
Imagery of Symmetry in Current Physics

D. V. Shirkov
Bogoliubov Lab., JINR, 141980 Dubna, Russia

Dedicated to the memory

of Albert Tavkhelidze

Instead of Abstract

This text, mainly, summarizes the talk delivered at the Conference ”Quarks 2010”; its essence

concerns funny duality of symmetry that is broken under phase transition corresponding to the super-

conductivity and superfluidity, namely, in the semi-phenomelogical description a la Ginzburg-Landau

this is wine-bottle rotation symmetry, while in the quantum Bogoliubov theory it is phase symmetry

responsible for number of particles (helium atoms, Cooper electron pairs) conservation. This duality is

interesting in the context of the logic to intuition (Science to Art) contraposition.

We conclude with a short account on some other aspect of distorted symmetry – the aspect related to

varying space-time geometry and, particularly, to dimension reduction.

Albert – man of Idea and Action:

1st episode with New Quantum Number for
Quarks introduced by Bogoliubov, Struminsky
and Tavkhelidze in 1965. Active Propaganda of
this Number in his ICTP 1965 lectures.
Compare with calm attitude of C.N.Yang after the CP-

paper (as recalled by F. Dyson) vs. T.D.Lee agita-

tion that forced Chien-Shiung Wu to start the Co60

experiment (according to the story recollected by Ta-

You Wu).

2nd episode: Initiation of the 1971 research with
Bogoliubov and V.Vladimirov on compatibility of
the self-similarity in the HE Bjorken region with
principles of Local QFT.

Other episodes with Albert activity in organizing the Kiev Institute for Theoretical Physics,
Moscow Institute for Nuclear Research, Journal of Theoretical and Mathematical Physics and
the 1st International conference on Theoretical and Mathematical Physics in 1972.

1 Phase transition and broken symmetry

Connection between Phase transition and symmetry breaking became evident before the QM
creation from physics of crystals.

Noteworthy, the famous Landau 1937 paper[1] on the phase transition theory started by
pedagogical introduction of symmetries but only discrete symmetries; in the paper’s conclusion
one can find arguments against an idea that superfluid He II could be a liquid crystal. No
mention on continuous symmetry !
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Meanwhile, in current physics of phase transitions the continuous symmetries are dominat-
ing. The break-through from discrete to continuous symmetry was first made by Bogoliubov in
his paper[2] on the microscopic theory of superfluidity.

Spontaneous symmetry breaking (SSB) is a well-established term in physical theory; its
essence is simple. One has in mind a physical system that can be described by expressions
(Lagrangian, Hamiltonian, equations of motion) obeying some symmetry, while a real physical
state of the system corresponding to some partial solution of the equations of motion does not
obey this symmetry. One meets such a case when the lowest of possible symmetrical states
does not provide the system with absolute energy minimum and turns out to be unstable. A
particular lowest state is not unique; a full collection of them forms a symmetric set. The real
cause of symmetry breaking and transition of the system to some of the lowest non-symmetrical
states usually turns out to be an arbitrary small asymmetrical perturbation.

a b

Figure 1: Simple mechanical system illustrating spontaneous symmetry breaking: (a) symmetric
initial state; (b) asymmetric final state.

As a simple illustration take a system of an empty vessel(flask) of a convex bottom and a
tiny massive ball. Let the vessel, which is a figure of revolution, stand vertically and the ball
be located above it, just on the axis (Fig.1a) of symmetry. The system is invariant with respect
to rotation around the vertical axis. Let the ball fall down due to the force of gravity. Upon
reaching the bottom, the ball will not stand at the center of convex surface and will roll down
to some point at the bottom periphery (Fig.1b). Thus, the initial conditions are symmetrical,
while the final state is not.

1.1 Symmetries, groups and quantum symmetries

Symmetries and groups, discrete and continuous, are of wide use in theoretical physics.

Continuous groups, Lie group of transformations, are usually formulated within the Hamil-
tonian or Lagrangian framework. In the second case, from the Lagrangian invariance with the
help of the Nöther theorem one obtains conservation laws which are physically important.

