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Abstract

Based on the field-theory-inspired approach, a new expression for the pion form factor
Fπ is proposed. It takes into account the pseudoscalar meson loops π+π− and KK̄ and the
mixing of ρ(770) with heavier ρ(1450) and ρ(1700) resonances. The expression possesses
correct analytical properties and describes the data in the wide range of the energy squared
−10 GeV2 ≤ s ≤ 1 GeV2 without introducing the phenomenological Blatt – Weisskopf
range parameter Rπ. By adding the vector-pseudoscalar meson loop a good description is
obtained also of the BaBaR data on the reaction e+e− → π+π− at

√
s ≤ 3 GeV and the

recent SND data on the reaction e+e− → ωπ0.

1 Introduction

The pion form factor Fπ is an important characteristics of the low energy phenomena in
particle physics related with the hadronic properties of the electromagnetic current in the the-
oretical scheme of the vector dominance model [1, 2, 3]. There are a number of expressions
for this quantity used in the analysis of experimental data. The simplest approximate vector
dominance model expression based on the effective γ − ρ coupling ∝ ρµAµ [3],

Fπ(s) =
m2

ρgρππ/gρ

m2
ρ − s − i

√
sΓρππ(s)

, (1)

does not possess the correct analytical properties upon the continuation to the unphysical region
0 ≤ s < 4m2

π and further to the spacelike region s ≤ 0, nor does it takes into account the mixing
of the isovector ρ-like resonances. Since, phenomenologically [4],

gρππ

gρ
= 3

(

mρΓρππΓρee

2α2q3
π

)1/2

≈ 1.20 (2)

the correct normalization Fπ(0) = 1 is satisfied by Eq. (1) only approximately. Hereafter,
α = 1/137 stands for the fine structure constant. The formula of Gounaris and Sakurai [5]
respects the above normalization condition and has the correct properties under analytical
continuation. However, being based on some sort of effective radius approximation for the
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single ρ(770) resonance, it is not suited for taking into account the mixing of ρ(770) with heavier
isovector mesons. The expression based on the gauge invariant γ − ρ coupling ∝ ρµνFµν ,

Fπ(s) = 1 +
sgρππ/gρ

m2
ρ − s − i

√
sΓρππ(s)

, (3)

respect the correct normalization, but does not possesses correct analytical properties and
breaks unitarity. The earlier expression [6] for Fπ takes into account the strong isovector mixing,
but has the shortcoming that the above normalization condition is satisfied only approximately,
within the accuracy 20%.

The purpose of the present contribution is to obtain the expression for the pion form factor
which possesses the correct analytical properties in the entire kinematic domain and takes into
account the mixing of ρ(770) with the heavier resonances ρ(1450) and ρ(1700).

2 Finite width effects and resonance mixing

It is known that the data on the pion form factor at energies
√

s ≥ 1 GeV require the
inclusion of heavier resonances ρ(1450), ρ(1700) etc. whose widths are large. The resonances
are strongly mixed via their common decay modes. These effects can be taken into account
in the field-theory-inspired approach based on summing to all orders of the loop corrections

to the bare propagators 1/D
(0)
R = 1/(m2

R − s) of vector mesons. The term ”bare” means that
the propagators are not distorted by the mixing. The scheme can be demonstrated by taking
the two-resonance mixing as an example. The effects of finite width are taken into account by
introducing the diagonal polarization operator ΠRR(s):

1

DR(s)
=

1

D
(0)
R

+
1

D
(0)
R

ΠRR(s)
1

D
(0)
R

+
1

D
(0)
R

ΠRR(s)
1

D
(0)
R

ΠRR(s)
1

D
(0)
R

+ · · · =
1

D
(0)
R − ΠRR(s)

.

