
Quantum measurements and chiral magnetic effect

V. I. Shevchenkoa∗

a NRC ”Kurchatov Institute”

ac.Kurchatova sq. 1, Moscow 123182 Russia

Abstract

The effect of anisotropy for fluctuations of electric currents in magnetic field is addressed
within framework of quantum measurements theory. It is shown that for free fermions in
uniform magnetic field the anisotropy is of the same sign as one expects for chiral magnetic
effect and is related to triangle anomaly. The corresponding decoherence functional contains
anomalous off-diagonal terms leading to correlation of fluctuations between observables of
opposite P-parity.

1 Introduction

One of important questions in quantum field theory is about the fate of discrete symmetries
under this or that choice of external conditions. Can one get nontrivial symmetry breaking effect
by, for example, heating quantum fields or applying external classical background? Naively all
three main discreet symmetries: charge conjugation C, parity reversion P and time reversion T

are not seen in our everyday experience, as manifested by matter over antimatter dominance in
the Universe, bio-chirality, arrow of time and numerous other facts. However as is well known
the microscopic situation is much more subtle. Namely, the interactions governing the macro-
world - long ranged gravity and electromagnetism - are invariant under C, P and T, while
the microscopic dynamics respect only the famous CPT product: direct P-violation is built
into electroweak sector of the Standard Model (lefts are doublets and rights are singlets), while
conjugate parity CP (and hence T - invariance) is broken by Cabibbo-Kobayashi-Maskawa
mechanism.

Strong interactions stay apart in some sense. Leaving aside strong CP-problem and all
related issues, QCD Lagrangian without θ-term is invariant under separate C-, P- and T-
transformations. C–invariance holds at finite temperature but gets broken at finite den-
sity: there is no Furry theorem if some levels in the upper Dirac continuum are occupied.
Strong and quite general results [1, 2] guarantee that vacuum expectation value of any local
P-nonconserving observable has to vanish in vector-like theories such as QCD, e.g.

〈ψ̄γ5ψ〉 = 0 ; 〈TrGµνG̃
µν〉 = 0 (1)

Despite these results put serious constraints on possible P-parity violating phenomena in the
domain of strong interactions physics, such effects (establishing limits of applicability of (1),
in some sense) have been studied for a long time. One can mention T.D.Lee’s idea of P-odd
bubbles and A.B.Migdal’s hypothesis of pion condensate in nuclei. Closely related effects of
ρ− π mixing at finite temperature [3] and sphaleron dynamics in QCD [4] were discussed.

Recently the topic has been revitalized in a series of papers [5, 6, 7, 8] and numerous
subsequent publications. The two general approaches to study any vacuum nicely work together
in heavy ion collision experiments with respect to the QCD vacuum. Indeed, test particles used
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in these experiments — heavy ions — are able to create, in the first instants after the collision,
highly nontrivial multi-particle state, which itself play a role of external conditions put on the
QCD vacuum. These include temperature, density and also, as was noticed in [5, 6, 7, 8, 9],
extremely strong magnetic field, of the order of (103 − 104) MeV2 in about 0.2 Fm/c after the
moment of collision. This is the first (and perhaps the only) case in physics where one can
study strong and electromagnetic interactions interplay on the same scale, without treating
the latter as a weak perturbation. The main qualitative result can be formulated as follows:
if by whatever dynamical mechanism there is an excess of quarks of definite chirality inside a
fireball, it transforms into electric current flowing along the magnetic field, whose main effect is
charge asymmetry of final particles distribution between upper and lower (with respect to the
interaction plane) hemispheres. On quantitative level, for free massless spinors with charge e,
chemical potentials µL, µR for left-handed and right-handed ones, respectively, in constant and
spatially uniform magnetic field B electric current is given by the following expression, known
as chiral magnetic effect (CME):

j =
e2

2π2
µ5B ; µ5 =

µR − µL

2
(2)

The expression (2) first explicitly obtained in [10] (not in heavy ion collision context) is a
robust theoretical result and can be reproduced, besides direct computation of the corresponding
Feynman diagram, in many complementary ways (Chern-Simons electrodynamics [11], linear
response theory [12], counting of the number of zero modes for chiral fermions interacting
the external magnetic field [13], relativistic hydrodynamics [14] etc). The expression (2) is a
concrete realization of more general form

jµ = F̃µν∂
νφ (3)

where dual field strength F̃µν = 1
2εµναβF

αβ . One may think of various scenarios corresponding
to physical content of the field φ, in particular, in hydrodynamics context [15]. What is however
special and important about the result (2) is that proportionality coefficient there is universal
and fixed by the famous triangle anomaly [16, 17].

