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Abstract

According to the holographic models of Yang-Mills theories properties of the liquid living
on the stretched horizon are directly related to the properties of the gluon plasma. There are
important reservations to this statement, however. In particular, the duality applies only
to the non-perturbative component of the plasma, and this notion is not absolutely well
defined. Also, the duality assumes measurements on the plasma made with poor resolution,
which is, again, a somewhat ambiguous notion. Nevertheless, it is amusing that the duality
does explain some results of the lattice simulations which look very exotic otherwise.

1 Introduction

Soon after the beginning of the era of the holographic models (for review and references see,
e.g., [1]) a model was found [2, 3] which belongs in the infrared to the same universality class
as the large-Nc Yang-Mills theories. The geometry of the model at temperature T = 0 is fixed
as:

ds2 =
( u

R

)3/2
(
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where f(u) = 1 −
(uΛ

u

)3
, x4 ∼ x4 + β4 , β4 =

4π

3

(R3

uΛ

)

.

Here u is an extra coordinate, common to all the holographic models. It is conjugate to the
momentum transfer, or resolution of measurements in the standard 4d space. The 4d unit
sphere, dΩ4, is holographically related to the physics of baryons and will not concern us here.
The limit u → ∞ corresponds to the physics in the ultraviolet, or measurements with perfect
resolution. Commonly, we would expect to find the standard 4d space on this boundary, u = ∞.
This is not true, however, in the case considered. Namely, we have instead a 5d space, with
an extra compact coordinate, x4, with periodicity, denoted β4, of order of the hadronic scale,
β4 ∼ Λ−1

QCD. The presence of this, so to say, “not-needed” coordinate pushes the limits of the
applicability of the model to large distances, rhydro,

rhydro � Λ−1

QCD . (2)

In other words, only the pion physics can be consistently considered at small temperatures [3].
Another application of the model (1) is the theory of vacuum defects, or condensates, for review
see [6, 7]. In the both cases (of the pion physics and of the vacuum condensates) the model
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turns to be a success. Also, due to the presence of the horizon at u = uΛ the model incorporates
the confinement.

There is one more crucial ingredient in the construction discussed. Namely, the compact
x4-direction is related to the topological charge of the Yang-Mills fields in the Euclidean space:

Qtop =
g2

16π2

∫

d4x(Ga
µνG̃a

µν) , (3)

where Ga
µν is the field-strength tensor of the gluon field. Wrapping nx4

times around the x4-circle
implies a non-trivial topological charge associated with the defect,

Qtop = ± nx4
,

where the sign depends on the direction of the wrapping.
At the temperatures above the deconfinement phase transition, T > Tc, going to the limit

(2) becomes the hydrodynamic limit. This is the main focus of the present notes. Note that
the geometry (1) is to be modifies at high temperatures. First, usually one is considering the
Euclidean version of the model, with the compact time direction τ :

τ ∼ τ +
1

T
. (4)

Moreover–and this point turns to be crucial–the position of the horizon is no longer fixed
at uh = uΛ but is rather related to the inverse temperature, uh ∼ 1/T . In the geometric
language, the deconfinement phase transition happens at the point β4 = 1/T [4] and is in fact
the Hawking-Page transition [5] of general relativity.

After these preliminary remarks we are in position to specify the problems considered in the
present notes. The limitation (2) implies that we are to consider rather the infrared physics of
large distances. Moreover we have to impose the condition of poor resolution as well. These two
requirements are not necessarily the same. For example, to evaluate, say, viscosity in holographic
models one studies graviton exchange, through the extra dimensions, between two points, (x, y)
on the boundary u = ∞. Then the condition (2) can be readily satisfied. However, to apply the
model (1) one should ensure also poor resolution of the points (x, y), i.e., ∆x,∆y ∼ Λ−1

QCD.
On the dual side, poor resolution implies going closer to the horizon, u ∼ uh. In the language
of the black-hole physics this means going to the stretched horizon, for review and references
see [12, 8]. Moreover, the properties of the liquid living on the stretched horizon can be found
in all the generality, for the large black holes working with the Rindler space [9]. Thus, we will
try to compare the properties of the liquid living on the stretched horizon with the results of
the lattice simulations of the gluon plasma in the far infrared.

