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Abstract

Interference phenomena observed in the ψ(3770) resonance region in the reactions
e+e− → DD̄ are analyzed. To avoid ambiguities in the determination of the ψ(3770)
resonance parameters, when analyzing data between the DD̄ and DD̄π thresholds, the
amplitudes satisfying the elastic unitarity requirement should be used. In the lack of in-
formation on the P -wave of DD̄ elastic scattering, the ψ(3770) parameters, determined by
fitting the e+e−→DD̄ data, can essentially depend on the model used for the total contri-
bution of the resonance and background. The selection of the models can be toughened by
comparing their predictions with the relevant data on the shape of the ψ(3770) peak in the
non-DD̄ channels e+e− → γχc0, J/ψη, φη, etc.

1. Introduction
The resonance ψ(3770) was investigated in the reactions e+e−→DD̄ by the MARK-I [1],

DELCO [2], MARK-II [3], BES [4, 5, 6], CLEO [7], BABAR [8], Belle [9], and KEDR [10, 11, 12]
Collaborations. With increasing accuracy of measurements, there appeared indications on an
unusual shape of the ψ(3770) peak, i.e., on possible interference phenomena in its region [5, 6,
8, 9, 10, 11, 12, 13, 14]. It was also clear that the ψ(3770) dose not have any other significant
decay modes except decays to DD̄, i.e., that it is an almost elastic resonance [15, 16].

Recently, the KEDR Collaboration noted [10, 11, 12] that the parameters of the ψ(3770)
resonance become distinctly different from those quoted by the Particle Data Group (PDG) in
the preceding reviews (see, for example, Ref. [15]) if the data analysis takes into account the
interference between the ψ(3770) production amplitude and the nonresonant DD̄ production
one. In Refs. [11, 12], two very different solutions for the interfering resonance and background
amplitudes were obtained (see also [16, 17]). These solutions lead to the same energy dependence
of the cross section and are indistinguishable by the χ2 criterion.

CLEO-c has now accumulated about 818 pb−1 [18] and BES III about 2.9 fb−1 [19] integrated
luminosity on the ψ(3770) peak for open charm physics investigations. Therefore, from CLEO-c
and BES III, one can also expect new data with very high statistics on the shape of the ψ(3770)
resonance. In this regard, we believe it is timely to discuss some dangers which are hidden in
the commonly used schemes for the description of the ψ(3770) peak.

2. The ψ(3770) in e+e−
→ DD̄

Figure 1 shows the data for the sum of the e+e− →D0D̄0 and e+e−→D+D− reaction cross
sections in the ψ(3770) region, σ(e+e− →DD̄), obtained by BES [5], CLEO [7], BABAR [8],
and Belle [9]. In most experimental works, the e+e− → DD̄ cross section caused by the ψ(3770)
resonance production was described with minor modifications by the following formula (below,
for short ψ(3770) is also denoted as ψ ′′):

σDD̄ψ′′ =
12πΓψ′′e+e−Γψ′′DD̄(s)

(m2
ψ′′ − s)2 +m2

ψ′′Γtot 2ψ′′ (s)
and Γψ′′DD̄(s) =

G2
ψ′′p3

0(s)

1 + r2p2
0(s)

+
G2
ψ′′p3

+(s)

1 + r2p2
+(s)

, (1)
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Figure 1: The data for σ(e+e− →DD̄) are from BES [5], CLEO [7], BABAR [8], and Belle [9]. The fits using

Eqs. (1) illustrate the ψ(3770) resonance shape dependence on the parameter r.

where
√
s is the DD̄ invariant mass, p0,+(s)=

√

s/4 −m2
D0,+ , r the DD̄ interaction radius,

and Gψ′′ the ψ′′DD̄ coupling constant. Because the ψ′′ →DD̄ decay is dominant [16], we put
Γtotψ′′(s) =Γψ′′DD̄(s).

The dashed and solid curves in Fig. 1 show the fits to the data with the use of Eqs. (1)
at r=0 and 100 GeV−1, respectively. In the inset in this figure, the χ2 quantity is shown as a
function of r. As is seen from Fig. 1, a dip near 3.81 GeV cannot be explained by varying r. The
obtained very unsatisfactory χ2 values (for the dashed and solid curves in Fig. 1 χ2 ≈ 413 and
248, respectively) are due to both notable differences between the data from different groups
and the existence of the dip (for the solid curve in Fig. 1, the points at

√
s=3.8 and 3.81 GeV

yield χ2 ≈ 81). Thus, the current data on the e+e− →DD̄ in the ψ′′ region are hard to describe
with the help of a single ψ′′ resonance contribution. In order to qualitatively improve the data
description, in particular, to explain a dip near 3.81 GeV, it is necessary to take into account
the interference between the resonant and nonresonant DD̄ production.

