey the relation b,µµν = b = 0 = F ,µ
µ = v,µ

µ . The gravitational fields bµν

are gauge invariant and thereby describe graviton fields in the 4-dim space.
The decomposition (13) entails a partial separation of degrees of freedom in the lagrangian

quadratic in fluctuations,

√
|g|L(2) =

1

8
M3

∗A
3
{
bµν,σb

µν,σ − (b′)µν(b′)µν − fµνf
µν
}

+
3

4
M3

∗A
3
{
−ψ,µψ

,µ + ψ,µS
,µ + 2(ψ′)2 + 4

A′

A
ψ′S

}

+
1

2
A3
{
φ,µφ

,µ − (φ′)2 + χ,µχ
,µ − (χ′)2 − A2

(∂2V

∂Φ2
φ2 + 2

∂2V

∂Φ∂H
φχ+

∂2V

∂H2
χ2
)

−
1

2
A2V (Φ,H)S2 + 4ψ′(Φ′φ+H ′χ) + S

(
−Φ′φ′ −H ′χ′ +A2

(∂V
∂Φ

φ+
∂V

∂H
χ
))}

+
3

4
M3

∗A
3 �(E′ − 2η)

(A′

A
S + ψ′ +

2

3M3
∗

(Φ′φ+H ′χ)
)
, (14)

where fµ ≡ F ′
µ − v⊥µ , fµν ≡ fµ,ν − fν,µ .

Obviously, in the quadratic approximation graviton, gravivector and graviscalar are de-
coupled from each other. It is convenient to perform the further analysis in gauge invariant
variables. Let us perform the following rotation in (φ, χ) sector:

φ = φ̌ cos θ + χ̌ sin θ, χ = −φ̌ sin θ + χ̌ cos θ

cos θ =
Φ′

R
, sin θ =

H ′

R
, R2 = (Φ′)2 + (H ′)2 (15)

While χ̌ is gauge invariant φ̌ is not. We can exclude redundant gauge invariance introducing
three gauge invariant variables:

ψ̌ = ψ −
2A′

AR
φ̌, Š = S +

2

R
φ̌′ −

2A

R2

(
R

A

)′

φ̌, η̌ = E′ − 2η −
2

R
φ̌. (16)
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Accordingly the scalar part of the lagrangian quadratic in fluctuations takes the form:

√
|g|L(2),scal =

3

4
M3

∗A
3
{
−ψ̌,µψ̌

,µ + ψ̌,µŠ
,µ + 2(ψ̌′)2 + 4

A′

A
ψ̌′Š

}
+

1

2
A3
{
χ̌,µχ̌

,µ − (χ̌′)2 −

−
[
(θ′)2 +

A2

R2

(∂2V

∂Φ2
(H ′)2 − 2

∂2V

∂Φ∂H
Φ′H ′ +

∂2V

∂H2
(Φ′)2

)]
χ̌2
}

+A3Rθ′Šχ̌−

−
1

4
A5V (Φ,H)Š2 +

3

4
M3

∗A
3 �η̌

(A′

A
Š + ψ̌′

))
. (17)

where θ′ = (arctan H′

Φ′ )
′ = (H ′′Φ′ − Φ′′H ′)/R2

From the last line it follows that the scalar field η̌ is a gauge invariant Lagrange multiplier
and generates a gauge invariant constraint,

A′

A
Š + ψ̌′ = 0. (18)

Thus after taking this constraint into account only two independent scalar fields remain. To nor-
malize kinetic terms the fields should be redefined χ̂ = A3/2χ̌, ψ̂ = Ωψ̌, where Ω = A5/2R/2A′.

√
|g|L(2),scal =

1

2

{
∂µψ̂∂

µψ̂ − (∂zψ̂)2 −
Ω′′

Ω
ψ̂2

}
− 2θ′χ̂

(
∂z −

Ω′

Ω

)
ψ̂

+
1

2

{
∂µχ̂∂

µχ̂− (∂zχ̂)2 −
(A3/2)′′

A3/2
−

(
(θ′)2 +

A2

R2

(
H ′

−Φ′

)†

∂2V

(
H ′

−Φ′

))
χ̂2

}
(19)

To simplify analytical calculations let us represent the quadratic action for scalar fields in
the gaussian normal coordinates xµ, y,

ds2 = A2 (z)
(
dxµdx

µ − dz2
)

= exp (−2ρ (y)) dxµdx
µ − dy2. (20)

Below the prime denotes differentiation with respect to y. To simplify the form of the action
let us introduce R̃ = exp(ρ)R and in addition redefine the fields in order to normalize kinetic
term, ψ̂ = exp(−ρ/2)ψ̃,χ̂ = exp(−ρ/2)χ̃.

