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Abstract

We consider a two-component liquid model, a la Landau, for the quark-gluon plasma.
Qualitatively, the model fits well some crucial observations concerning the plasma properties.
Dynamically, the model assumes existence of an effective scalar field which is condensed.
Existence of such a condensate is supported by lattice data. We indicate a possible crucial
test of the model in the lattice simulations.

1 Introduction

Discovery of the strongly interacting quark-gluon plasma at RHIC 1 made a great impact on
landscape of theoretical papers devoted to quantum chromodynamics. There emerged a new
problem of explaining the exotic properties of the plasma observed. It is the same fundamental
and interesting as the confinement problem and in fact the two problems are to be considered in
conjunction with each other. Moreover, there is renewed interest in relativistic hydrodynamics,
superfluidity and, more generally, in applying the holographic methods to condensed-matter
systems [3].

In this paper we consider a possibility that a variation of the famous two-component model
of superfluidity applies directly to the quark-gluon plasma 2.

In section 2 we summarize briefly basic properties of the plasma and argue that the model
explains naturally these observations. In Section 3 we overview the lattice evidence in favor of
existence of a condensate of a scalar field. In section 4 we propose a crucial test of the model
through measuring correlator of components of energy-momentum tensor.

2 Qualitative features

It might be useful (for the purpose of model building) to reduce the plasma properties to three
points, namely, equation of state, viscosity and the role of quantum effects.

A. Existence of the plasma was conjectured long time ago. Moreover the equation of state
of the plasma has been known also since long since it was established via numerical experiments
within the lattice formulation of QCD, for references see, e.g., [1]. It turns out that the equation
of state is close to that of the ideal gas of quark and gluons:

[ǫ(T )]plasma ≈ [ǫ(T )]ideal gas

(

1 − δ
)

, (1)

where the correction δ ≈ 0.15, ǫ(T ) is the energy density as function of temperature and
[ǫ(T )]ideal gas is the energy density for noninteracting quarks and gluons.

1For details, discussions and references see, e.g.. reviews [1].
2The basic idea is the same as in our unpublished report [2]. Here, we extend the argumentation and address

the issue of crucial tests of the model.
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Thus, the equation of state indicates that the plasma is close to an ideal gas.
B. The observation (1) produces illusion of simplicity of the properties of the plasma. How-

ever, analysis of the data obtained at RHIC led to the conclusion that the plasma possesses the
lowest viscosity η among all the substances known so far:

(η

s

)

plasma
≈

1

4π
, (2)

where s is the entropy density (introduced to measure the viscosity in dimensionless units).
The value of 1/4π is somewhat symbolical and is quoted for the purpose of memorizing the
data. The actual value of η might be larger, say η/s ∼ 0.4 [1] or even lower, see [4]. The value
η = 1/4π represents the conjectured lower limit [5].

Anyhow, the viscosity observed for the plasma is the lowest one among all the known liquids
[1]. Thus, measurements of the viscosity indicate that the plasma is close to an ideal liquid
(which is defined as having η = 0). Note that for the ideal gas the viscosity tends to infinity,

(η

s

)

ideal gas
→ ∞ . (3)

More precisely, this ratio is inverse proportional to the coupling constant squared η/s ∼ 1/α2
s .

C. As a kind of variation of the point B, one argues [5] that such a low value of viscosity
implies that the quantum effects are crucial and the liquid cannot be, rigorously speaking,
treated classically. Indeed, basing on the estimates common to kinetics one readily finds that

η/s ∼ k−1

B τrelaxation(ǫ/n) ,

where kB is the Boltzmann constant, τ is the relaxation time, ǫ is the energy density and n is
the density of particles. ¿From the uncertainty principle, the product of energy of a particle,
ǫ/n times its free time, tau cannot be smaller that the Planck constant. Thus:

η

s
∼

τrelaxation

τquantum
, (4)

where the ”quantum time” τquantum ∼ h̄/kBT . Then the observation (2) implies quantum
nature of the QGP.

It is a challenge to theory to explain all the three observations, (1), (2), (4) which are
apparently showing in the opposite directions. Indeed, one starts with the idea that the plasma
is an ideal gas and ends up with a kind of a proof that the plasma is a quantum liquid.

It is amusing that it is quite straightforward to suggest a model which allows–on a qualitative
level– to unify all the would-be contradictory features of the plasma [2]. We have in mind the
two-component model of superfluidity as formulated by L.D. Landau.