3. The D meson electromagnetic form factor
• Unitarity requirement. In constructing the model describing the process e+e−→DD̄,

one must keep in mind that we investigate above all the D meson isoscalar electromagnetic form
factor, the phase of which in the elastic region is completely fixed by the unitarity condition
(or the Watson theorem of final-state interaction). Experiment clearly indicates that we deal
with the resonant scattering of D mesons. Really, there is the ψ ′′ resonance between the
DD̄ and DD̄∗ thresholds (2mD ≈ 3.739 GeV and mD + mD∗ ≈ 3.872 GeV), which in a good
approximation can be considered as an elastic one [16]. Usually, such scattering is described
as resonance scattering with an elastic background [20], i.e., the corresponding DD̄ scattering
amplitude T IJ with the isospin I =0 and spin J =1 is given by

T 0
1 = eiδ

0
1 sin δ01 = (e2iδbg − 1)/(2i) + e2iδbgTres , (2)

were δ01 = δbg + δres is the scattering phase, δbg is the elastic background phase, and δres
is the phase of the resonance amplitude Tres Then, according to the unitarity condition
ImF 0

D =F 0
D T

0∗
1 , the D meson isoscalar form factor F 0

D has the form in the elastic region

F 0
D = eiδ

0
1G0

D = ei(δbg+δres)G0
D , (3)

where G0
D is the real function of energy. A similar representation of the amplitude e+e−→DD̄

used for the data description guarantees the unitarity requirement on the model level. The sum
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Figure 2: The graphical representation of the DD̄ scattering amplitude T 0
1 and the D meson form factor F 0

D.

The vertical dashed lines show that the D and D̄ mesons in the loops are on the mass shell.

of the e+e−→D0D̄0 and e+e− →D+D− reaction cross sections is given by

σDD̄(s) =
8πα2

3s2

∣

∣F 0
D(s)

∣

∣

2
ν(s) (where ν(s) = (p3

0(s) + p3
+(s))/

√
s) . (4)

• A simplest model for F 0
D

: Resonance plus background. To understand how the
form factor and strong amplitude can be constructed to satisfy the unitarity requirement, the
easiest way to use the field-theory model shown in Fig. 2 and write

T 0
1 (s) =

T 0
1 (s)

1 − iT 0
1 (s)

, T 0
1 (s) = ν(s) t01(s) , t01(s) = λ+

1

6π

g2
ψ′′DD̄

m2
ψ′′ − s

, (5)

F 0
D(s) =

f0
D(s)

1 − iT 0
1 (s)

, f0
D(s) = λγ +

gψ′′γgψ′′DD̄

m2
ψ′′ − s

. (6)

Graphically, the amplitude T 0
1 (s) and the form factor F 0

D(s) corresponds to the infinite chains
of the diagrams in Fig. 2 with the real D and D̄ mesons in the intermediate states. The
amplitude t01 and the form factor f 0

D specify the structure of primary mechanisms included in
the model to describe the ψ′′ resonance region. The constants λ and λγ effectively take into
account background (nonresonant in the ψ ′′ region) contributions to the strong amplitude and
form factor, respectively, and the constants gψ′′DD̄ and gψ′′γ describe couplings of the ψ′′ to
the DD̄ and virtual γ quantum, respectively. The unitarity requirement is fulfilled: The phase
of the form factor F 0

D(s) is defined by the phase of the amplitude T 0
1 (s). This phase has the

dynamical origin. The physical content of Eqs. (5) and (6) will become more clear if they are
rewritten in the form of Eqs. (2) and (3), respectively. As a result, we obtain the following
expressions for the background and resonance components of T 0

1 (s):

Tbg =
e2iδbg(s) − 1

2i
=

ν(s)λ

1 − iν(s)λ
, Tres =

√
sΓψ′′DD̄(s)

M2
ψ′′ − s+ ReΠψ′′(M2

ψ′′) − Πψ′′(s)
, (7)