S(2),scal =

∫
d4xdy

[
1

2
∂µψ̃∂

µψ̃ +
1

2
∂µχ̃∂

µχ̃− 2 exp(−2ρ)θ′χ̃

(
∂y + ρ′ +

ρ′′

ρ′
−

R̃′

R̃

)
ψ̃− (21)

−
1

2
exp(−2ρ)ψ̃

{(
−∂y +

ρ′′

ρ′
−

R̃′

R̃

)(
∂y +

ρ′′

ρ′
−

R̃′

R̃

)
+ 2ρ′∂y + 3(ρ′)2 + 3ρ′′ − 4ρ′

R̃′

R̃

}
ψ̃ −

−
1

2
exp(−2ρ)χ̃

{
−∂2

y + (θ′)2 +
1

R̃2

(
H̃ ′

−Φ̃′

)†

∂2V

(
H̃ ′

−Φ̃′

)
+ 2ρ′∂y + 3(ρ′)2 − ρ′′

}
χ̃

]
.

where the second variation of the field potential reads,

∂2V =

(
−2M2 + 6Φ̃2 + 2H̃2 4Φ̃H̃

4Φ̃H̃ −2∆H + 2Φ̃2 + 6H̃2

)
. (22)

Let’s perform the mass spectrum expansion,

ψ̃(X) = exp(ρ)
∑

m

Ψ(m)(x)ψm(y), χ̃(X) = exp(ρ)
∑

m

Ψ(m)(x)χm(y),

∂µ∂
µΨ(m) = −m2Ψ(m), (23)
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where the factor exp(ρ) is introduced to eliminate first derivatives in the equations. We obtain
the following equations,

(
−∂y +

ρ′′

ρ′
−

R̃′

R̃
+ 2ρ′

)(
∂y +

ρ′′

ρ′
−

R̃′

R̃
+ 2ρ′

)
ψm −

−2θ′

(
∂y −

ρ′′

ρ′
+

R̃′

R̃
− 2ρ′ +

θ′′

θ′

)
χm = exp(2ρ)m2ψm, (24)

(
−∂2

y + (θ′)2 +
1

R̃2

(
H̃ ′

−Φ̃′

)†

∂2V

(
H̃ ′

−Φ̃′

)
+ 4(ρ′)2 − 2ρ′′

)
χm +

+2θ′

(
∂y +

ρ′′

ρ′
−

R̃′

R̃
+ 2ρ′

)
ψm = exp(2ρ)m2χm. (25)

These equations can be treated as equations on a zero-mode considering the mass term as part
of a potential. Mass term contribution is essentially negative for all m2 > 0. Then as the
exponent ρ(y) is positive and growing at very large y it becomes evident that this term in the
potential makes it unbounded below. Thus any eigenfunction of the spectral problem (25) is
at best a resonance state though it could be quasilocalized in a finite volume around a local
minimum of the potential. In [10] the probability for quantum tunneling of quasilocalized light
resonances with masses m�M was estimated as ∼ exp{− 3

κ ln 2M
m } which for phenomenologi-

cally acceptable values of κ ∼ 10−15 and M/m & 30 means an enormous suppression. Moreover
in the perturbation theory the decay does not occur as the turning point to an unbounded po-
tential energy is situated at y ∼ 1/κ. Therefore one can calculate the localization of resonances
following the perturbation schemes.