The phenomenon of existence of non-dissipative current like (2), (3) is also known in elec-
troweak sector [18]. Above critical temperature the relevant gauge fields are chiral hypercharge
ones, i.e U(1)em → U(1)Y at T > Tc, those dynamics is different from that of the vector electro-
magnetic fields in the broken symmetry phase (at T < Tc). In particular, hypercharge current
jY can flow along the hypercharge magnetic field HY. The nontrivial difference is that in (2)
both the current and the magnetic field are not chiral but usual vector fields, and the ultimate
reason for the effect is quantum generation of nonzero µ5. As has already been mentioned,
in the original picture [5, 6, 7, 8] the strong interactions triangle anomaly in the divergence
of singlet axial vector current (not to be confused with the abelian anomaly) is supposed to
be responsible for it. Thus CME in QCD context should be a subtle interplay of abelian and
nonabelian anomalies, like it is the case for η ′ meson, where the latter anomaly is responsible
for its mass, while the former one - for its decay to two photons.

There are a few open questions left by the result (2). The first concerns physical mechanism
of getting effectively nonzero µ5 - it is worth remembering that there is no such thing as µL 6= µR

in the fundamental Lagrangian. The second question is about quantum meaning of (2) with
respect to quantum field theoretical correlators 〈 j 〉, 〈 j j 〉 etc. Last but not least, it is by far
not clear how to extract from the result (2) concrete predictions for charge asymmetries and
corresponding correlators [19] in real heavy ion collision experiments. An attempt to address
some of those questions was undertaken in [20].

In this talk complementary view of the problem is presented using methods of quantum
theory of measurements. Throughout the text ~ = c = 1, the Minkowski metric tensor is
gµν = diag(1,−1,−1,−1) and constant uniform magnetic field is chosen in the third direction:
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F12 = B. Also the notation p‖ = (p0, 0, 0, p3), p⊥ = (0, p1, p2, 0), p‖γ‖ = p0γ0 − p3γ3, p⊥γ⊥ =
p1γ1 + p2γ2 is used for four-vector components parallel and perpendicular to the field and their
products.

2 Is chiral anomaly needed for CME?

It is worth noting that one can easily mimic the effect under discussion without direct use of
massless degrees of freedom and any reference to the corresponding anomalies. By way of ex-
ample let us consider effective Heisenberg-Euler type Lagrangian1 for photon-gluon interaction:

L = −
1

4
FµνF

µν +
ξ(t)

4
Fµν F̃

µνGa
αβG̃

aαβ (4)

where Fµν stays for the photon and Ga
αβ - for the gluon fields. The factor ξ(t) represents some

kind of external potential and encodes external conditions. They are supposed to be time-
dependent but slow: ξ̇/ξ � m. For example, one could think of time-dependent mass of the
heavy fermions integrated out. Corresponding equation of motion reads:

∂µ

(

F µν + ξ(t) ·Ga
αβG̃

aαβ · F̃ µν
)

= jν (5)

and for constant fields one gets the following expression for the chiral current

jχ = ξ̇(t) ·Ga
αβG̃

aαβ · B (6)

This simple example clearly shows that the crucial feature of non-dissipative currents like (2) or
(6) is not the abelian anomaly but non-stationarity, i.e. time dependence of the corresponding
effective Lagrangian. In case of (2) it is nothing but the theta-term: µ5 ∝ θ̇(t).

3 CME and quantum measurements

The simplest case of free massless fermions in external magnetic field at finite temperature is
addressed in this section. We are interested to study how their fluctuations (both thermal and
quantum) are affected by external field. In principle, this information is encoded in polarization
operator Πµν(x, y) = i〈T{jµ(x)jν(y)}〉 and we refer an interested reader to [20] for discussion
which structures of Πµν(x, y) in magnetic field correspond to chiral magnetic effect. In what
follows we take a different attitude and consider instead the standard Unruh–DeWitt detector
coupled to the current. The corresponding Hamiltonian reads:

H =

τ1
∫

τ0

dτ µ(τ)nµψ̄(x(τ))γµψ(x(τ)) (7)