ImΠψ′′(s) =
√
sΓψ′′DD̄(s) =

g2
ψ′′DD̄

(s)

6π
ν(s) , ReΠψ′′(s) = −λ

g2
ψ′′DD̄

(s)

6π
ν(s)2 , (8)

M2
ψ′′ = m2

ψ′′ − ReΠψ′′(M2
ψ′′) , gψ′′DD̄(s) = gψ′′DD̄/|1 − iν(s)λ| . (9)

For the form factor we obtain

F 0
D(s) = eδ

0
1(s)

(m2
ψ′′ − s)λγ(s) + gψ′′γgψ′′DD̄(s)

|M2
ψ′′ − s+ ReΠψ′′(M2

ψ′′) − Πψ′′(s)| , (10)
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Figure 3: The resonance plus background model. The solid curve is the result of fitting the data with the use

of Eqs. (4) and (10). The dashed curve shows the contribution from the ψ′′ resonance production (∼ gψ′′γ in

F 0
D), and the dotted curve shows the contribution from the background production (∼ λγ in F 0

D) modified by

the strong resonance and background final-state interactions.

where δ01(s) = δbg(s) + δres(s); δres(s) is the phase of Tres and λγ(s) = λγ/|1 − iν(s)λ|.
Thus F 0

D(s) incorporates the resonance contribution (proportional to gψ′′γ) modified
(dressed) by the strong background [21] and the proper background contribution (proportional
to λγ) modified by the strong resonance and background final-state interactions. Because the
numerator in Eq. (10) is proportional to the polynomial in s, λγ(m

2
ψ′′ − s) + gψ′′γgψ′′DD̄, with

real coefficients, the dip in σ(e+e−→DD̄) near 3.81 GeV can be explained by the zero in F 0
D(s),

caused by compensation between the ψ ′′ resonance and background contributions.
As is seen from Fig. 3, the constructed model for F 0

D(s) yields the quite reasonable de-
scription of the data (here χ2 ≈ 123, which is much better than the above χ2 values for
the fits shown in Fig. 1). For the solid curve in Fig. 3, the cross section at the maximum
(located at

√
s=

√
smax ≈ 3.773 GeV) σmax ≈ 9.13 nb, the full width of the peak at its

half maximum Γhmax ≈ 29.7 MeV, and the effective electron width of the resonance struc-
ture Γeff

e+e−
= smaxσmaxΓhmax/(12π) ≈ 0.263 keV. These characteristics are in close agreement

with those quoted by PDG [16] as the averaged individual characteristics of the ψ ′′ resonance.
However, the peak (in its line shape there is a zero at

√
s ≈ 3.814 GeV) does not correspond

to a solitary resonance. Therefore, it is reasonable that the model parameters for ψ ′′ differ
from the effective parameters of the visible peak. The curves in Fig. 3 correspond to the
following values of the fitted parameters: mψ′′ =3.799 GeV, gψ′′DD̄ =± 19.35, gψ′′γ =± 0.1483
GeV2, λ=−30.35 GeV−2, and λγ =± 25.07 [if λγ > 0 (< 0), then gψ′′γgψ′′DD̄> 0 (< 0), see
Eq. (10)]. As the individual characteristics of the ψ ′′ resonance, one can take the quantities
dressed (renormalized) by the background contributions [see Eqs. (7)–(9)]: Mψ′′ =3.784 GeV,
Γren
ψ′′DD̄

=Γψ′′DD̄(M2
ψ′′)/Zψ′′ =37.61 MeV, and Γrenψ′′e+e− =Γψ′′e+e−/Zψ′′ =0.05181 keV, where

Zψ′′ =1 + ReΠ′
ψ′′(M2

ψ′′)= 1.748 and Γψ′′e+e− = 4πα2g2
ψ′′γ/(3M

3
ψ′′ ).

The obvious drawback of the considered model is the uncertain nature of the background
contributions. However, the model can be easily improved. It is clear that the main sources
of the background in the ψ′′ region are the tails from the J/ψ, ψ(2S), ψ(4040), ψ(4160) and
other resonances. The right number of resonances can be incorporated in the model by adding
the corresponding pole terms to expressions for t01(s) and f 0

D(s). In that case, the parameters λ
and λγ will effectively describe the contributions from the residual background, and it is hoped
that they will be small. Below, we will consider in detail the model taking into account the
ψ(2S) resonance contribution and discuss additional ways of checking this model.