In the limit κ −→ 0 we obtain,

(
−∂y +

ρ′′1
ρ′1

−
R̃′

R̃

)(
∂y +

ρ′′1
ρ′1

−
R̃′

R̃

)
ψm − 2θ′

(
∂y −

ρ′′1
ρ′1

+
R̃′

R̃
+
θ′′

θ′

)
χm = m2ψm, (26)

(
−∂2

y + (θ′)2 +
1

R̃2

(
H̃ ′

−Φ̃′

)†

∂2V

(
H̃ ′

−Φ̃′

))
χm + 2θ′

(
∂y +

ρ′′1
ρ′1

−
R̃′

R̃

)
ψm = m2χm (27)

where ρ1 is first order of κ.
While equation on χ mostly reproduces the same equation in the model without gravity the

equation on ψ changed dramatically due to the mixing of scalar and gravitational degrees of
freedom. Note that for smooth symmetric backgrounds in the ρ′ ∼ const·y. This generally leads
to the centrifugal potential ∼ 2/y2 in the equation on ψ and absence of a branon zero-mode [9].

5 Model with quartic potential

Now let’s study the formation of a brane in the theory with a minimal stable potential admitting
kink solutions. It possesses a quartic scalar self-interaction and wrong-sign mass terms for both
scalar fields. This potential is designed with Uτ (1)-symmetry of dim-4 vertices but with different
quadratic couplings. The conveniently normalized effective action has the form,

Seff (Φ̃, g) =
1

2
M3

∗

∫
d5X

√
|g|
{
−R+ 2λ+

3κ

M2

(
∂AΦ̃∂AΦ̃ + ∂AH̃∂

AH̃

+ 2M2Φ̃2 + 2∆HH̃
2 − (Φ̃2 + H̃2)2 − Ṽ0

)}
, (28)
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where the normalization of the kinetic term of scalar fields is chosen in order to simplify the Eqs.
of motion (see below)1. For relating it to the weak gravity limit we guess that κ ∼ M 3/M3

∗ is
a small parameter, which characterizes the interaction of gravity and matter fields. Let us take
M2 > ∆H then the true minima are achieved at Φ̃min = ±M, H̃min = 0 and a constant shift
of the potential energy must be set V0 = M4 in order to determine properly the cosmological
constant λ.

Now we change the coordinate frame to the warped metric in gaussian normal coordinates,
this choice happens to be more tractable for analytic calculations than the conformal one used
for (6),

Φ̃′′ = −2M2Φ̃ + 4ρ′Φ̃′ + 2Φ̃(Φ̃2 + H̃2), (29)

H̃ ′′ = −2∆HH̃ + 4ρ′H̃ ′ + 2H̃(Φ̃2 + H̃2), (30)

ρ′′ =
κ

M2
(Φ̃′2 + H̃ ′2), (31)

λ = −6ρ′2 +
3κ

2M2

{
(Φ̃)′2 + (H̃ ′)2 + 2M2Φ̃2 + 2∆HH̃

2 − (Φ̃2 + H̃2)2 −M4
}
. (32)

The above equations contain terms which have different orders in small parameter κ, and
accordingly they can be solved by perturbation theory assuming that,

|ρ′(y)|

M
= O(κ) =

|ρ′′(y)|

M2
.

Then in the leading order in κ the equations for the fields Φ̃ (y) , H̃ (y) do not contain the metric
factor, and the metric is completely governed by matter order by order in κ.

Depending on the relation between quadratic couplings M 2 and ∆H there are the two types
of z-inhomogeneous solutions of the equations (32) which have the form of a two-component
kink [11]. For gravity switched off the first one holds for ∆H ≤M2/2,

Φ̃ → Φ0 = ±M tanh (My) +O (κ) , H̃(y) = 0, (33)

and therefore the conformal factor to the leading order in κ reads,

ρ1 (y) =
2κ

3

{
ln cosh (My) +

1

4
tanh2(My)

}
+O

(
κ2
)
, (34)

Using perturbation theory in κ one can obtain next order correction to the background
solution

Φ = Φ̃(y) = M tanhβMy

(
1 − κ

2

9 cosh2 βMy

)
+ O(κ2); β = 1 −

2

3
κ (35)

The second phase arises only when M 2/2 ≤ ∆H ≤M2, i.e. 2∆H = M2 + µ2, µ2 < M2,

Φ0(y) = ±M tanh (βMy) , H0(y) = ±
µ

cosh (βMy)
, β =

√
1 −

µ2

M2
, (36)

wherefrom one can find the conformal factor to the leading order in κ in the following form,

ρ1 (y) =
κ

3

{(
3 − β2

)
ln cosh (βMy) +

1

2
β2 tanh2(βMy)