Indeed, what is ’special’ about the viscosity? How is it possible to have the equation of state
close to that of the ideal gas and, still, nearly vanishing viscosity? Let us imagine that we are
dealing with a two-component substance. One of the components occupies larger phase space,
c1 and is responsible for the equation of state. The other one has smaller phase space, c2 but
very small viscosity. Then the total viscosity can be small since, at least naively, to evaluate
the total viscosity one adds inverse power of the partial viscosities:

1

ηtot
=

c1

η1

+
c2

η2

, (5)

where c1,2 are normalized by c1 + c2 = 1 Indeed, the meaning of the viscosity η is similar to
that of resistance and if we have two independent motions then we would apply the rule (5) 3.

3Equation (5) can be found in, e.g., in old books on classical solutions [6]. In more modern terms, the
example of the superfluidity itself might serve as the best illustration to (5). Indeed, the superfluid fraction can
be small while the whole liquid is superfluid. On more detailed level, some care should be exercized since one
has distinguish between viscosity with respect to a capillar motion and with respect to rotations, for a recent
exposition see, e.g., [13].
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Thus, the two-component model accommodates naturally points A, B above. Assuming
one of the components be superfluid explains, as a bonus, the point C as well.

Another point is worth emphasizing. In the non-relativistic case the superfluid component
evaporates at finite temperature Tc. The physics behind is readily understood. Indeed, at T = 0
the superfluid component is related to the condensate of particles with momentum p = 0. At
non-vanishing temperature the particles excited by temperature. Because of the conservation
of the number of particles in the non-relativistic case, the superfluid component disappears at
finite temperature.

In the relativistic case, that is in the absence of conservation of the particles, the theoretical
constraints on the phase space occupied by the superfluid component are weaker. Indeed,
even at T → ∞ the non-perturbative component in case of Yang-Mills theories vanishes only
logarithmically:

lim
T→∞

c2(T ) ∼ g6

s(T ) ∼
1

(ln T )3
, (6)

where g2
s(T ) is the coupling of the original 4d theory.

3 Scalar condensate

3.1 General constraints

Dynamically validity of the superfluidity scenario depends strongly on the existence of an (ef-
fective) scalar field condensed the thermal vacuum

〈ϕ〉ground state 6= 0 . (7)

The phase of this condensate corresponds then to a new light degree of freedom.
The condition (7) looks very restrictive and, in more detail, assumes a number of constraints:
a. The field ϕ is a complex field:

ϕ∗ 6= ϕ .

b. Nevertheless the condensate (7) should not violate conservation of any known quantum
number, like charge.

c. In case of superfluidity, one is to think rather in terms of a three-dimensional field ϕr

while its time derivative is determined by the chemical potential µ :

∂tϕ = µ . (8)

Generalizations of (8) to the case of relativistic plasma can be found in [7]. The chemical
potential µ is conjugate to the charge which distinguishes the field ϕ.

3.2 Thermal scalar

If we consider the conditions a)-c) above in an abstract form, they look very difficult to satisfy.
It is then even more amusing that a 3d field with similar properties arises naturally [8] within
the string approach to the deconfinement phase transition and is commonly called thermal
scalar, for a concise review and further insights see [9] .

One considers temperatures T below and close to the temperature of the phase transition
Tc. In the string picture βH ≡ 1/Tc = 1/α

′

where (2πα
′

≡ l−2
s is the string tension. At T = Tc

the statistical sum over the states diverges. The main observation is that at small |T − Tc| the
sum is dominated by contribution of single degree of freedom, that is scalar meson with mass

m2

β ≈
βH(βH − β)

2π2(α′)2
, (9)
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In other words, at T = TC the mass is becoming tachyonic.
In more detail, it is convenient to use the polymer approach to field theory of a scalar

particle so that the action associated with a trajectory of length L is S = M · L where M
is the bare mass. The trajectories are random walks with renormalized mass. The free energy
of the thermal scalar can be represented as a sum over random walks and the final expression
reduces to:

F = = β lnZ = = β

∫

∞

0

dL

L

exp(−m2

βlsL)

(lsL)d/2
, (10)

where d is the number of spatial coordinates, in our case d = 3. Expression (10) is quite generic
to the polymer approach. A specific feature of (10) is that ls plays the role of the length of the
links and is fixed in terms of the string tension.