Here x(τ) parameterizes the detector’s world-line, τ - proper time along it, nµ - constant vector,
fixing a direction the current is measured in, and µ(τ) - internal quantum variable of the detector
whose evolution in τ is described by the standard two-level Hamiltonian with the levels E0 and
E1, E1 −E0 = ω > 0. An amplitude for the detector to ”click” is given by

A = i

τ1
∫

τ0

dτ 〈1|µ(τ)|0〉 · 〈Ω|nµjµ(x(τ))|Ω0〉 (8)

1In this model example only two terms are kept in it.
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where jµ(x(τ)) = ψ̄(x(τ))γµψ(x(τ)) and |Ω0〉 stays for initial (thermal vacuum) state of the
field sub-system, while |Ω〉 represents final (after the measurement) state. The corresponding
response function reads:

F(ω) ≡ nµnνFµν(ω) = nµnν

τ1
∫

τ0

dτ

τ1
∫

τ0

dτ ′ e−iω(τ−τ ′) ·G+
µν(τ − τ ′) (9)

where
G+

µν(τ − τ ′) = 〈Ω0|jµ(x(τ))jν (x(τ ′))|Ω0〉 (10)

Usually one is interested in detector excitation rate in unit time. For infinite observation time
range (τ0 → −∞, τ1 → ∞) it is determined by the power spectrum of the corresponding
Wightman function:

Ḟ(ω) =

∞
∫

−∞

ds e−iωs G+(s) (11)

The details of this standard procedure can be found in [21, 22], see also [23] in the context of
vector current measurements.

To compute (11) it is convenient to use the exact fermion propagator in external magnetic
field given by [24]

S(x, y) = eiφ(x,y)

∫

d4p

(2π)4
eip(x−y)S̃(p) (12)

where the gauge-dependent phase φ(x, y) is irrelevant for gauge-invariant quantities and Fourier
transfrom S̃(p) reads:

S̃(p) =

∞
∫

0

du e
iu(p2

0−p2
3−p2

⊥

tan(qBu)
qBu

−m2)
[

P0(p
‖, p⊥) + P1(p

‖)
]

(13)

where

P0(p
‖, p⊥) = p‖γ‖ − p⊥γ⊥(1 + tan2(qBu)) +m ; P1(p

‖) = (p‖γ‖ +m)γ1γ2 tan(qBu) (14)

and q stays for quark electric charge. We take in the rest of the paper m = 0. It will be seen
that only the tensor structure P1(p

‖) is responsible for charge fluctuations asymmetry and also
for anomalous 〈jµj

5
ν〉 correlation.

It is customary in quantum measurements theory to compare response functions of a given
detector in a state of inertial movement versus some non-inertial one. We are interested in
another kind of asymmetry, namely between the detector oriented to measure current along the
magnetic field direction and perpendicular to it. This choice is fixed by the vector nµ = (0,n).
With respect to its spatial movement the detector is supposed to be always at rest, so we can
take x(τ) = (τ, 0, 0, 0). Therefore it is convenient to switch to the coordinate space (as in (11)
we denote s = τ − τ ′):

S(s) =
isγ0

32π2

∞
∫

0

du

u3

(

qBu

tan(qBu)
+ γ1γ2qBu

)

e−i s2

4u (15)

The response function asymmetry given by δḞ(ω) = Ḟ33(ω)− (Ḟ11(ω)+ Ḟ22(ω))/2 is quadratic
in B for all values of the magnetic field.2 Explicitly, one gets:

G+
33(s) = −





s

16π2

∞
∫

0

du

u3

qBu

tan(qBu)
e−i s2

4u





2

−
(qB)2

16π4s2
(16)

2Notice that Ḟ11(ω) = Ḟ22(ω) for our choice of the field along the third axis.
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G+
11(s) = −





s

16π2

∞
∫

0

du

u3

qBu

tan(qBu)
e−i s2

4u





2

+
(qB)2

16π4s2
(17)

and G+
11(s) = G+

22(s). These results are exact for free fermions in external magnetic field in the
massless limit.

To compute the response function one needs to take into account s → s − iε prescription
corresponding to definition of the Wightman function (10) and switch on the temperature
introducing sum over periodic shifts in imaginary time with β = 1/kT and Fermi-Dirac statistics
factor (−1)k for fermions (see, e.g. [21, 22]):

δḞ(ω) = Ḟ33(ω) − Ḟ11(ω) = −
(qB)2

8π4

+∞
∫

−∞

ds e−iωs

[

+∞
∑

k=−∞

(−1)k

(s− iε+ ikβ)

]2

(18)

Taking into account that
∞
∑

k=−∞

(−1)k

x+ik = π
sinh πx and doing the integral with the help of residues

(see, e.g. [25]):

∞
∫

−∞

e−iωsds

sinh2n(s− iε)
=

(−1)n

(2n− 1)!