}
+O

(
κ2
)
, (37)

1It could be inherited from the low-energy effective action of composite scalar fields induced by the one-loop
dynamics of five-dimensional pre-fermions [10].
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To study this phase one can use perturbation theory both in κ and µ
M ,

H̃(τ) = M
∞∑

n,m=0

κn
( µ
M

)2m+1
Hn,m(τ); Φ̃(τ) = M

∞∑

n,m=0

κn
( µ
M

)2m
Φn,m(τ); ,

ρ(τ) = κ

∞∑

n,m=0

κn
( µ
M

)2m
ρn+1,m(τ); ∆H =

1

2
M2

∞∑

n=0

κn∆n
H,c +

1

2
µ2, (38)

We present here first corrections,

H1,0 =
2

27 cosh τ

(
CH

1,0 − 2 log cosh τ + 3 tanh2 τ
)
, ∆1

H,c = −
44

27
(39)

6 Spectrum of the light scalar fluctuations in the model with

quartic interaction

When H(y) = 0 the two scalar sectors decouple because θ = 0. The equation on ψ,

(
−∂y +

ρ′′

ρ′
−

Φ′′

Φ′
+ 2ρ′

)(
∂y +

ρ′′

ρ′
−

Φ′′

Φ′
+ 2ρ′

)
ψ = exp(2ρ)m2ψ, (40)

can have zero mass solution in the form,

ψ0 =
Φ′

ρ′
e−2ρ =

1

cosh2My

3

3 tanhMy − tanh3My
+O(κ) (41)

However this solution happens to be singular. It is caused by existence of the centrifugal
barrier in the vicinity of the brane ∼ 2/y2 [9]. This differ dramatically from the model without
gravity [11] where the massless particle in this channel (branon) corresponds to Goldstone
mode related to spontaneous breaking of the translational symmetry. This happens because
the corresponding brane fluctuation represents, in fact, a gauge transformation and does not
appear in the invariant part of the spectrum. One could say that in the presence of gravity
induced by a brane the latter becomes more rigid as only massive fluctuations are possible
around it. Of course, the gauge transformation considered leaves invariant only the quadratic
action and thereby a track of Goldstone mode may have influence on higher order vertices of
interaction between gravity and scalar fields.

There can also be localized states with masses of order M . However they happen to be
unstable resonances as it will be evident from the spectral problem formulated in gaussian
normal coordinates.

The equation on χ takes the form,

[
−∂2

τ +
1

β2M2
e−2ρ

(
−2∆H + 2Φ2

)
+ 4(ρ′)2 − 2ρ′′

]
χm =

m2

M2β2
e2ρχm, (42)

where the variable τ = βMy is employed and the derivative is defined against it. The limit of
turned off gravity is smooth and the differential operator on the left-hand side of (42) can be
factorized, [M2 − 2∆H

M2
+ (−∂τ + tanh τ)(∂τ + tanh τ)

]
χm,0 =

(m2)0
M2

χm,0, (43)

which corresponds to ∆H = ∆H,c = M2/2 for zero scalar mass (phase transition point). It can
be shown that it remain massless in the next order of κ. In general, for M 2 − 2∆H > 0 one
finds one localized state with positive m2,

χ =
1

cosh τ
+O(κ), m2 = M2 − 2∆H +O(κ), (44)
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When ∆H > ∆H,c the squared mass becomes negative signalling the instability of the phase
with zero H. In the phase with nonzero H mixing terms are nonzero and one has to study
spectrum by perturbation theory near critical point. The calculations not presented because of
their high complexity show that the leading order of mass for light scalar state is the same as
in the model [11] without gravity, namely, m2 = 2µ2 +O(µ4/M2).

7 Conclusions

In this work we have considered a model of domain wall (”thick brane”) in the noncompact
five-dimensional space-time generated by self-interacting fermions in the presence of gravity. In
the model with quartic potential there are two classes of background solutions corresponding
to two phases. The phase of phenomenological interest is the phase with nonzero H which can
be used for generation of fermion masses [11]. While the massless Goldstone is not present in
the physical sector the light scalar particle in this phase which can be associated with observed
Higgs-like boson has the same leading order of mass as in the model without gravity.
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