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Abstract

We discuss three possible ways of addressing quantum physics behind chiral magnetic
effect and electric charge fluctuation patterns in heavy ion collisions. The first one makes
use of P-parity violation probed by local order parameters, the second considers CME in
quantum measurement theory framework and the third way is to study P-odd * P-odd
contributions to P-even observables. In the latter approach relevant form-factor is con-
structed and computed for weak magnetic field in confinement region and for free quarks
in strong field. It is shown that the effect is negligible in the former case. We also discuss
saturation effect - charge fluctuation asymmetry for free fermions reaches constant value at
asymptotically large fields.

1 Introduction

One of the main theoretical challenges of modern quantum chromodynamics (QCD) is to build
a detailed theoretical picture of strong interaction physics relevant for heavy ion collisions.
Currently running experimental programs have already brought lots of exciting results. Despite
tremendous progress in understanding, rich pattern of observed effects is still waiting for being
placed into coherent theoretical picture based on QCD.

In the course of studies of hadronic matter at large temperatures and/or densities one
can make use of the scale separation allowing to neglect effects of weak and electromagnetic
interactions in most cases. A possible interesting exception is pointed out in [1, 2]. When
relativistic ions undergo noncentral collision, strong magnetic field is generated in the collision
region. The typical magnitude of this field is estimated as

√
eB = 10 ÷ 100 MeV, i.e. of the

order of dynamical QCD scale. Correspondingly, any studies of strongly interacting matter
in heavy ion collisions have to take the effects of this abelian magnetic field into account. Of
particular interest in this respect is the so called Chiral Magnetic Effect (CME). The physics
behind it can be explained in several different but complementary ways [1]-[25]. Let us consider
nonzero density of one flavor of free massless quarks in external magnetic field. Suppose there
are unequal chemical potentials for left and right handed quarks: µL 6= µR. When it can
be shown that a nonzero classical electric current flows along the magnetic field (see [8] and
references therein, see also [26] for another prospective):

j =
e2

2π2
µ5B (1)

where 2µ5 = µR − µL. The physical reason for this chiral charge excess to electric charge
current conversion is quark magnetic moment interaction with the magnetic field (which is of
different sign for positively and negatively charged quarks) together with the correlation of spin
and momentum for chiral fermions. Both sides of (1) have of course the same transformation
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properties under P- and CP-parity conjugation. Many different aspects of CME have been
extensively discussed in the literature and there is no doubt that CME is a robust theoretical
effect. However it is not a simple task to apply this clear physical picture to real processes
described by nonperturbative QCD. One of the most important questions on this way is about
physical origin of chiral chemical potential µ5, which is absent in fundamental QCD Lagrangian.
In original picture [7] appearance of effective µ5 6= 0 is a nonperturbative QCD effect, caused
by interaction of quarks with topologically nontrivial gluon field configurations above the phase
transition. The physical explanation goes as follows. As is well known the topological charge
in the QCD vacuum fluctuates as described by Veneziano-Witten formula [27, 28]

χ =

∫

d4x〈GG̃(x)GG̃(0)〉 ∝ F 2m2
η′ (2)

where the nonperturbative parameter in the r.h.s. scales as Λ4
QCD which means that topological

charge fluctuates over Euclidean 4-volumes of typical size determined by nonperturbative QCD
scale. It is worth stressing that these fluctuations are quantum, i.e. the states of different
topological charge are to be summed over for whatever Euclidean 4-volume V and one always
has

∫

V
d4x〈GG̃(x)〉 = 0 (3)

In other words, (3) vanishes because local average 〈GG̃(x)〉 = 0 and not due to the presence
of integration over the volume V . There is no special space-time fluctuation pattern in the
problem other than the correlator (2) (and higher ones).