The crucial point is that the free energy of the thermal scalar is exactly the partition function
for a single static string with tension 1/2πα

′

. Moreover, the single string dominates the free
energy of gas of strings.

3.3 Three dimensional scalar at T > Tc

What happens to the thermal scalar at T > Tc is an open question. In particular, it could
condense. Such a scenario is typical for the percolation picture. The basic features can be
understood from Eq. (10). At m2

β = 2 the exponential suppression of very large lengths L
disappears. However, the integral over L is still divergent in the ultraviolet, not in the infrared.
This means that small clusters with L ∼ ls dominate. The probability of having infinite length
is suppressed by a power of L at L → ∞. For a tachyonic mass there emerges an infinite cluster.
However, its density is suppressed as a power of |m2

β and small for temperatures above and close
to Tc. In field theoretic language appearance of the infinite cluster means condensation of the
field, < φ > 6= 0.

Imagine that the thermal scalar is indeed condensed at T > Tc. Then, remarkably enough,
the conditions we formulated above are satisfied. Indeed,

a) The thermal scalar is a complex field. It is encoded in the fact that the integration in
(10) is over closed loops which means a complex field in the polymer language.

b) The thermal scalar is associated with topological quantum number which is a wrapping
around the compactified time direction (due to finite temperature).

c) The thermal scalar is a 3d scalar field, as it follows from the representation (10).
Nowadays, it is common to consider dual models of Yang-Mills theories in terms of strings

living in extra dimensions with non-trivial geometry. The thermal scalar at temperatures below
and close to Tc is generic to such models as well, see [9] and references therein. One would
not claim, however, that the most naive version of the condensation of the thermal scalar is
realized within this scenario. Rather, the phase transition is a change of geometry in the extra
dimensions.

However, the scalar fields at T > Tc are resurrected in another disguise. Namely, one
predicts existence of defects of various dimensions, see in particular [10]. At T > Tc the models
predict existence of time-oriented strings. Their 3d projection then looks as trajectories and
correspond indeed to scalar 3d particles. There are independent lattice data which seem to
support the validity of this prediction [11].

To summarize, there is strong evidence that at T > Tc there exists an effective 3d scalar field
condensed in the thermal vacuum of QCD. Existence of such a scalar is a necessary condition
for the validity of the two-component model.
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4 Possible crucial test of the model

The considerations given above demonstrate that the two-component model of the quark-gluon
plasma does not contradict existing data. One cannot claim, however, that the model is indeed
validated by the data.

A crucial test of the model could performed through lattice measurements of a correlator
of components of the energy-momentum tensor T ti, i = 1, 2, 3. In more detail, consider the
retarded Green’s function defined as:

Gtj,ti
R (k) ≡ i

∫

d4xe−ikxθ(t)〈[T tj(x), T ti(0)]〉 . (11)

Moreover, concentrate on the case of vanishing frequency, k0 = 0. There are two independent
form factors, corresponding to transverse and longitudinal waves.

Gtj,ti
R (0,k) =

kikj

k2
GL

R(k) +
(

δij −
kikj

k2

)

GT
R(k) (12)

Contribution of the superfluid component to the GL,T
R has been discussed in many papers

and textbooks. Here, we quote the result of the paper [12] which includes also relativistic
corrections:

lim
k→0

GT
R(k) = − (sT + µρn), lim

k→0

GL
R(k) = − (sT + µρ), (13)

where s is the entropy density, T is the temperature, µ is the chemical potential, ρ ≡ ρn + ρs

is the total density, while ρn and ρs are the densities of the normal and superfluid components,
respectively. In an alternative language:

lim
k→0

Gtj,ti
R (0,k) = µρs

kikj

k2
(14)

In other words, it is only the superfluid component which results in non-analyticity at small k.
Note that the proposed crucial test of the model (14) refers to static quantities, k0 = 0. Since

there is no time (or frequency) dependence, the continuation from the Euclidean to Minkowski
space is straightforward and the prediction of the model, ρs 6= 0, can be tested on the lattice.

5 Conclusions

It is amusing that known qualitative features of the quark-gluon plasma seem to favor a two-
component model of superfluidity for the plasma. In terms of field theory, the model implies
condensation of an effective 3d scalar field. This consequence of the model seems to be supported
by the lattice data as well.

A crucial test of the model could be performed through search of non-analyticity in the
correlator of components of the energy-momentum tensor on the lattice. can be tested directly
in the lattice simulations of Yang-Mills theories.
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