In modern physics, along with “natural transformations” and symmetries (like from the
Lorentz group) some other, not so obvious and pictorial symmetries, are of utmost importance.
Among them, we single out a group of Quantum Symmetries. They are quite different from
“classical”, like spatial (boost, rotation, Lorentz) and internal (isospin, flavor) ones. Quantum
Symmetries include phase, gauge, chiral and Super symmetries. The defining feature is that for
their formulation and understanding one has to use quantum notions :
* nonobservability of the ψ-function phase;
* spin, chirality ;
* distinction between Bose– and Fermi–statistics.

1.2 Superfluidity

The original explanation of the phenomenon of superfluidity offered by Landau[3] was based
on the idea that at low temperatures the properties of liquid 4He are defined by collective
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excitations (phonons) rather than a quadratic spectrum of individual particle excitations1. The
need for agreement between the spectrum form and the thermodynamic properties of liquid
helium motivated Landau to introduce particular excitations, in addition to phonons, with a
quadratic spectrum beginning with a certain energy gap, excitation, which he called rotons2.

Figure 2: (a) Phonon + roton spectra – Landau 1941 phenomenology; (b) Spectrum of non-ideal
Bose-gas in the Bogoliubov 1946 microscopical model.

Bogoliubov’s theory of superfluidity is based on a physical assumption that in a weakly
nonideal Bose gas there is a condensate akin to an ideal Bose gas. The existence of the Bose
condensate leads to a common wave function of the whole system, i.e., collective effect. There-
fore, the presence of even a weak interaction transforms single-particle excitations (∼ k2/2m2)
into the spectrum of collective excitations. To calculate this spectrum, Bogoliubov assumed[2]
that at low temperatures the Bose condensate contains a macroscopically large3 (of an order of
Avogadro number NA ) number of particles N0 as a result of which matrix elements of the cre-
ation and annihilation operators of the condensate particles are proportional to “large” number
∼

√
N0 , and the main contribution to the system dynamics comes from the processes of particle

transition from the condensate to the continuous spectrum and back to the condensate.
The Bogoliubov 1946 theory starts with quantum Hamiltonian for a non-ideal Bose gas

HB−gas =
∑

~p

p2

2m
a+

p ap +
1

2V

∑

v(p1 − p2)a
+
p1
a+

p2
ap2ap1

with weak repulsion v(p) > 0 . This Hamiltonian is invariant with respect to phase transforma-
tion of creation and annihilation operators

a+ → eiαa+ , a→ e−iαa, (1)

which is related to the number of particle conservation, as HB−gas commutes with the number
of particle operator N =

∑

~p a
+
p ap .

The Bogoliubov physical hypothesis on “macroscopic condensate” Np=0 = a+
0 a0 ∼ NA

leads to Corollary: condensate operators can be changed for big c-numbers: a+
0 , a0 →

√
N0 .

At the same time, it allows one to single out a big constant Ψ0 ∼
√
N0 from the psi-function

Ψ(x) = Ψ0 + ψ(x) in the position picture.
Expansion in powers of small parameter 1/

√
N0 yields HB−gas = E0 + HBog + ... with

condensate energy E0 and HBog - the Bogoliubov Hamiltonian

HBog =
∑

p 6=0

(

p2

2m + N0
V v(p)

)

b+p bp + N0
2V

∑

p 6=0

v(p)[b+p b
+
−p + bpb−p] . (2)

1It follows from this assumption that in moving with velocity not exceeding a certain critical one it is impossible
to slow down the liquid by transferring energy and momentum from the wall to individual atoms because a linear
form of the phonon spectrum does not allow one to obey simultaneously the laws of energy and momentum
conservation.

2See below Fig. 2(a) in which formulae (2.2) and (2.3) from paper [3] are used.
3Bogoliubov’s intuitive guess got later a direct data support – see papers [4].
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Here, b+p = a+
p , bp = ap ; (p 6= 0) – the “above-condensate” Bose-operators. The second sum

describes creation of pairs of Helium atoms with opposite momenta from condensate and their

“annihilation” into condensate. Interaction between pairs being small ∼ N
−1/2
0 is omitted.