Because of the relation

DR(s) = m2
R − s − ReΠRR(s) − i

√
sΓR(s) (4)

the above formula takes into account the finite width effects. The mixing is taken into account
by introducing the non-diagonal polarization operator ΠRR′(s):

1

DR
→ 1

DR
+

1

DR
ΠRR′

1

DR′

ΠRR′

1

DR
+ · · · =

DR′

DRDR′ − Π2
RR′

≡
(

G−1
)

RR
,

1

DR′

→ 1

DR′

+
1

DR′

ΠRR′

1

DR
ΠRR′

1

DR′

+ · · · =
DR

DRDR′ − Π2
RR′

≡
(

G−1
)

R′R′ ,

ΠRR′

DRDR′

→ ΠRR′

DRDR′

+
(ΠRR′)3

(DRDR′)2
+ · · · =

ΠRR′

DRDR′ − Π2
RR′

≡ (G−1)RR′ .

Here,

G =

(

DR −ΠRR′

−ΠRR′ DR′

)

is the matrix of inverse propagators. The amplitude of the reaction is

A(i → R + R′ → f) =
(

gi→R gi→R′

)

G−1

(

gR→f

gR′→f

)

.

The generalization to the case of arbitrary number of mixed resonances is evident.
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3 Polarization operators

We take into account the analytically calculated loops of pseudoscalar (P) π+π− and
K+K− + K0K̄0 mesons, which are diagonal in external vector mesons:

Π(PP )
ρiρi

= g2
ρiππ

[

Π(PP )(s,m2
ρi

,m2
π) +

1

2
Π(PP )(s,m2

ρi
,m2

K)

]

,

and the vector (V)-pseudoscalar ωπ0 and K∗K̄+K̄∗K mesons,

Π(V P )
ρiρi

= g2
ρiωπ

[

Π(V P )(s,m2
ρi

,m2
ω,m2

π) + Π(V P )(s,m2
ρi

,m2
K∗ ,m2

K)
]

.

The quark model relations among coupling constants of all vector mesons are assumed in order
to express the V PP and V V P coupling constants through the gρiππ and gωρiπ = gρiωπ ones.
Hereafter i = 1, 2, 3, · · · counts the tower of rho-like states ρ1 = ρ(770), ρ2 = ρ(1450), · · · .

The diagonal polarization operators are represented in the form

Πρiρi
= Π(PP )

ρiρi
+ Π(V P )

ρiρi
.

The non-diagonal ones are

Π(PP )
ρ1ρi

=
gρiππ

gρ1ππ
Π(PP )

ρ1ρ1
,

Π(PP )
ρiρj

=
gρiππgρjππ

g2
ρ1ππ

Π(PP )
ρ1ρ1

,

i 6= j 6= 1, in case of the PP loop. Analogous expressions are assumed for the V P loop so that
the total non-diagonal polarization operators are written as

Πρ1ρi
= Π(PP )

ρ1ρi
+ Π(V P )

ρ1ρi
,

Πρiρj
= Π(PP )

ρiρj
+ Π(V P )

ρiρj
+ saij,

where aij (i 6= j) are free parameters.
The quantities Π(PP ) ≡ Π(PP )(s,m2

ρi
,m2

P ) and Π(V P ) ≡ Π(V P )(s,m2
ρi

,m2
V ,m2

P ) are calcu-
lated from the dispersion relations:

Π(PP )

s
=

1

6π2

∫ ∞

4m2
P

q3
PP (s′)ds′

s′3/2(s′ − s − iε)
,

Π(V P )

s
=

1

12π2

∫ ∞

(mV +mP )2

q3
V P (s′)√

s′(s′ − s − iε)

(

s0 + m2
ρi

s0 + s′

)

ds′. (5)

The factor (s0 + m2
ρi

)/(s0 + s′) is introduced in order to stop a too fast growth of the ρi →
V P decay width with the rise of the energy. Yet both integrals in Eqs. (5) are logarithmical
divergent. This divergence is canceled by the subtraction of the real parts of the above equations

at s = m2
ρi

. The result of the PP loop integration is Π(PP ) = Π
(PP )
0 + Π

(PP )
1 , where

Π
(PP )
0 =

s

48π2



8m2
P

(

1

m2
ρi

− 1

s

)

+







v3
P (m2

ρi
) ln

1+vP (m2
ρi

)

1+vP (m2
ρi

)
, mρi

> 2mP

−2v̄3
P (m2

ρi
) arctan 1

v̄P
, mρi

≤ 2mP









 ,

Π
(PP )
1 =

s

48π2















v3
P (s)

[

iπ − ln 1+vP (s)
1−vP (s)

]

, s ≥ 4m2
P ,

2v̄3
P (s) arctan 1

v̄P (s) , 0 ≤ s < 4m2
P ,

−v3
P (s) ln vP (s)+1

vP (s)−1 , s < 0.
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Figure 1: Energy dependence of ReΠρ1ρ1
(s).