2 Exotic liquid living on the stretched horizon

It is known since long, see, e.g., [10, 11, 12], that the results of experimentation with black holes
can be described by a distant observer in terms of a fictitious liquid living on the stretched
horizon, that is a surface positioned at a certain (small) distance from the actual black-hole
horizon. Formally, the stretched horizon is defined through the boundary condition that the
general-relativity equations hold in the bulk, outside the horizon [11] The boundary action
Sboundary is fixed by this condition. Moreover, one can show that this action corresponds to
a liquid described by the non-relativistic Navier-Stokes equations, for a recent derivation and
further references see [9].

In Ref. [9] a similar program was realized in the simpler case of the Rindler space. Note that
the near-the-horizon region of a large black holes can be approximated by the Rindler space (see,
e.g., [12]) and therefore the results apply in case of the stretched horizon as well. A remarkable
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observation made in Ref. [9] is that the non-relativistic series relevant to the Navier-Stokes
equation and its generalizations in the dissipation-less approximation can be summed up to a
relativistically invariant action. This helps us to compare the results with the brane picture of
the holographic models.

The action associated with a d-dimensional hypersurface in the (d+1) dimensional Rindler
space takes the form [9]:

Sliquid = T

∫

ddx
√
−γ , (5)

where T is a constant ((generalized tension) and action refers to the following metric tensor
γab (a, b = 0, 1, .., (d − 1))

γabdxadxb ≡ − rcdτ2 + dxidxi , (6)

where rc is a constant. The relation to the liquid is provided by the identification of the
normalized gradient of the scalar field ϕ with the four-velocity of an ideal liquid ua:

ua ≡ ∂aϕ/
√

X , X ≡ − (∂ϕ)2 ≡ (∂0ϕ)2 − (∂iϕ)2 . (7)

Finally, the equilibrium solution is given by:

ϕequilibrium = t . (8)

Hydrodynamics of the ideal liquid arises as an expansion in derivatives from the field ϕ around
the equilibrium.

Note that by tending rc → 0 we get the space reduced from (d + 1) to d dimensions, as it
should be at the actual horizon of a black hole. A small rc correspond to a stretched horizon.
In the Rindler case the analytic form (5) can be found at any rc. The results approximate the
black hole physics only for a small ratio rc/rg where rg is the Schwarzschild radius of the black
hole.

In the limit rc → 0 some quantities become singular, as it should be at the horizon. In
particular, for the equilibrium energy-momentum tensor one readily finds:

(

Tab

)

equilibrium
−

(

0, p.., p)
)

, p = 1/
√

rc , (9)

and the pressure p is singular in the limit rc → 0 while the energy density ε is vanishing, ε = 0.
Note that such a behaviour of the equilibrium energy-momentum tensor for the liquid on the
horizon is well known in the membrane paradigm [10].

We will come back to discuss further properties of the exotic liquid (5) later, while proceeding
now to compare the action (5) with the holographic model (1).

3 On the sign of the brane action in holography

Although the energy-momentum tensor (9) looks exotic and it is indeed exotic from the point of
view of the (d+1)-dimensional theory, its interpretation within the reduced, d-dimensional the-
ory is very straightforward. Indeed, the d-dimensional space incorporated spatial, or Euclidean
coordinates alone. Then, if there exists a d-dimensional uniform brane, the energy-momentum
tensor is proportional to:

< Tab >d−brane = (const)δab , a, b = 1, 2, .., d < (10)

where we use only the symmetry considerations. Thus, the Eq. (9) corresponds to a d-
dimensional brane living in (d + 1) dimensional space.
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What is unusual, however, is the sign of the action(5). To make the point obvious let us use
Euclidean time-space, that is change τ in (6) into iτ , τ → iτ . Then the time coordinate become
periodic. The crucial point is that the Euclidean action corresponding to (5) is negative:

SEuclidean
liquid ∼ − T

√
rc

∫

ddx , (11)

where rc is assumed to be small. The negative sign seems to be in contradiction with the general
principles.