(

2π

ω

)

1

eπω − 1

n
∏

l=1

(

ω2 + 4(n− l)2
)

(19)

one gets

δḞ(ω) =
(qB)2

4π3

ω

eβω − 1
(20)

Expression (20) is the main result of this section. It is positive, which corresponds to the fact
that the detector measuring the current along magnetic field clicks more often than measuring
perpendicular currents. It is also worth noticing the change of statistics from Fermi-Dirac
to Bose-Einstein - what is relevant is the statistic of operators whose fluctuations are being
measured by the detector (Bose-currents in our case) and not the statistics of primary fluctuating
fields.

The fact that current fluctuations are suppressed in perpendicular direction is obvious from
general physics: the charged particle moving in the orthogonal plane is deflected by the magnetic
field (or, using quantum mechanical language, confined to Landau levels). What is less obvious
is that fluctuations along the field are enhanced (exactly by the same amount), since classically
(i.e. neglecting spin effects) magnetic field has no influence on a charge moving in parallel
direction. This enhancement is caused by spin interaction with the magnetic field and, to our
view, can legally be called a particular case of CME.

It is instructive to compare (20) with fluctuation pattern without magnetic field. The latter
can easily be obtained from (16) or (17) putting B = 0. The result reads:

Ḟ (0)(ω) = Ḟ33(ω,B = 0) =
1

60π3

ω

eβω − 1

(

ω2 + 4

(

2π

β

)2
)(

ω2 +

(

2π

β

)2
)

(21)

The ratio is maximal in small ω region:

δḞ (0)

Ḟ (0)(0)
≈ 0.0024 ·

(qB)2

T 4
(22)

One can reasonably conclude from this simple estimate that for not too large qB/T 2 ratio
relative asymmetry for free massless fermion thermal fluctuations can be at most of per cent
level. In order to get parametrically larger result one need some physical mechanism which
strongly enhances fluctuations with respect to their standard thermal magnitude.
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4 Parity violation and decoherence

It is rather clear that if one is monitoring some P-odd observable, it can lead to nonzero result
for measurement of correlated P-odd quantity. The simplest way to see it is to use a language
of decoherence functionals ([27], see also [28]) and path integral formalism. Generally, for some
filter function α[Φ] the amplitude is given by

Ψ[α] =

∫

DΦ α[Φ] eiS[Φ] (23)

To illustrate the point on quantum-mechanical example, consider three-dimensional system
given by Lagrangian L = q̇2 − V (q), where q = (x, y, z) and the potential V (q) is invariant
under P-parity transformation: V (q) = V (−q), but not invariant under separate reflections
x → −x or y → −y or z → −z. Suppose that the system is open to external observer who is
monitoring the y-coordinate continuously in time. As is well known to describe this situation
in path integral representation one has to introduce quantum corridor and perform the shift:

∫

Dy(t) →

∫

Dy(t) exp



−κ

T
∫

0

(y(t) − ȳ(t))2dt



 (24)

where the corridor width is given by ∆y ∝ (κT )−1/2. Then the transition amplitude takes the
standard form up to the measure shift (24):

U(q′′; q′) =

∫

Dp

∫

Dq exp





i

~

T
∫

0

(pq̇ −H(p, q))dt− κ

T
∫

0

(y(t) − ȳ(t))2dt



 (25)

where we denote q = (x, y, z), p = (px, py, pz). Consequently, all amplitudes and correlators
computed with (25) become dependent on the function ȳ(t) (which has the meaning of contin-
uous observation result) and quantum corridor width ∆y. For example, for x-coordinate one
would have

〈x(T )〉 = X[ȳ(t), κ] (26)

where the functional X[ȳ(t), κ] depends, generally speaking, on the function ȳ(t) in all past mo-
ments of time and vanishes at the point κ = 0, corresponding to no measurement: X[ȳ(t), 0] = 0.
Its exact form of course depends on the potential V (q) and is of no importance for us at the mo-
ment. What is crucial is the fact that monitoring P-odd quantity (coordinate y in our example)
can result in nonzero quantum average for some other P-odd quantity (coordinate x), despite
the interaction is still strictly P-even. One can say that P-parity is broken ”event-by-event” by
measuring apparatus.