Here, vP (s) =

√

1 − 4m2
P

s , v̄P (s) =

√

4m2
P

s − 1. The plot of ReΠ
(PP )
ρ1ρ1

against
√

s is shown in
Fig. 1.

The result of the V P loop integration is

Π(V P ) =
1

48π2

(

Π
(V P )
0 + Π

(V P )
1 + Π

(V P )
2

)

,

where

Π
(V P )
0 =

m2
ρi

+ s0

2s0

[

(m+m−)3

s0

(

1 − s0

s
−

s(m2
ρi
− s0)

m4
ρi

)

ln
mV

mP
+

(

1 − s

m2
ρi

)

m+m−

(

3

2
(m2

+ + m2
−) ln

mV

mP
+ m+m−

)]

−

s

2s2
0

(

m2
ρi

+ s0

s + s0
− 1

)

[

(m2
+ + s0)(m

2
− + s0)

]3/2
ln

√

m2
+ + s0 +

√

m2
− + s0

√

m2
+ + s0 −

√

m2
− + s0

,

Π
(V P )
1 = − s

m4
ρi

{

[

(m2
+ − m2

ρi
)(m2

ρi
− m2

−)
]3/2

arctan

√

m2
ρi
− m2

−

m2
+ − m2

ρi

θ(m+ − mρi
)−

1

2

[

(m2
ρi
− m2

+)(m2
ρi
− m2

−)
]3/2

ln

√

m2
ρi
− m2

− +
√

m2
ρi
− m2

+
√

m2
ρi
− m2

− −
√

m2
ρi
− m2

+

θ(mρi
− m+)







,

Π
(V P )
2 =

m2
ρi

+ s0

s(s + s0)

∣

∣(m2
+ − s)(m2

− − s)
∣

∣

3/2















1

2
ln

√

m2
+
−s

m2
−−s

+ 1

√

m2
+
−s

m2
−−s

− 1

θ(m2
− − s)+

arctan

√

s − m2
−

m2
+ − s

θ(s − m2
−)θ(m2

+ − s) +









i
π

2
− 1

2
ln

√

s−m2
−

s−m2
+

+ 1

√

s−m2
−

s−m2
+

− 1









θ(s − m2
+)















.

The plot of ReΠ
(V P )
ρ1ρ1 against s is shown in Fig. 2.
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Figure 2: The dependence of ReΠ
(V P )
ρ1ρ1 (s) on energy squared. The insertion shows a smaller

region −0.2 GeV2 ≤ s ≤ 0.8 GeV2.

4 Expression for the pion form factor and the measured quan-

tities

The new expression for the pion form factor looks like

Fπ(s) = (gγρ1
, gγρ2

, gγρ3
, · · · )G−1









gρ1ππ

gρ2ππ

gρ3ππ

· · ·









+

gγωΠρ1ω

Dω∆
(g11gρ1ππ + g12gρ2ππ + g13gρ3ππ + · · · ) . (6)

The notations are as follows. ρ1 ≡ ρ(770), ρ2 ≡ ρ(1450), ρ3 ≡ ρ(1700), · · · , where dots mean
other possible rho-like resonances.