Total number of these correlated pairs is not fixed.

The bilinear operator form HBog can be diagonalized by linear transformation

bp → ξp ; ξp = upbp + vpb
+
−p; ξ+p = upb

+
p + vpb−p (3)

with real coefficients u2
p − v2

p = 1; u−p = up; v−p = vp .
These algebraic relations for operators, in the second quantization language, are realized by
unitary transformation

bp → ξp = U−1
α bp Uα = upbp + vpb

+
−p , . . . ; Uα = e

P

p α(p) [b+p b+
−p−bpb−p] . (4)

that corresponds to the new ground state

Φ0 → ΨBog = U−1
α Φ0 ∼ e−

P

p α(p) b+p b+
−p Φ0 (5)

which contains superposition of correlated pairs of Helium atoms with the total zero momentum.

Bogoliubov spectrum instead of the Landau one. The bp → ξp transformation (3)
correlates pairs of He II atoms with opposite momenta. Transformed Hamiltonian

HBog2(ξ) =
∑

p 6=0

E(p) ξ+p ξp , E(p) =

√

(T (p))2 + T (p) v(p); T (p) = p2

2m (6)

describes new collective excitations [bogolons], as presented on Fig.2b.
Note that the Bogoliubov (u, v) transformation (3) as well as the new ground state ΨBog and
Hamiltonian (6) are incompatible with initial phase symmetry (1).

1.3 Superconductivity

Phase transition with Symmetry Breaking. In the semi-phenomenological Landau theory
of phase transitions[1] one deals with a set of c-functions, the set that forms so-called order
parameter which vanishes above the critical temperature Tc . A simple example is provided by
the case of ferromagnetic. There, one has correlation function Kσσ(r) ; its asymptotics

Kσσ(r) =< σ(0)σ(r) > − < σ(0) >< σ(r) > ; Kσσ(r → ∞) =

{

0, T > Tc

M2(T ), T < Tc

provides one with one-component order parameter M(T ) explicitly shown on Fig.3.

The Ginzburg-Landau SuperConductivity model exploits two-component order pa-
rameter Ψ(r) = |Ψ(r)|eiΦ(r) for a system of superconducting electrons. It was introduced [5]
by an ad hoc definition of a free energy functional for superconducting transition; in the G-L
theory [1950], the electromagnetic properties of a superconductor are deduced from a functional
dependence on Ψ(r) and external magnetic field B(r):

F (Ψ) = Fn0 +

∫

d r
{

|B|2

8π
+ a|Ψ|2 + 1

2
b|Ψ|4 +

∑

α

1

2m∗

∣

∣

(

−i~∇α − q

c
Aα

)

Ψ(r)
∣

∣

2

}

, (7)

where Fn0 is the free energy in a normal state, B = rotA . The crucial point is that one of
the adjusting parameters changes the sign at the Curie point a ∼ T − Tc , while the other b ,
as well as the effective charge q and mass m∗ of superconducting (SC) electrons, are positive
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Figure 3: Temperature dependence of the magnetization (left) and order parameter (right) in ferromag-
netic.

constants. The last two enter into the SC current jα = q~

m∗ |Ψ|2 ∇αΦ . The structure of potential
terms

V (ϕ) = aϕ2 + b
2 ϕ

4 , ϕ = |Ψ| (8)

relates to the geometry of a flask bottom similar to that one presented on Fig.1. The case
T > Tc; a > 0 relates to the concave profile of the bottom. Here, the value Ψ = 0 provides the
stable minimum for V . For T < Tc; a < 0 we have an opposite situation with a convex bottom
that corresponds to the particular flask presented on Fig.1.
Hence, the symmetry that is broken in the phenomenological (macroscopical) L-G theory is the
rotation symmetry.

Meanwhile, at the microscopical quantum level (BCS and Bogoliubov models of super-
conductivity) the broken symmetry is the phase symmetry (1), just like in the Bogoliubov
superfluidity. Turn to superconductivity.

