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Abstract

The results of computation of long-distance contributions due to charm quark loops to
the process B → Kµ+µ− are presented.

1 Introduction

Presently much attention is drawn to the precision comparison of the SM predictions with the
data obtained by experiments at the LHC. The ultimate goal of these studies would be to
find deviations from the SM and thereby some hints for New Physics. There are numerous
scenarios for physics beyond SM. In general, it seems that the gauge sector of the SM is rather
robust and aesthetically attractive since one has just fermionic quanta while the interaction is
of geometrical origin and is dictated by the gauge principle. If some new modes are discovered
then their interaction will still be based most probably on the gauge invariance principle. The
primary task of LHC experiments is to study the nature of mass generation that is realized in
the SM through Higgs mechanism. Introduction of this mechanism is dictated mainly by the
requirement of renormalizability of the theory which is a strict principle from old fifties. The
presence of the fundamental Higgs mode allows for ad hoc Yukawa couplings to fermions. And
this part of SM seems to be the most interesting in present and currently under thorough study
at LHC with the special purpose detector for flavor physics LHCb. The flavor sector of SM is
the most mysterious part of the model as there are no guidelines in its construction but rather
some parametrization of data with the requirement of minimality of every sort. However this
parametrization is quite efficient and successful. The existence of three generations allows for
explanation of CP violation within CKM scheme. Nevertheless the flavor sector is certainly a
place to look for physics beyond SM (New Physics).

The experiment LHCb is designed to investigate flavor physics in decays of beautiful mesons.
The number of events already registered is such that some traditional “rare” B-decay modes
are not so rare anymore. The experimental material is impressive and allows for a precision
study of the flavor sector and, in particular, the process B → K`+`− [1]. However, there is a
problem on the theory side to claim that the results are consistent or not with the SM since for
precision check of the theory one has to account for QCD effects. Indeed, the SM is formulated
in terms of quark-gluon degrees of freedom {q, g} while the experiment in performed in terms of
hadrons B,D,K, π... and the comparison between two pictures requires big effort when one is
talking about real precision. For instance, in the case of B → K`+`− processes the underlying
flavor-changing transition is b → s`+`− and is sensitive to new physics as loops of virtual new
particles can contribute to the rates. The main obstacle in the analysis is the absence of the
interface between quarks and hadrons that requires the use of QCD in strong coupling regime
which is still beyond the present theory capabilities and not treatable at the moment. The
solution of the future is probably the numerical simulation on the lattice. Nevertheless the
theory analysis is developed especially its parts that are treatable within present techniques.
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2 Effective theory - separation of scales

It seems like factorization is a key word in theoretical analysis of SM at present. In the case of
flavor changing transitions it means a scale separation through the OPE and the use of effective
theories for describing the low energy dynamics. Indeed, the electroweak scale of the SM is the
vacuum expectation value of the Higgs field v = 250 GeV or, in practice, masses of gauge bosons
MW ,MZ and that of the top-quark mt as it happens to be of the same order of magnitude.
Since for ∆B = 1 processes the scale is set by mb with µ ∼ E ∼ mb � v one can construct
an expansion in mb/v. This procedure is known as (“integrating out heavy particles” and is
well understood in the framework of effective theories and OPE. The pQCQ works and allows
for control of the large terms αn

s lnk(MW /mb) within renormalization group summation. The
result gives an effective Hamiltonian

Heff = −4GF√
2

VtbV
∗

ts

10∑

i=1

Ci(µ)Oi(µ)

with GF being the Fermi constant, Vtb - elements of CKM matrix. The coefficients Ci(αs, µ)
are short-distance pQCD quantities and Oi(µ) are composite local operators. This factorization
is of pure PT origin and under control through PT series in αs(µ) for the coefficient functions
Ci(αs(µ)). The numerical value of αs(µ) is well known (see, e.g. [2, 3]). Thus at the leading
order in GF the SM amplitudes reduce to the leading order expression in an effective theory
with the Hamiltonian Heff

A(B → K(∗)`+`−) = −〈K(∗)`+`− | Heff | B〉 + O
(

m2
b

M2
W ,m2

t

)

Theoretical analysis the relevant processes reduces to computation of hadronic matrix elements
of the local operators Oi. There are tree-level operators with charm fields

O1 = (s̄LγρcL) (c̄LγρbL) , O2 =
(
s̄j
Lγρc

i
L

) (
c̄i
Lγρbj

L

)

but also new ones that are sensitive to new physics as their their coefficient generated through
the loops

O9 =
αem

4π
(s̄LγρbL)

(
l̄γρl

)
, O10 =

αem

4π
(s̄LγρbL)

(
l̄γργ5l

)

and
O7γ = − e

16π2
s̄σµν(msL + mbR)bF µν

“V-A” projectors are L = (1 − γ5)/2, R = 1 − L. The dominant contributions are due to
operators O9,10 and O7γ . Contributions of loop operators to B → K(K∗)`+`− are local and
reduce to form factors f+

BK(q2), fT
BK(q2), . . .