G =









Dρ1
−Πρ1ρ2

−Πρ1ρ3
· · ·

−Πρ1ρ2
Dρ2

−Πρ2ρ3
· · ·

−Πρ1ρ3
−Πρ2ρ3

Dρ3
· · ·

· · · · · · · · · · · ·









is the matrix of inverse propagators, gij are its matrix elements multiplied by ∆ = detG;
gγV = m2

V /gV where gV enters the leptonic partial widths like ΓV →e+e− = 4πα2mV /3g2
V ;

Dρi
= m2

ρi
− s − Πρiρi

. The term ∝ Πρ1ω takes into account the ρ(770) − ω(782) mixing. It
is essential because of the mass proximity of the resonances ρ(770) and ω(782). The mixings
ρ2,3,··· are neglected because they are not enhanced by the effect of the mass proximity. The
quantity

Πρ1ω =
s

m2
ω

Π′
ρ1ω + i

√

sΓωπγ(s)Γρπγ(s) (7)
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Table 1: The resonance parameters found from fitting the data SND [8], CMD-2 [9], KLOE10
[10], and the BaBaR data [11] restricted to the energies

√
s ≤ 1 GeV.

parameter SND CMD-2 KLOE2010 BaBaR

mρ1
[MeV] 773.76 ± 0.21 774.70 ± 0.26 774.36 ± 0.12 773.92 ± 0.10

gρ1ππ 5.798 ± 0.006 5.785 ± 0.008 5.778 ± 0.006 5.785 ± 0.004
gρ1

5.130 ± 0.004 5.193 ± 0.006 5.242 ± 0.003 5.167 ± 0.002
mω [MeV] 781.76 ± 0.08 782.33 ± 0.06 782.94 ± 0.11 782.04 ± 0.10
gω 17.13 ± 0.30 18.43 ± 0.47 18.27 ± 0.45 17.05 ± 0.29
103Π′

ρ1ω [GeV2] 4.00 ± 0.07 3.97 ± 0.10 3.98 ± 0.09 4.00 ± 0.06

gρ2ππ 0.71 ± 0.35 0.79 ± 0.26 0.019 ± 0.004 0.21 ± 0.04
gρ2

8.0 ± 4.4 7.6 ± 3.4 0.22 ± 0.07 4.0 ± 1.0

gρ3ππ 0.20+1.20
−0.17 0.76 ± 0.75 0.055+0.088

−0.043 0.011+0.479
−0.007

a23 0.002 ± 0.011 −0.016 ± 0.057 −0.014 ± 0.040 −0.0005 ± 0.0009
χ2/Nd.o.f. 54/35 34/19 87/65 216/260
rπ[fm] 0.635 ± 0.054 0.646 ± 0.059 0.668 ± 0.039 0.668 ± 0.053

is the polarization operator of the ρ(770) − ω(782) mixing. The real part sΠ ′
ρ1ω/m2

ω is chosen
in such a way that it vanishes at s = 0, and Π′

ρ1ω is a free parameter. The inverse propagator
of the ω(782) meson is

Dω = m2
ω − s − i

√
sΓω, (8)

where the energy-dependent width Γω ≡ Γω(s) = Γω3π(s) + Γωπγ(s) + Γωηγ(s) includes the
dominant decay mode ω(782) → π+π−π0 and the radiative ones. The details are given in
Ref. [7].

5 Comparison with existing data at −10 GeV2 ≤ s ≤ 1 GeV2

The new expression for Fπ is compared with the measured quantities. First, we find the
values of free parameters from fitting the data SND [8] CMD-2 [9], KLOE [10], and BaBaR [11]
at 4m2

π ≤ s ≤ 1 GeV2. One can take into account only the π+π− and K+K− + K0K̄0 loops in
this energy region. The quantity to fit is the bare cross section

σbare =
8πα2

3s5/2
|Fπ(s)|2q3

π(s)
[

1 +
α

π
a(s)

]

, (9)

qπ(s) =
√

svπ(s)/2 is the momentum of the final pion, and the function a(s) allows for the
radiation of a photon by the final pions in the point-like approximation [12, 13, 14, 15]. The
masses of the heavier vector mesons a kept fixed: mρ2

= 1450 MeV, mρ3
= 1700 MeV. The set

of free parameters is mρ1
, gρ1ππ, gρ1

, mω, gω, Π′
ρ1ω, gρ2ππ, gρ2

, gρ3ππ, and a23. Their obtained
values, found from fitting the bare cross section Eq. (9), side-by-side with the corresponding
χ2 per number of degrees of freedom, are listed in Table 1 separately for the four independent
measurements of SND [8], CMD-2 [9], KLOE [10], and the BaBaR data [11] restricted to
the low-energy range

√
s ≤ 1 GeV. The bottom line of this Table shows the values of the

pion charge radius, rπ =

√

6dFπ(s)
ds |s→0, calculated with the resonance parameters listed in the

Table. For comparison, the averaged value of the pion charge radius cited by the PDG [4] is
rπ = 0.672 ± 0.008 fm. The corresponding curves are shown in Figs. 3, 4, and 5. We postpone
the comparison with the BaBaR data until the next section.
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Figure 3: The results of fitting the SND data [8]. The insertion shows the ρω resonance region.