The situation however may change at nonzero temperature/density. Since the Euclidean
O(4) invariance of the vacuum is broken in this case, one can think of different fluctuation
patterns in spatial and in temporal directions. Moreover, since in real collision experiments
external conditions are time-dependent they can play a dual role of the background and of a
measuring device. In other words the meaning of averaging in (3) changes: one has to integrate
only over those field excitations which are present at a given Minkowski 3-volume for a given
time period and the problem becomes essentially non-stationary in this sense. One can say that
the average over fields 〈..〉 becomes V -dependent. Such quantity - physically corresponding to a
”single event” - can in principle be non-vanishing. Of course it is natural to expect that random
character of fluctuations leads to zero result for (3) after averaging over many events.

The CME is often considered as a reasonable explanation of outgoing particles electric
charge asymmetry observed at Relativistic Heavy Ion Collider (RHIC) [29] - [40] in

√
sNN =

200 GeV Au+Au and Cu+Cu collisions. The latter effect can be described as follows. For
noncentral collision one can fix the reaction plane by two vectors: beam momentum and impact
parameter (without loss of generality this is always chosen as 12 plane in the present paper
and no adjustment angle ΨRP is introduced). Thus angular momentum of the beams (and the
corresponding magnetic field) is oriented along the axis 3. The azimuthal angle φ ∈ [0, 2π) is
defined in the plane 23. With this notation, in any particular event one studies charged particles
distribution in φ using the following conventional parametrization

dN±

dφ
∝ 1 + 2v1,± cosφ+ 2v2,± cos 2φ+ 2a± sinφ+ ... (4)

The coefficients v1,± and v2,± account for the so called directed and elliptic flow. They are
believed to be universal for positively and negatively charged particles with good accuracy.
The coefficients a+ and a− describe charge flow along the third axis, i.e. normal to the reaction
plane. This P-parity forbidden correlation between a polar vector (electric current) and the axial
one (angular momentum) is considered as a signature of P-parity violation in a given event with
a± 6= 0. On the other hand, the random nature of the process dictates 〈a+〉e = 〈a−〉e = 0 (there
the averaging over events is taken).
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Trying to construct a theory of the phenomenon one has first to choose adequate language.
Since at the end the heavy-ion collision is a scattering problem, the ultimate framework would
be S-matrix and inelastic scattering amplitudes formalism with two colliding ions as incoming
particles. Due to extreme complexity this way seems to be totally hopeless. Instead one uses
some effective theories like hydrodynamics to predict distribution of outgoing particles. In the
particular problem of charge fluctuations asymmetry the crucial point distinguishing different
theoretical models is whether the currents of interest are treated as classical or as quantum. In
the former case one makes use of the expression (1) as classical equation. The quantum nature
of the problem here is hidden in a theory for µ5 and corresponding correlators and fluctuations
for this effective chiral chemical potential. In the later case one is to consider quantum averages
like 〈Ω|jµ|Ω〉, 〈Ω|jµjν |Ω〉 etc. and to understand (1) as operator relation. However if one takes
diagonal matrix element of (1) in the vacuum the answer is of course trivial: 〈0|j|0〉 = 0 even
for nonzero external magnetic field. The absence of net electric current is directly related to
the fact that fundamental QCD Lagrangian contains no such quantities as µL or µR.

We discuss three basic complementary ways to address quantum nature of CME in this
paper:

1. To make use of P-parity violation probed by local order parameters

2. To consider CME in quantum measurement theory framework

3. To study P-odd × P-odd contributions to P-even observables.

We discuss all these approaches in the present paper and start with the first one in the next
Section which is phenomenologically the simplest.

2 P-parity violation probed by local order parameters

As is well known quantum field theoretical averages of local operators have typically the fol-
lowing leading contribution:

〈Ω|O(x)|Ω〉 ∝ c · ΛdO (5)

where Λ is ultraviolet cutoff and numerical constant c is generally non-vanishing if c = 0 is
not protected by some symmetry. Therefore the crucial step in the discussed problem is to
model transition from local microscopic current jµ to nonlocal macroscopic one Jµ. It is done
by taking the matrix elements of the current jµ over the medium degrees of freedom |Φ〉 from
full state vector |Ω〉 = |Φ〉 ⊗ |φ〉:

jµ(x) = ψ̄γµψ(x) ↔ Jµ ∝ 〈Φ|
∫

dxρV (x)jµ(x)|Φ〉 (6)

Here the function ρV (x) defines the measure of integration over ”physically infinitesimal vol-
ume”, as is usual in condensed matter physics.