• The model for F 0
D

with the ψ′′ and ψ(2S) resonances. The connection of the

4



ψ(2S) contribution does not change the structure of Eqs. (5) and (6) for T 0
1 and F 0

D. Only the
functions t01 and f0

D change. Now they are given by

t01(s) = λ+
1

6π

g2
ψ(2S)DD̄

m2
ψ(2S) − s

+
1

6π

g2
ψ′′DD̄

m2
ψ′′ − s

, f0
D(s) = λγ +

gψ(2S)γgψ(2S)DD̄

m2
ψ(2S) − s

+
gψ′′γgψ′′DD̄

m2
ψ′′ − s

. (11)

Hereinaftermψ(2S) = 3.6861 GeV and Γψ(2S)e+e− = 2.35 keV [16]; from the relation Γψ(2S)e+e− =
4πα2g2

ψ(2S)γ/(3m
3
ψ(2S)), we get gψ(2S)γ ≈ ±0.7262 GeV2; gψ(2S)DD̄ is a free parameter.

Owing to the common D0D̄0 and D+D− coupled channels, the ψ′′ and ψ(2S) resonances
can transform into each other (i.e., mix); for example, ψ ′′ →DD̄→ψ(2S). Therefore, it is very
useful to rewrite Eqs. (5) and (6) for the amplitude T 0

1 and the form factor F 0
D in terms which

would reflect this physical aspect of the model and, in particular, introduce the amplitude
describing the ψ′′ − ψ(2S) mixing.

Let us write the background amplitude in the form similar to Eq. (7)

Tbg = (e2iδbg(s) − 1)/(2i) = ν(s)λ/(1 − iν(s)λ) (12)

and represent Tres, corresponding to the complex of the mixed ψ ′′ and ψ(2S) resonances, dressed
by the residual background, in the following symmetric form [22, 23, 24]:

Tres =
(m2

ψ′′ − s)ImΠψ(2S)(s) + (mψ(2S) − s)ImΠψ′′(s)

Dψ′′(s)Dψ(2S)(s) − Π2
ψ′′ψ(2S)(s)

, (13)

where Dψ′′(s) and Dψ(2S)(s) are the inverse propagators of ψ ′′ and ψ(2S), respectively,

Dψ′′(s) = m2
ψ′′ − s− Πψ′′(s) , Dψ(2S)(s) = m2

ψ(2S) − s− Πψ(2S)(s) , (14)

Πψ′′(s) =
i

6π

g2
ψ′′DD̄

1 − iν(s)λ
ν(s) , Πψ(2S)(s) =

i

6π

g2
ψ(2S)DD̄

1 − iν(s)λ
ν(s) , (15)

and Πψ′′ψ(2S)(s) is the amplitude describing the ψ ′′ − ψ(2S) mixing caused by the
ψ′′ →DD̄→ψ(2S) transitions via the real DD̄ intermediate states,

Πψ′′ψ(2S)(s) =
i

6π

gψ′′DD̄gψ(2S)DD̄

1 − iν(s)λ
ν(s) . (16)

For the form factor, we get

F 0
D(s) =

eiδbg(s) RDD̄(s)

Dψ′′(s)Dψ(2S)(s) − Π2
ψ′′ψ(2S)(s)

(17)

where RDD̄(s) = (m2
ψ′′ − s)(m2

ψ(2S) − s)λγ(s) + (m2
ψ′′ − s)gψ(2S)γgψ(2S)DD̄(s) + (m2

ψ(2S) −
s)gψ′′γgψ′′DD̄(s) and gψ(2S)DD̄(s) = gψ(2S)DD̄/|1 − iν(s)λ|.

The curves in Fig. 4 correspond to the following values of the fitted parameters: mψ′′ =3.784
GeV, gψ′′DD̄ =± 13.21, gψ′′γ =± 0.2237 GeV2, gψ(2S)DD̄ =± 12.91, λ=26.89 GeV−2, and
λγ =± 2.456 [if λγ > 0 (< 0), then gψ′′γgψ′′DD̄> 0 (< 0) and gψ(2S)γgψ(2S)DD̄ < 0 (> 0)]. Note
that here |λγ | is about an order of magnitude smaller than in the previous case, as qualitatively
expected. For this fit, χ2 ≈ 125. The form factor has the zero at

√
s ≈ 3.816 GeV.