If one considers the energy
√

s ∼ mρ(770) then the treatment reduces to the case of the single
ρ(770) resonance whose inverse propagator is

Dρ1
= m2

ρ1
− s + (m2

ρ1
− s)

dReΠρ1ρ1
(s)

ds

∣

∣

∣s=m2
ρ1

− i
√

sΓρ1ππ(s).

This results in the renormalization of the coupling constants gρ1ππ → Z
−1/2
ρ gρ1ππ, gρ1

→
Z

1/2
ρ gρ1

, where

Zρ = 1 +
dReΠρ1ρ1

(s)

ds

∣

∣

∣s=m2
ρ1

≈ 0.93,

and the numerical value is obtained using the entries of the Table 1. The renormalized (physical)
partial widths look like

Γρ1ππ → Γ(phys)
ρ1ππ ≡ Γ′

ρππ =
Γρ1ππ

Zρ
,

Γρ1ee → Γ(phys)
ρ1ee ≡ Γ′

ρee =
Γρ1ee

Zρ
.

The Table 2 demonstrates that the renormalization brings the partial widths of the ρ(770)
resonance closer to the PDG values Γρππ = 149.1 ± 0.8, Γρee = 7.04 ± 0.06 [4]. Note also that
ΓPDG

ωee = 0.60 ± 0.02 [4].
Second, using the found free parameters, we continue Fπ(s) to the space-like domain s < 0

and compare |Fπ(s)|2 with the data [16, 17, 18, 19]. The results are shown in Fig. 6. We
emphasize that the data [16, 17, 18, 19] are not included to the fits. Hence, a good agreement,
demonstrated in Figs. 3, 4, 5, 6 makes the evidence in favor of the validity of Eq. (6) for the
pion form factor.

Note that the above treatment does not require the commonly accepted Blatt – Weisskopf
centrifugal factor (1 +R2

πk2
R)/(1 + R2

πk2), where k is the pion momentum, in the expression for
Γρππ(s) [4]. The fact is that the usage of Rπ dependent centrifugal barrier penetration factor

7



Figure 4: The same as in Fig. 3 but for the CMD-2 data [9].

Table 2: The renormalization constant and the partial widths of the ρ(770) and ω(782) calcu-
lated with the parameters of the Table 1.

SND CMD-2 KLOE2010 BaBaR

Zρ 0.9273 ± 0.0003 0.9277 ± 0.0002 0.9279 ± 0.0002 0.9277 ± 0.0001
Γρππ 139.93 ± 0.29 139.54 ± 0.39 139.12 ± 0.29 139.34 ± 0.19
Γ′

ρππ 150.90 ± 0.31 150.42 ± 0.42 149.92 ± 0.31 150.20 ± 0.20

Γρee 6.56 ± 0.01 6.41 ± 0.01 6.29 ± 0.01 6.47 ± 0.01
Γ′

ρee 7.07 ± 0.01 6.91 ± 0.01 6.78 ± 0.01 6.97 ± 0.01

Γωee 0.59 ± 0.02 0.51 ± 0.03 0.52 ± 0.03 0.60 ± 0.02

in particle physics (for example, in the case of the ρ(770) meson [4]), results in the problem
which is overlooked. Indeed, the meaning of Rπ is that this quantity is the characteristic of the
potential (or the t-channel exchange in field theory) resulting in the phase δbg of the potential
scattering in addition to the resonance phase [20]. For example, in case of the P -wave scattering
in the potential U(r) = Gδ(r −Rπ) where the resonance scattering is possible, the background
phase is δbg = −Rπk + arctan(Rπk). At the usual value of Rπ ∼ 1 fm, δbg is not small.
However, in the ρ meson region, the background phase shift δbg is negligible and the phase
shift δ1

1 is completely determined by the resonance. See Fig. 7, where shown are the phase δ1
1

calculated with the parameters from the BaBaR column of the table 1 and the data points from
Refs. [21, 22] is presented. Therefore, the descriptions of the hadronic resonance distributions
taking into account the parameter Rπ have a dubious character.
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Figure 5: The same as in Fig. 3 but for the KLOE-2100 data [10].