Turn now to the geometry (1), or more precisely to the geometry in the coordinates (t, xi, x4)
near the horizon u = uΛ. Mofreover, go the Euclidean time, t → it. Then we have a cigar-shape
geometry in these coordinates since the radius of the periodic x4-coordinate vanishes at the
horizon:

Rx4
(u = uΛ) = 0 . (12)

Thus, our four-dimensional space-time (Euclidean version) can be considered in the infrared as a
brane imbedded into a 5d space with a small radius of the fifth coordinate. From the holographic
point of view, the action of the brane is associated with the non-perturbative fluctuations of
the Yang-Mills fields. Moreover, the vanishing radius (12) signals that the action of the defects
with non-trivial topological charge vanishes in the infrared [13]. This phenomenon is well
known of course within the QCD phenomenology and loosely can be described as condensation
of the (anti)instantons. Quantitatively, the effect is described in terms of the so called gluon
condensate, or the vacuum expectations value < (Ga

µν)2 >non−pert. The crucial point is then
that < (Ga

µν)2 >non−pert is negatiive. The physics is that non-perturbative fluctuations lower
the energy of the vacuum. Somewhat more formally, one can argue [14] that the bag constant
B is proportional to

B − ∼ − < (Ga
µν)2 >non−pert . (13)

To summarize, the sign of the Euclidean action (11) is just the one which is expected on the
basis of the duality with the non-perturbative Yang-Mills theory.

Consider now the confinement phase, T > Tc the cigar-shape geometry is in coordinates
(u, τ) where τ is now the Euclidean time:

Rτ (u = uh) = 0 . (14)

This means that the action (5) in infrared refers now to 3d branes embedded into the Euclidean
4d space. As is explained in detail in Refs. [7, 15] this prediction of the holography is fully
consistent with the lattice data. The negative sign of the action associated with the non-
perturbative branes is again confirmed by the data.

4 Instantons and measurements with poor resolution

Consider again T = 0 and the geometry (1). Take into account now vibrations of the 4d branes
in the x4 direction. Then the Euclidean action associated with the branes would be equal to

SEuclidean
4d = − T

∫

d4x
√

1 + (∂φ)2, (15)

where the scalar field φ has now the meaning of the value of x4 as function of the four other
coordinates. Expanding in the derivatives we see that there exists a 4d massless mode. However,
the sign of the kinetic energy corresponds rather to a ghost, not to an actual massless field. Such
a prediction might look discouraging at first sight. Remember, however, that the x4 coordinate
is associated with topological charge (see Introduction). And, indeed, in this channel one can
speak about a ghost, more precisely, about the famous Kogut-Susskind ghost.
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To be more systematic, let us recall the reader the basic facts about the topological sus-
ceptibility of the Yang-Mills vacuum, for more detail and further references see, e.g., [16]. We
begin with an obvious observation

< Q2
top > > 0 , (16)

where the topological charge, Qtop is defined in (3). Since < Qtop = 0 Eq. (16) can be rewritten
as the positivity condition for the topological susceptibility:

∫

d4x < GG̃(x), GG̃(0) > > 0 . (17)

In fact, the condition (17) is far from being trivial since for any x 6= 0 the sign is just opposite:

< GG̃(x), GG̃(0) >exact < 0, x 6= 0 . (18)

This is a consequence of the unitarity (and refers to the Euclidean case). In particular, one can
check that perturbatively at small x:

< GG̃(x), GG̃(0) >perturbative ∼ α2
s

x8
, (19)

where αs is the Yang-Mills coupling entering the definition of the topological charge. Thus, to
satisfy (17) we have to assume that the topological susceptibility contains a local, or singular
term of the form:

< GG̃(x), GG̃(0) >local = δ4(x)
( (const)α2

s

a4
+ (const)Λ4

QCD

)

, (20)

where a is a cut off, or lattice spacing and the first term in the r.h.s. is to cancel the perturbative
contribution (19) while the second term is reproducing the instanton contribution (or, more
generally, non-perturbative topological fluctuations).