As the individual characteristics of the ψ ′′ resonance, one can take again the
quantities dressed (renormalized) by the background contributions: Mψ′′ =3.789 GeV,
Γren
ψ′′DD̄

=Γψ′′DD̄(M2
ψ′′)/Zψ′′ =58.03 MeV, and Γrenψ′′e+e− =Γψ′′e+e−/Zψ′′ =0.2973 keV, where

Zψ′′ =1 + ReΠ′
ψ′′(M2

ψ′′)= 0.6905 and Γψ′′e+e− = 4πα2g2
ψ′′γ/(3M

3
ψ′′ ). We calculated the above

parameters with the use of Eqs. (7)–(9) by making the substitution λ → λ+ 1
6π

g2
ψ(2S)DD̄

m2
ψ(2S)

−s
; i.e.,

5
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Figure 4: The model with the ψ′′ and ψ(2S) resonances. The solid curve is the fit using Eqs. (4) and

(17). The dashed, dot-dashed, and dotted curves show the ψ′′, ψ(2S), and background production contributions

proportional to the coupling constants gψ′′γ , gψ(2S)γ , and λγ in RDD̄(s), respectively.

in the ψ′′ region, we included in Tbg the total background from λ and ψ(2S) and took into
account in Tres the ψ′′ contribution dressed by this total background.

Notice that the information only on the reactions e+e− → DD̄ is still lacking to give reliable
conclusions about the separate components of the reaction amplitude. The performed analysis
indicates that these components can be very different in the different models. On the other hand,
it is clear that the interference pattern in the ψ ′′ region depends on the reaction. Therefore, to
toughen the selection of the models one should compare their predictions with the experimental
data on the mass spectra for several different reactions. For example, after the fitting of the
e+e− → DD̄ data we all know about DD̄ elastic scattering in the P -wave at the model level [in
particular, σ(D0D̄0 → D0D̄0)= 3π| sin δ01(s)|2/p2

0(s)]. Unfortunately, these predictions are not
possible to verify. However, there are many other reactions which can be measured.

4. The ψ′′ shape in non-DD̄ channels
Now we apply the last described model to construct the mass spectra in the reactions

e+e−→ γχc0, J/ψη, φη. In the ψ′′ region, we restrict ourselves to the contributions only from
the ψ′′ and ψ(2S) resonances, taking into account their couplings to the γχc0, J/ψη, and
φη channels in the first order of perturbation theory. Thus the cross section for e+e− → ab
(ab= γχc0, J/ψη, φη) can be written as

σab(s) = 4πα2k3
ab(s) |Fab(s)|2 /(3s3/2) . (18)

Here kab(s) =
√

[s− (ma +mb)2][s− (ma −mb)2] /(2
√
s) and the form factor

Fab(s) =
Rab(s)

Dψ′′(s)Dψ(2S)(s) − Π2
ψ′′ψ(2S)(s)

, (19)

where Rab(s) = gψ(2S)γ [Dψ′′(s)gψ(2S)ab + Πψ′′ψ(2S)(s)gψ′′ab] + gψ′′γ [Dψ(2S)(s)gψ′′ab + Πψ′′ψ(2S)(s)
×gψ(2S)ab]; gψ(2S)ab, gψ′′ab are the coupling constants of the ψ(2S), ψ ′′ to the ab channel.

We use the following information about the ψ(2S) decays into ab= γχc0, J/ψη, φη [16, 25]:
B(ψ(2S)→ ab)= 9.68%, 3.28%, (2.8+1.0

−0.8)×10−5, Γψ(2S)ab (in keV) =29.4, 10.0, (8.5+3.0
−2.4)×10−3,

gψ(2S)ab (in GeV−1)=±0.25, ±0.22, ±(2.7+0.5
−0.4) × 10−4 (errors < 10% are not shown). The

values of gψ(2S)ab are obtained from the data on the ψ(2S)→ ab decay widths by the formula
Γψ(2S)ab = g2

ψ(2S)abk
3
ab(m

2
ψ(2S))/(12π).