6 Reactions e
+
e
− → π

+
π
− and e

+
e
− → ωπ

0 at energies up to 3

GeV

When going to the energies higher than 1 GeV one should take into account the ωπ and
K∗K̄ + K̄∗K loops in the polarization operators. This somehow takes into account the multi-
particle intermediate states. To this end we undertake the joint fit of the BaBaR data [11]
on the reaction e+e− → π+π− at energies

√
s ≤ 3 GeV, and the SND data on the reaction

e+e− → ωπ0 at energies
√

s < 2 GeV [23, 24]:

σe+e−→ωπ0 =
4πα2

3s3/2
|Ae+e−→ωπ0 |2 q3

ωπ,

Ae+e−→ωπ0 = (gγρ1
, gγρ2

, gγρ3
, · · · )G−1









gρ1ωπ

gρ2ωπ

gρ3ωπ

· · ·









Fitting with ρ(770) + ρ(1450) + ρ(1700) does not permit the joint description of the cross
section of the reactions e+e− → π+π− and e+e− → ωπ0. We undertake the fit with four rho-
like resonances ρ(770) + ρ(1450) +ρ(1700) + ρ(2100). Their masses, coupling constants are free
except the condition

gρ1ππ

gρ1

+
gρ2ππ

gρ2

+
gρ3ππ

gρ3

+
gρ4ππ

gρ4

= 1

necessary for correct normalization Fπ(0) = 1. Some of the fitted parameters are: mρ1
=

765.55 ± 0.09 MeV, gρ1ππ = 6.117 ± 0.003, gρ1
= 4.830 ± 0.002, mω = 781.95 ± 0.09 MeV,

Π′
ρ1ω × 103 = 3.98 ± 0.07 GeV2, mρ2

= 1362 ± 3 MeV, mρ3
= 1503 ± 8 MeV, mρ4

= 1960 ± 6
MeV. The results of this joint fit are shown in Figs. 8 and 9. Note that taking into account
the V P loop in the pion form factor results in unwanted singularities at s < −0.4 GeV2. These
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Figure 6: The pion form factor squared in the space-like region s < 0 evaluated using the
resonance parameters of the Table 1, the BaBaR column. The experimental data are: NA7
[16], Bebek et al. [17], Horn et al. [18], Tadevosyan et al.[19].
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Figure 7: The phase shift δ1
1 of ππ scattering. The data are, respectively, Protopopescu et al.

[21] and Estabrooks et al. [22]. The curves corresponding to the parameters obtained from
fitting the SND, CMD-2, and KLOE data are not shown because they coincide with the curve
evaluated using the parameters from the fit of the BaBaR data, shown here.
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Figure 8: The same as in Fig. 3, but for the BaBaR data [11].

may be attributed to the way of slowing down the growth of Γρ→ω(s) with growing s in the
time-like region which is chosen here in the simplest form (s0 + m2

V )/(s0 + s). The problem
demands an additional study.

7 Conclusion

To conclude, the new expression, Eq. (6), for the pion form factor Fπ(s) is obtained which
gives a good description of the data of SND, CMD-2, KLOE, BaBaR on π+π− production in
e+e− annihilation at

√
s < 1 GeV, describes the scattering kinematical domain, and does not

contradict the data on ππ scattering phase δ1
1 . The preliminary treatment shows that the joint

description of the cross section of the reactions e+e− → π+π− and e+e− → ωπ0 is possible
upon taking into account the vector – pseudoscalar loops. Going to higher energies demands
the inclusion of the axial-vector – pseudoscalar loops. This work is now at progress.
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