A(B → K`+`−) =
GF√

2

αem

π
VtbV

∗

tsp
µ×

[
¯̀γµ`

(
C9f

+
BK(q2) +

2(mb + ms)

mB + mK
Ceff

7 fT
BK(q2)

)
+ ¯̀γµγ5`C10f

+
BK(q2)

]

For example, the tensor B → K form factor is defined as

〈K(p)|s̄σµρq
ρb|B(p + q)〉 =

[
q2(2pµ + qµ) − (m2

B − m2
K)qµ

]
ifT

BK(q2)

mB + mK
.

Computation of the form factors in QCD requires nonPT methods. However higher precision
calls for accounting for even more complicated matrix elements.
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3 Charm loops contribution

The four-quark charm operators O1 and O2 lead to charm-loop interactions of the form

as the top quark has but they cannot be integrated out as the scale mc is small. The amplitude
is not local anymore. Indeed, the contribution of tree-level operators to the amplitude A(B →
K`+`−) reads

AO1,2 = −(4παemQc)
4GF√

2
VtbV

∗

ts

¯̀γµ`

q2
H(B→K)

µ (p, q)

with Qc = 2/3 and

H(B→K)
µ (p, q) = i

∫
d4xeiqx × 〈K(p)|T c̄γµc(x)

[
C1O1(0) + C2O2(0)

]
|B(p + q)〉

The key quantity of the analysis is the T-product

Tµ = TO1(0)Jµ(x) = T c̄γµc(x)Oi(0)

which leads to a nonlocal amplitude that can be expanded on the light-cone in the form

TO1(0)Jµ(x) = s̄Γb ⊗ C(x) + s̄Gb ⊗ CG(x) + ...

At the leading order in αs and x, the coefficient C is given by the two-point correlator

C → i

∫
d4xeiq·xc̄γµc(x)Jµ(0).

It can be reliably computed in QCD at q2 � 4m2
c that leads to the factorization approximation.

4 Factorization of charm loops

At the leading order the amplitude

H(B→K(∗))
µ (p, q)|fact =

(
C1

3
+ C2

)
〈K(∗)(p)|Oµ(q)|B(p + q)〉

where both O1 and O2 contribute and the new effective operator

Oµ(q) = (qµqρ − q2gµρ)
9

32π2
g(m2

c , q
2)s̄LγρbL

reduces to the b → s local current can be expressed through B → K (∗) form factors. The
charm-loop coefficient function is given by the well-known expression

g(m2
c , q

2) = −8

9
ln

(
mc

mb

)
+

8

27
+

4

9
y − 4

9
(2 + y)

√
y − 1 arctan

(
1√

y − 1

)
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where y = 4m2
c/q

2 > 1 and µ = mb. It is easier to represent this function through its dispersion
relation in the variable q2 with the spectrum

1

π
Imsg(m2

c , s) =
4

9

√
1 − 4m2

c

s
(1 +

2m2
c

s
)Θ(s − 4m2

c)

The factorizable amplitude is often called “perturbative” or “short-distance” charm-loop ef-
fect. There are both PT and nonPT corrections to factorization. For instance, even NLO PT
corrections violate factorization.

In this talk I discuss the nonPT soft gluon corrections to factorization approximation [4]
that are represented by the graph

B̄

γ∗

b

s

d

c

where the B → K(∗) matrix element contains a soft-gluon emission from the charm loop. The
c-quark loop with the emitted gluon generates the nonlocal effective operator Õµ.

5 OPE on the light-cone and sum rules

One casts the soft-gluon emission part to a form

H(B→K(∗))
µ (p, q)|nonfact = 2C1〈K(∗)(p)|Õµ(q)|B(p + q)〉

where Õµ(q) is a convolution of the coefficient function with the nonlocal operator

Õµ(q) =

∫
dω Iµραβ(q, ω)s̄Lγρδ[ω − (in+D)

2
]G̃αβbL

In fact this matrix element resembles a nonforward parton distribution with different initial and
final hadrons. The coefficient function is given by its spectral density

1

π
Im Iµραβ(q, ω) =

m2
cΘ(q̃2 − 4m2

c)