Note that the available information about the ψ ′′ → γχc0, J/ψη, φη decays are very poor
[16]. The cross sections for e+e− → γχc0, J/ψη, φη were measured by CLEO [25] at a single

6
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Figure 5: The cross sections for e+e− → γχc0, e
+e− → J/ψη, and e+e− →φη.

point in energy
√
s = 3773 MeV. Their approximate values are presented in Fig. 5 by the

dots with errors. They allow us to roughly estimate the coupling constants gψ′′γχc0 ≈ 0.54
GeV−1, gψ′′J/ψη ≈ 0.053 GeV−1, and gψ′′φη ≈ 1.12 × 10−2 GeV−1, by using Eqs. (18) and
(19), to construct the corresponding cross sections. Here, as an illustration, we put gψ(2S)ab

and gψ′′ab > 0, and gψ(2S)γ/gψ′′γ < 0. The solid curves in Fig. 5 show the e+e−→ ab cross
sections; the dashed and dotted curves show the ψ ′′ and ψ(2S) contributions proportional
to [gψ′′γDψ(2S)(s) + gψ(2S)γΠψ′′ψ(2S)(s)]gψ′′ab and [gψ(2S)γDψ′′(s) + gψ′′γΠψ′′ψ(2S)(s)]gψ(2S)ab in
Rab(s), respectively. Note that the cross section for e+e− →φη is completely dominated by the
ψ′′ contribution. These examples tell us that the mass spectra in the ψ ′′ region in the non-DD̄
channels can be very diverse. Therefore we should expect that the data on such spectra will
impose severe restrictions on the constructed dynamical models.

5. On ambiguity of resonance parameters
Here we comment on the ambiguity of the interfering resonances parameters determination,

which has been discussed in Refs. [11, 12, 17]. Let us write the e+e− → hh̄ amplitude involving
the resonance and background contributions in the form [17]

F (E) = Axe
iϕx/(M −E − iΓ/2) +Bx (20)

Here E=
√
s, M , Γ, Ax, ϕx, and Bx are the real parameters. At fixed M and Γ, there

are two solutions for Ax, ϕx, and Bx: (I) Ax = A, Bx = B, ϕx = ϕ, (II) Ax =
√

A2 − 2ABΓ sinϕ+B2Γ2, Bx = B, tanϕx = − tanϕ + BΓ/(A cosϕ). They yield the same
cross section as a function of energy, σ(E) = |F (E)|2, and differ in the magnitude and phase
of the resonance contribution [17]. For example, at M =3.77 GeV, Γ=0.03 GeV, A=0.045
nb1/2GeV, ϕ=0, and B=1.5 nb1/2, solution (II) gives Ax =

√
2A and ϕx=π/4. For each en-

ergy, the two solutions also give the different overall phase, δ = δres + δbg, of the amplitude
F (E). For the above numerical example, the phase δbg corresponding to solutions (I) and (II)
is shown in Fig. 6 by the dashed and solid curves, respectively; the phase δres =arctan[ Γ

2(M−E) ]

is shown by the dotted curve. The origin of the rapid change of the phase δbg (which is ad-
ditional to δres) requires a special dynamical explanation (for example, the presence of extra
intermediate states), for which we do not see at present any reasons.

6. Conclusion
• We tried to show that the shape of the ψ ′′ resonance keep important information about

the production mechanism and interference with background. We have considered the models
satisfying the unitarity requirement and obtained good descriptions of the current data on the
e+e− → DD̄ reaction cross section, in particular, in the model with the mixed ψ ′′ and ψ(2S)
resonances. We have extracted from experiment g2

ψ(2S)DD̄
/(4π) ≈ 13.

• Further improvement of the data and matching the results from the different groups on
the reactions e+e− → DD̄ can result in the crucial progress in understanding the complicate
mechanism of the ψ′′ resonance formation.
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Figure 6: The ambiguity of the overall phase of the e+e− → hh̄ reaction amplitude defined in Eq. (20).

• As we have shown, the measurements of the mass spectra in the ψ ′′ region in the non-DD̄
channels, such as e+e− → γχc0, J/ψη, φη, etc., will also contribute to a comprehensive study
of the ψ′′ resonance physics and the effective selection of theoretical models.

• Additional information about the ψ ′′ in the DD̄ mass spectra can be extracted, for exam-
ple, from weak decays B→ψ′′K and photoproduction reactions at high energies γA→ψ ′′A.

This work was supported in part by RFBR, Grant No. 10-02-00016, and Interdisciplinary
Project No. 102 of Siberian division of RAS.
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