The BSC SuperConductivity is based on the model quantum Hamiltonian :

HBCS =
∑

~k,σ

ε~k c
+
~kσ
c~kσ

+
∑

~k,~k′

V~k,~k′ c+~k↑
c+
−~k↓

c
−~k′

↓
c~k′

↑
, ε~k =

~k2

2m − εF (9)

with ε~k being electron energy above the Fermi one εF and effective Cooper (antipodes) electron
pairs attraction acting in the narrow vicinity of the Fermi surface

V (~k,~k
′

) = −VC , only at |ε~k − ε~k′ | < ωph ; = 0 overwise .

The phase symmetry is consistent with expression (9). However, it is absent in the BCS
wave function which forms the new ground state

|ψBCS >=
∏

~k

(u~k
+ v~kc

+
~k↑
c+
−~k↓

)|0 >= |0 >BCS , (10)

and contains superposition of Cooper pairs.
Omitting a lot of important physical results remind only that the Landau-Ginzburg order
parameter can be presented [Gor’kov, 1959] via the average of the BCS operators

< c+~k↑
c+
−~k↓

>BCS= Ψ(~k) = |Ψ(~k)|exp[iΦ(~k)] (11)

with an important property |Ψ|2 ∼ ns .
Besides, the gap ∆ in the resulting energy spectrum E(k) =

√

ε2(k) + |∆|2 is expressed
in terms of an “effective phonon energy” ωph and the BCS coupling constant

∆ ≈ exp
(

− 1
λ

)

, λ = N0 VC . (12)

The Bogoliubov microscopical theory of superconductivity[6] starts with the Fröhlich electron-
phonon interaction:

HFr =
∑

~k,σ

ε~kc
+
~kσ
c~kσ

+
∑

~q

ω~q b
+
~q b~q + gFr

∑

~k,~k′ ,σ

√

ω(~q)
2V c+~kσ

c~k′
σ
(b+~q + b−~q) (13)
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Again, the Hamiltonian obeys the phase symmetry. However, the superconducting solution
obtained with the help of (u, v) transformation (suitably adjusted to the fermion case)

αk↑ = uk ck↑ − vk c
†
−k↓ , αk↓ = uk c−k↓ + vk c

†
k↑ ; u2

k + v2
k = 1 , (14)

is not compatible with phase symmetry.

We conclude this part of history
that started under the XXth mid-Century motto “Phase transition in Quantum system, as a
rule, is accompanied by Spontaneous Symmetry Breaking” and can be summarized in a few lines

1. The microscopic BCS-Bogoliubov SuperConductivity was shown (Bogoliubov, [7] 1958)
to be SuperFluidity of Cooper pairs;

2. The Superfluid and Superconducting transitions in quantum microscopic theory are
escorted by Spontaneous Symmetry Breaking of phase (“gauge”) symmetry (1) (that is rotation
in the complex plane), related to the number of particle conservation;

3. This is in contrast with the macroscopic phenomenology of Ginzburg-Landau type where
the breaking symmetry is more pictorial and can be visualized by Fig.1

with Message to XXI:
I. In QFT the Higgs field can be under suspicion of being a formal replica of the Ginzburg-

Landau order parameter from the theory of superconductivity.

The Higgs mechanism is an ad hoc pragmatic con-
struction with no physics under it.

In the context of transferring the SSB mechanism

from quantum statistics to QFT one should re-
mind an important contribution by Tavkhelidze et
al.[8] first mentioned by Bogoliubov at the 1960
Rochester conference. (For details, see Ref.[9]).

II. Generally, there is no one-to-one correspondence between physical phenomenon with
phase transition and its theoretical implementation with symmetry breaking;
Due to this, a general question arises
– What is the Symmetry of a physical system (in particular, symmetry involved in phase
transition) ?
– Can it be formulated independently of models ?

Heretical form of the question :

– Does the symmetry exist only in the

consciousness of theoreticians ?

“What is the Verity ?” = that is the
question by Pilatus to Christ.

The modern analog:

What is the Symmetry ?

“Quid est symmetria ?”

The theoretical physics,
is it Art or Science ?