Coming back to our discussion of CME in the previous sections it is clear that crucial missing
ingredient is of course the fact that in strong interaction domain the singlet axial vector current
is not conserved because of triangle nonabelian anomaly:

∂νj5ν(x) = −η(x) = −
g2Nf

16π2
Ga

αβ(x)G̃aαβ(x) (27)

We are interested to find common distribution for the vector current and some P-odd quantity,
which we have chosen in this section to be the field η(x) from (27). The corresponding amplitude
reads:

Ψ[λ, κ] =

∫

Dψ̄DψDAµ e
iSQCD+i

R

dxλ(x)nµjµ(x)+i
R

dxκ(x)η(x) (28)

The vector current is given by the standard expression jµ = ψ̄Qγµψ, where Q is quark electric
charges diagonal matrix in flavor space. The closed-time-path functional is given by

eiW [λ,κ;λ′,κ′] = Ψ[λ, κ]Ψ∗[λ′, κ′] (29)
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and the mean current is

〈nµj
µ(x)〉[λ, κ] = −i

δ

δλ(x)
eiW [λ,κ;λ′,κ′]

∣

∣

∣

∣

κ=κ′

λ=λ′

(30)

It is a functional of P-even field λ(x) and P-odd field κ(x) in the same sense as 〈x(T )〉 from
(26) is a functional of ȳ(t).

It is easy to compute Ψ[λ, κ] in Gaussian approximation. It reads:

ΨGauss[λ, κ] = e
i
2

R

dp(λ(p),κ(p))D(p)(λ(−p),κ(−p))T

(31)

where

D(p) =

(

Π(p) ∆(p)
∆(p) Π5(p)

)

(32)

with the components

Π(p) = i

∫

dx eipx〈T{jµ(x)jν(0)}〉 nµnν

Π5(p) = i

∫

dx eipx 〈T{η(x)η(0)}〉

∆(p) =
e2

2π2
nµpαF̃αµ ·NcTrQ2

(33)

The non-diagonal terms of the matrix D(p) arise due to correlation of fluctuations of the quan-
tities of opposite P-parity in external abelian field.

As a model example let us take concrete profile for the κ-field, corresponding to time-
dependent 3-dimensional ”decoherence volume” V (y0):

κ(y) = κ · fV (y0,y) = κ ·

∫

V (y0)

d3w δ(3)(y −w) (34)

It leads to the following expression for the current parallel to magnetic field:

〈j3(x)〉[0, κ] =
NcTrQ2

2π2
· (κB) · ḟV (x0,x) · e−

R

dpκ(p)={Π5(p)}κ(−p) (35)

where we switched off the P-even filter (λ = 0), but has kept the P-odd one. The above
expression is a generalization of (2) with the field κ (34) being direct analog of time-dependent
θ-term. The current is linear both in κ and in B and vanishes being integrated over κ in
symmetric limits. Notice that the current flows only inside the volume (where the measurement
has been done) and what is important it has a maximum in κ. This maximum in κ transforms
into optimal (i.e. maximizing the current) speed of 3-volume expansion: for too slow expansion
the current is small due to ḟV (x0,x) factor, while for too fast one would expect strong damping
from the region of effective large time-like momenta in decoherence exponent.

5 Conclusion

We discussed the phenomenon of CME using the ideas of quantum measurements theory. First,
it was shown that in the simplest case of free massless fermions the nonzero asymmetry of electric
current fluctuations in magnetic field is detected by the standard Unruh–DeWitt detector at
rest. This asymmetry (20) is of desired sign (i.e. detector clicks more often measuring current
components along the field than in perpendicular plane) but numerically it is rather weak for
usual thermal fluctuations even in its maximum. We find it remarkable that this asymmetry is
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exactly quadratic in magnetic field B and has its origin in the same (abelian) triangle anomaly
which is responsible for CME in the standard approach. Second, taking into account singlet
axial vector current non-conservation due to nonabelian anomaly, we computed the electric
current (35) along magnetic field under assumption that particular P-odd quantity (dual field
to the topological charge density in our example) can be treated as external (classical). This
can be understood as a model for chiral chemical potential µ5 generation in quark-gluon dense
and hot medium via decoherence along well known line of thought about classical features of
gluon field in this system.
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