The second important ingredient is the existence of the medium itself. For phenomenological
purposes it is not important what particular kind of microscopic description for the medium
is chosen. What does matter is Lorentz symmetry breaking following from the existence of
a distinguished frame - the medium rest frame. In the simplest cases of uniform medium
characterized by nonzero temperature/density it is usually parameterized by a unit vector uµ -
the medium four-velocity, so that for applied uniform electromagnetic field one has the standard
text-book answer for induced current

〈φ|Jµ|φ〉 ∝ uνFµν (7)
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We say about local parity violation in a state |Ω〉 when a local parity-odd operator O(x) =
−PO(x)P † has nonzero expectation value in this state

〈Ω|O(x)|Ω〉 6= 0 (8)

for example 〈ψ†γ5ψ〉 6= 0. The condition of locality here is important. Operationally it means
that the operators and their products are defined at the scale a ∼ Λ−1 where Λ is ultraviolet
cutoff. For nonlocal averages, on the other hand, it is not a problem to have nonzero P-
odd matrix element, e.g. 〈j0(x)j3(y)〉. The medium, characterized by finite coherence length,
brings physical meaning to this nonlocality. For example, in a medium with applied uniform
electromagnetic field nothing forbids to have P-odd correlation between axial current divergence
and the vector current:

〈φ|Jµ ∂J
5|φ〉 ∝ uν F̃µν (9)

where F̃µν = 1
2ǫµναβF

αβ .
To feel the physical meaning of (9) let us imagine radial distribution of velocities v of the

matter in a uniform magnetic field B. If the divergence ∂J5 is also uniform in the (”fireball”)
volume, the charge density is to be of different sign above and below the reaction plane:

〈φ|J0 ∂J
5|φ〉 ∝ v ·B (10)

In medium rest frame characterized by uµ = (1, 0, 0, 0) for uniform magnetic background, the
electric current J flows along the magnetic field B.

It seems quite natural to interpret (9) in the following way: as soon as the concept of a
medium can be applied to the discussed problem one can easily construct classical nonzero
local P-odd parameters without specifying any particular ”chiral microscopy”. The medium
(manifested by existence of the selected frame) is crucial in two aspects: first, it allows to
consider meaningful local objects and not badly divergent quantities like (5) and second, by
Lorentz invariance breaking it provides invariant meaning for the electric and magnetic fields,
thus making possible correlations between local (in macroscopic sense!) operators of different
parities. We also see here the importance of the uniformity condition: if ∂J5 is short-correlated,
there is no net effect. This brings us back to the question about dynamical scales hierarchy.

3 CME in quantum measurement theory framework

It is possible to understand (1) as a correlation between preferred direction of outgoing electric
charge distribution asymmetry and the magnetic field in a particular event. The sign of this
P-parity odd asymmetry is fixed by the sign of effective µ5 in this event (and of course varies
randomly from event to event due to topological neutrality of QCD vacuum). The quantitative
theory would require information about distribution function of effective µ5.

Since detailed picture of the discussed microscopic quantum/classical interplay is beyond
us, our attitude here is purely phenomenological. We define the effective η-dependent current
Jµ(x, η) as

Jµ(x, η) = 〈Ωη|jµ(x)|Ωη〉 (11)

where electric current jµ(x) = ψ̄(x)Qγµψ(x) with quarks charge matrixQ = diag(2/3,−1/3,−1/3).
The state |Ωη〉 is characterized by

〈Ωη|
∫

V
d4y ∂j5(y)|Ωη〉 = η (12)

It is physically obvious that Jµ(x, η) must be an odd function in η and

∫ ∞

−∞
dηJµ(x, η) = 0 (13)
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Since by assumption each event is characterized by some value of η, positive or negative with
equal probability, this corresponds to ”averaging to zero” over many events.