Turning to the isntantons, we observe

< GG̃(x), GG̃(0) >instantons > 0 . (21)

Moreover, as far as we think about the instantons as of objects with the size of order Λ−1

QCD

the correlation length in Eq. (21) is of the same order, Λ−1

QCD. We see, however, that (210 is
in contradiction with the unitarity, see Eq. (18). This means that, no matter how far in the
infrared region we go tending x → ∞ instantons cannot dominate the correlator of the densities
of the topological charge. One can never neglect perturbative contributions while evaluating
the correlator at any finite x and one can neglect perturbative physics while evaluating the
topological susceptibility, or the integral over x.

Note that if the measurements of the correlator of the topological densities are made with
poor resolution then the delta-function δ4(x) is poorly resolved and smeared over finite range
of x. Then the “wrong sign” of Eq. (21) can be observed. If the resolution is improved then
the positive contribution is becoming more and more squeezed to a local term. This is just the
picture explicitly seen in the lattice simulations [16].

What we learn new from the holography, is that the positive, or ghost-like sign of the
correlator of the topological densities is predicted by the duality of the non-perturbative Yang-
Mills to the stretched horizon:

< GG̃(x), GG̃(0) >holography ∼ 1

x2
, (22)

where 1/x2 corresponds to the massless ghost exchange. And the prediction is qualitatively
confirmed by lattice simulations ad far as the resolution is poor.
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5 “Euclidean superfluidity”

As the next step, we can consider T > Tc, or non-perturbative contributions to the gluon
plasma. As is explained above we are then dealing in the infrared with 3d branes. Taking into
account vibrations of the brane in the (Euclidean) time direction we get for the action of the
branes:

SEuclidean
3d = − T

∫

d3x
√

1 + (∂iφ)2 , (23)

where φ has now the meaning of the time coordinate as function of the three spatial coordinates.
Continuing to the Minkowski space,

S3dMinkowski = + T

∫

d3x
√

1 − (∂iφ)2 . (24)

Integrating over the time coordinate, to obtain the four dimensional action, we reproduce the
action (5) of the exotic liquid living on the horizon. Which is–we believe– is a direct demon-
stration of the relevance of the holographic models to the non-perturbative Yang-Mills physics.

Expanding Eq (24) in derivatives we find out a massless 3d mode. This time, unlike the
T = 0 case considered in the preceding section, the sign of the kinetic energy of the massless
mode is physical. The violation of the unitarity is still there, however. Indeed, a simple
calculation reveals the superluminal propagation of this mode. This is known to be a common
feature of liquids described by the non-linear actions of the type (5), see, e.g., Ref. [17]. Thus,
we cannot expect to observe the effects associated with exchange of this mode, unless we have
poor resolution.

Usually, three dimensional massless modes might signal superfluidity. In more detail, ap-
pearance of the massless mode in the correlator of momentum densities is a criterion of super-
fluidity:

∫

d3x exp(iqiri) < T0i(r), T0k(0) > ∼ qiqk

q2
. (25)

To decide whether there arises such a term in the model (5) we turn to the expression for the
momentum density in this model:

T0i = ∂0ϕ∂iϕ . (26)

The value of the time derivative, ∂0ϕ is a constant in the equilibrium, see Eq. (equilibrium).
From this observation we conclude that there is a correlator of the momentum densities of

the form (25) according to the model (5). However, there is a superluminal signal behind this
prediction. In other words, the model (24) is not actually consistent with the unitarity, the
same as in the case of the vanishing temperature, see the preceding section. Optimistically, we
can expect to observe correlator of the form (25) in measurements with poor resolution. One
should look again into a wrong-sign contribution of the local form into the correlator of the
momentum densities in the Euclidean space. Such a phenomenon, if observed, could be called
“Euclidean superfluidity”.
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