For another aspect of the symmetry duality turn to the Reduction of Dimensions.
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2 Reduction of Dimensions

2.1 Coupling running through the DR looking glass

Reduction of Dimensions, the transition in particular form 4D → 2D, was used in the 90s in
HE Regge scattering (Aref’eva, Lipatov). In XXI, it got impetus in quantum gravity opening
the way to (super)renormalizability.

We studied[10] the QFT coupling behavior for the g ϕ4 model defined in both the 4D, 2D
domains; the ḡ(Q2) evolutions being duly conjugated at a reduction scale Q ∼M.

Consider

L = T − V ; V (m, g;ϕ) =
m2

2
ϕ2 +

4πd/2Md−4

9
g ϕ4 ; g > 0

in parallel in both the 4D (d=4) and 2D (d=2).
Limit ourselves to the one-loop leading level for ḡ corresponding to only diagram, the first

correction to the 4-vertex function. Its contribution I stands in the denominator of the running
coupling

ḡ(q2) =
gi

1 − gi I (q2/m2,m2
i )
. (15)

Explicitly, in the UV limitm2 ≪ q2 ; I
[4]
i (κ;µ) ∼ ln

(

q2

m2

)

in the 4D region, and I
[2]
i (κ;µ) ∼

C+ m2

q2 ln q2

m2 in the 2D region. Note that the first asymptote is rising, the second – decreasing.

Perform now the smooth Dimension Reduction (=DR) for the momentum picture by mod-
ifying metric dk = d4k → dMk = d4k (1 + k2/M2)−1 in the Feynman integrand

I

(

q2

m2

)

→ i

π2

∫

dMk

(m2 + k2)[m2 + (k + q)2]
= J(κ;µ)

with κ = q2/4m2, µ = M2/m2, q2 = q2 − q20 .

Explicitly J
[4]
i (κ;µ) ∼ ln

(

q2

m2
i

)

; and J
[2]
i (κ;µ) ∼ ln

(

4 M2

m2
i

)

+ M2

q2 ln q2

M2

in the 4D region with m2 ≪ q2 ≪M2 and in the 2D region : M2 ≪ q2 ; q2 ≫M2 .

Again, the first (intermediate) asymptote is rising, the second – the very final one – is
decreasing. Hence, the whole pattern of the coupling evolution changes drastically. The ḡ(q2)
diminishes beyond DR scale tending to a finite value

ḡ2(∞) =
gM

1 + gM I2(M2/m2)
< gM :

The DR imitates the UV fixed point for the ḡ evolution.

This gives a chance for the “Great Unification via DR Looking-Glass” as shown on the
right panel of figure 4.

Resume of the DR hypothesis :

The main result is that DR imitates the
UV fixed point for the ḡ evolution.

A more general observation is that change
of geometry could yield the same final
result as an explicit change of dynamics
(adding leptoquarks ... ).

In order to estimate the possibility of a physical signal “from/through the DR looking-
glass”, we studied[11] few toy models of space with variable geometry.
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ḡ4(M2) ḡ2(M2)

ḡ2(∞)

ḡ4(q2)

ḡ2(q2)

|q|M

d = 4 d = 2

The dotted lines corresponds to hard

conjunction of (15) at the DR scale.

ᾱi(q
2)

ᾱs

ᾱ2

ᾱ1,2

ᾱ2,2

ᾱs,2

MGUT�
�

�P
P

P

ᾱ1

? ?

|q|
∼Mdrd = 4 d = 2

New brave Great Unification by DR in-

stead of leptoquarks.

Figure 4: Running coupling for the gϕ4 model (left) and possible GUT scenario (right).

2.2 Toy models of the DR Looking-Glass

To get physical intuition and experience, we started with simple problem – Klein-Gordon scalar
waves on the variable geometry manifolds, like 2-dim surface of the “bottles”:

2R
L

lcoll

2r
l

lcoll

lcoll = 0 lcoll = 0

(a) (b) (c) (d)

Resume of the DR hypothesis, 2 Preliminary resume of this study[11] is that there exists
a possibility of detecting some signal “through the looking-glass at the DR scale” that would
provide us with direct evidence on the existence of variable geometry including dimension
reduction.
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