To proceed further it is convenient to use the formalism of partial partition functions:

Z =

∫

DΦ exp(−S[Φ])
∏

i

∫

dηi δ̃(ηi −Oi[Φ]) (14)

where S[Φ] is the standard Euclidean QCD action, Φ stays for dynamical quark and gluon fields
A, ψ̄, ψ and Oi[Φ] is a gauge-invariant operator made of these fields. We approximate the real
detector with finite resolution by the choice of the ”detector function” δ̃(x) in Gaussian form:

δ̃(η) =
1

2π

∫ ∞

−∞
dλ exp(−λ2l2/2 + iλη) (15)

so that
∫ ∞
−∞ dηδ̃(η) = 1.

We are interested in a value of the electric current (11). For exactly conserved axial current
∂j5 = 0 one would have 〈Ω|jµ(x) · ∂j5(y)|Ω〉 = 0. Due to (electromagnetic) anomaly however
the result reads (for isovector components)

i

∫

dx eiq(x−y) 〈Ω|jµ(x) · ∂j5,a(y)|Ω〉 = Tr [Q2ta] ·
(

− Nc

4π2

)

· qνF̃µν (16)

where ta are generators of flavour SU(2) or SU(3).
For singlet current the anomaly gets gluon contribution

∂j5 = −Tr[Q2]
Nc

4π2
Fµν F̃

µν − Nf

16π2
TrGµνG̃

µν (17)

(notice that for uniform magnetic field Fµν F̃
µν = 0) and computing

Jµ(η, x) =
1

Z

∫

DΦ jµ(x) δ̃ (η − nV ) exp(−S[Φ]) (18)

where

nV =

∫

V
d4y∂j5 = − Nf

16π2

∫

V
d4yTrGµνG̃

µν (19)

at the leading order of the cluster expansion

〈A expB〉 ≈ 〈AB〉 exp(〈B2〉/2) (20)

valid for 〈A〉 = 0 and 〈B〉 = 0, one gets in this approximation

Jµ(x, η) = −Tr[Q2]
Nc

4π2

ηe−η2/2L2

√
2πL6

·
[
∫

d4q

(2π)4
eiqxfV (q)iqν

]

· F̃µν (21)

Here L2 = l2 + 〈n2
V 〉 and the formfactor is given by fV (q) =

∫

V d
4y exp(−iqy). In the infinite

volume limit χ = lim
V →∞

〈n2
V 〉/V N2

f where χ is the standard topological susceptibility.

The expression (21) deserves a few comments. First, the right hand side of (21) is odd
function of η as it should be, and at small η the current is linear in η. If the point x is far
from y ∈ V the current vanishes due to formfactor fV (q), i.e. the current flows only in the
interaction volume V . On the other hand, if x ∈ V and V is large enough to neglect surface
terms, the current also vanishes as it should be for any finite-volume effect. The volume scaling
〈n2

V 〉 ∼ V for the phase with finite correlation length is another manifestation of the same fact.
It is worth mentioning that the maximal current is reached at η ∼ L and decrease as

Jmax ∝ B/τL2 (where τ ∼ V 1/4). This result seems counter-intuitive. Indeed, a naive picture
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would suggest that stronger fluctuations of topological charge 〈n2
V 〉 are to correspond to stronger

currents Jµ(x, η). This in fact is not the case. Rough physical explanation follows from (16):
since the product of jµ and ∂j5 is fixed by electromagnetic anomaly (i.e. by the magnitude of
external abelian field Fµν) large ∂j5 corresponds to small jµ and vice versa. Let us remind that
according to the lattice data [42] the magnitude of topological charge fluctuations experience
rather sharp drop above the deconfinement transition. According to the above it means the
effective enhancement of maximal possible electric current fluctuations! Of course at too small
〈n2

V 〉 Gaussian approximation (neglect of higher order correlators) we have used is to break
down.

It is seen that the discussed effect is a result of subtle interplay between strong and elec-
tromagnetic anomalies (see related remarks in [8]). While the later one is responsible for
correlation between vector and axial currents, the former anomaly provides non-conservation of
axial charge due to topological nonperturbative gluon fluctuations. The question about µ5 dis-
tribution addressed in the introduction is translated here into the question about η distribution
for experimental events.