4π2q̃2
√

q̃2(q̃2 − 4m2
c)
×

∫ 1

0
du

{
ūq̃µq̃αgρβ + uq̃ρq̃αgµβ −

[
u +

(ū − u)q̃2

4m2
c

]
q̃2gµαgρβ

}

with q̃ = q − uωn−, so that q̃2 ' q2 − 2uωmb. Now the amplitude reads

H(B→K)
µ (p, q) =

(
C1

3
+ C2

)
〈K(p)|Oµ(q)|B(p + q)〉

+2C1〈K(p)|Õµ(q)|B(p + q)〉 =
[
(p · q)qµ − q2pµ

]
H(B→K)(q2)

and the scalar part is

H(B→K)(q2) =

(
C1

3
+ C2

)
A(q2) + 2C1Ã(q2)

with Ã being a soft-gluon amplitude. Note that C1 = 1.12, C2 = −0.27 that enhances Ã. To
compute Ã determining the soft-gluon emission we employ Light-Cone SR with the B-meson
Distribution Amplitudes (DA).
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Consider a correlation function

F (B→K)
νµ (p, q) = i

∫
d4yeip·y〈0|T{jK

ν (y)Õµ(q)}|B(p + q)〉 ,

with jK
ν = d̄γνγ5s and extract a residue

F (B→K)
νµ (p, q) =

ifKpν

m2
K − p2

[(p · q)qµ − q2pµ]Ã(q2) + cont

where fK is the kaon decay constant and cont accumulates higher mass states with the kaon
quantum numbers located above the threshold sh.

A general note about Sum Rules vs lattice:

• model-independent, first-principle method. QCD sum rules rely on asymptotic expansions
of Green’s functions – OPE at large momenta – while on the lattice the entire function
can be found numerically

• QCD Sum Rules techniques provide a consistent way of treating PT structure of matrix
elements (scale dependence) which is needed to retain RG invariance of physical observ-
ables

We use HQET for describing B-meson with the DA decomposed as

〈0|d̄α(y)δ[ω − (in+D)

2
]Gστ (0)bβ(0)|B̄(v)〉 =

fBmB

2

∫
dλe−iλyv

[
(1+ 6 v)

{
(vσγτ − vτγσ)

[
ΨA − ΨV

]
− iσστΨV − yσvτ − yτvσ

v · y XA +
yσγτ − yτγσ

v · y YA

}
γ5

]

βα

through quantities ΨA,ΨV , XA, YA and where where fB and mB are the B-meson decay constant
and the mass. We use the model DA for the B-meson of the form

ΨA(λ, ω) = ΨV (λ, ω) =
λ2

E

6ω4
0

ω2e−(λ+ω)/ω0 , XA(λ, ω) =
λ2

E

6ω4
0

ω(2λ − ω)e−(λ+ω)/ω0

YA(λ, ω) = − λ2
E

24ω4
0

ω(7ω0 − 13λ + 3ω)e−(λ+ω)/ω0

with ω0 and λE being the parameters of the two-particle and three-particle DA’s of the B-
meson. A note about the B-meson DA’s is in order. This is definitely a model which is not yet
sufficiently accurate. There are ∼ 1/mb corrections to the HQET correlation function, the gluon
radiative corrections and some other that have not been taken into account. The normalization
parameters of B-meson DA’s, such as the inverse moment, have large uncertainties. The un-
certainties of sum rules eventually leads to relatively large theoretical errors of the calculation.
Nevertheless, since we are investigating a small effect, at least at low q2, the achieved accuracy
is reasonable.

It is convenient to give results in terms of correction to the coefficient C9 which is sensitive
to new physics. Its value without loop corrections is C9 = 4.2. We write ∆C9 = (C1 +
3C2)g(mc, q) + 2C1g̃ with g̃ = Ã/f+

BK in case of the decay into K-meson. The results are
presented in the following figures.
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Left figure: charm-loop effect in B → K`+`− as a correction to the coefficient C9 (solid),
nonfactorizable soft-gluon contribution (dashed) factorizable contribution (dash-dotted). Right
figure: correction to C9 for amplitude M1 for the K∗ decay (total – solid, soft-gluon – dashed,
factorizable – dash-dotted).
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Left figure: correction to C9 for the amplitude M3 for B̄0 → K̄∗l+l− ( total – solid, soft-
gluon – dashed, factorizable – dash-dotted). Right figure: forward-backward asymmetry AFB

for B̄0 → K̄∗µ+µ− decay with charm-loop effect (solid), without this effect (dashed). The zero
of AFB is at q2

0 = 2.9 ± 0.3.

6 Summary

Long-distance soft-gluon emission violating factorization taken into account for c-quark loop
contribution. LCSR with B-meson DA is used to calculate matrix elements of emerging op-
erators. Soft-gluon contribution is enhanced by the Wilson coefficient for B → K ∗`+`− and
numerically important. The soft-gluon contribution is suppressed by ∼ 1/(4m2

c−q2) and the ap-
proximation is valid at q2 � 4m2

c . Near the c̄c-threshold, multiple soft-gluon emission operators
have to be included and one eventually looses control over OPE.
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