4 Charge fluctuations asymmetry and polarization operator

Perhaps the most logically consistent way is to study transition matrix elements of (1) between
states of opposite P-parity. This corresponds to:

〈Ω|ji jk|Ω〉 →
∑

A

〈Ω|ji|A〉〈A|jk|Ω〉 (22)

where the states |Ω〉 and |A〉 have opposite P-parities and 〈A|Ω〉 = 0. Of course the expression
(22) is nothing but the electromagnetic polarization operator in the state |Ω〉 saturated by
particular states in spectral expansion.

This line of reasoning has been addressed in the literature before. Local averages like
〈j2µ(x)〉 were computed in pioneering studies of CME on the lattice [43, 44] and many interesting
patterns were found. Later nonlocal averages 〈jµ(x)jν(y)〉 are computed [45, 46]. We find it
worth reminding once again that since the typical correlators we are interested in are given by
dimension six operators, their local matrix elements are strongly UV-singular

〈j2µ(x)〉F ∝ Λ6 + F 2Λ2 + UV-finite (23)

where Λ is UV-cutoff and F -external field strength. Even subtracted average 〈j2µ(x)〉F −〈j2µ(x)〉0
is divergent. This problem is overcome in numerical lattice calculations, but present analytical
challenge for any attempt to describe CME in terms of local matrix elements. To our view this
is a clear signal about intrinsic nonlocal nature of the discussed phenomenon.

Polarization operator in the CME context is studied in [22]. There are two main differences
between our approach and that of the cited paper. First the regular contribution (given by po-
larization operator in magnetic field) and CME-contribution (proportional to µ5) are separated
from the beginning in [22] (in some sense, quantum currents are superimposed on top of the
classical current (1)). We follow another logic and consider polarization operator as the only
source of asymmetric charge fluctuations, but extract a particular formfactor from it, which
corresponds to negative parity intermediate states. Second, the expression for charge fluctu-
ations observable as a functional depending on polarization operator is different in our paper
from that of [22]. We will make more comments on that below.

In this section we discuss P-odd × P-odd contributions to P-even observable, the role of
which is played by current correlator 〈jµjν〉. It seems physically clear that this object should
contain some information about charge distribution (4). The exact form of this correspondence
is however far from trivial. One could think of several ways to relate these quantities. Before
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presenting our approach to this problem let us mention other methods used in the literature.
First, we notice that the current in φ-direction is given by

ezj3 + eyj2 =
√

j23 + j22(ez sinφ+ ey cosφ) (24)

and the corresponding charge difference from (4) is

〈
∫

d(N+ −N−)

dφ
dφ

∫

d(N ′
+ −N ′

−)

dφ′
dφ′

〉

e

(25)

where by the brackets 〈...〉e we denote the average over events. One has 〈(a+−a−)2〉e ∝ 〈j23 +j22 〉
where the current product is assumed to be local. This is very close (but different) to the
definition used in [43]. It is natural to expect that positive definite 〈(a+ − a−)2〉e should be
nonzero even without any magnetic field.

Another relation is suggested in [22]. It is written in terms of event average of the cosine,
where α, β = +,− and N± is the total number of outgoing particles of a given charge:

〈cos(φα + φβ
′)〉e ∝ αβ

NαNβ
(j22 − j23) (26)

where, up to some background terms

〈cos(φα + φβ
′)〉e = 〈v1,αv1,β〉e − 〈aαaβ〉e (27)

Assuming charge independence of v1,α and equal numbers of particle species N+ = N− = N
one gets 〈(a+−a−)2〉e ∝ 〈j23 − j22〉 if one neglects v1,α term with respect to aα term. In fact, the
leading term, which is always contained in j3 component, coincides for both expressions, while
the procedure of taking into account fluctuations in the reaction plane is different.

In this paper we use alternative signature provided by charge density fluctuations and not
spatial components of the currents. An attractive feature of this quantity is that it is well
defined even in the static limit. To this end consider electric charge in some spatial volume V
at temperature T :

eQV = e

∫

V
dx j0(x) (28)

Since we work in zero density approximation the quantum average of this object vanish:

〈QV 〉 = 0 (29)

This is not the case for its square:

〈Q2
V 〉 = −κ̂

∫

V
dx

∫

V
dx′ Π44(x, x

′) (30)

where Π44(x, x
′) is Euclidean polarization operator in constant external field Fµν and at tem-

perature T Wick-rotated from the standard Minkowski expression Π
(M)
00 (x, x′):

Π(M)
µν (x, x′) = i〈T{jµ(x)jν(x′)}〉F,T (31)

with jµ = ψ̄Qγµψ; Π
(M)
µν ↔ Π

(E)
µν , notice the sign convention (30) corresponding to positive-

definite 〈Q2
V 〉 in the static limit. In the standard way we denote

Πµν(q) =

∫

d4x e−iq(x−x′) Πµν(x, x′) (32)

with µ, ν = 1, 2, 3, 4 and q = (q1, q2, q3), q⊥ = (q1, q2).
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The operator κ̂ in (30) accounts for temporal profile of the process. In terms of momentum
space components, (30) takes the following form

〈Q2
V 〉 = −

∫

dq4
2π

κ(q4)

∫

dq

(2π)3
|FV (q)|2Π44(q, q4) (33)

where the form-factor FV (q) =
∫

V dx exp(iqx) keeps information about spatial profile of the
volume V , while the temporal factor κ(q4) =

∫

dτg(τ) exp(iq4τ) encodes temporal (in Euclidean
sense) profile. For finite temperature case we consider here the standard Matsubara replace-
ments q4 → ωn = 2πnT and (2π)−1

∫

dq4 → T
∑

n are to be performed. The choice g(τ) = T
we will adopt in the rest of the paper physically corresponds to the static limit where only the
lowest Matsubara frequency n = 0 contributes:

〈Q2
V 〉st = −T

∫

dq

(2π)3
|FV (q)|2Π44(q, 0) (34)

It can be checked that in thermodynamic limit V → ∞ without external field one reproduces
standard Stefan-Boltzmann answer for elementary fermions lim

V →∞
〈e2Q2

V 〉st/V = e2T 3/3. In

case of quarks one should of course understand eB as qfeB and introduce additional trace over

flavors with the factor NcQ
2: ΠeB,T

44 → Nc
∑

f q
2
fΠ

qf eB,T
44 . For the sake of brevity we will use the

simple notation as for elementary fermions of unit electric charge having in mind the necessity
to make the replacement discussed above in the final answers.

In the limiting case of no background B = 0, T = 0 one has Π44(q, q4) = q2Π(q2) and, at
the leading order, for large 4-volumes V4:

〈Q2
V 〉B=0,T=0 ∝ Π′(0) · V −1/2

4 (35)

where the condition of gauge invariance Π(0) = 0 has been taken into account and the volume
V4 = R3 × t is assumed to be uniform: R ∼ t. Thus the expression (30) is UV-safe and vacuum
charge fluctuations in a given space-time region is purely finite-volume effect.

We can now come back to the definition (30) and rewrite the coordinate integration in
cylinder coordinates with the axis 1 as the polar axis and angle φ defined in the 23 plane. This
is the same notation as in (4), notice that in the standard setup azimuthal angle is usually
defined in the plane 12. This allows to represent the form-factor FV (q) as

FV (q) =

∫

dx1 e
iq1x1

∫

0
ρdρ

∫ 2π

0
dφ eiq̄ρ (36)

where q̄ρ = q2x2 + q3x3 = q2ρ cosφ + q3ρ sinφ and the structure of integration upper limit is
determined by the chosen model for spatial distribution (sharp boundary, smoothed boundary,
Gaussian shape, exponential shape etc). The sinφ - mode in Fourier expansion of (36) is
multiplied by the following coefficient

c1 = (1/π)

∫ 2π

0
dφ sin φeiq̄ρ =

2iq3
q̂

J1(q̂ρ) (37)

where q̂ =
√

q22 + q23 . Thus we have for expansion of (34) in harmonics:

〈Q2
V 〉 = ...+

∫ 2π

0
dφ sinφ

∫ 2π

0
dφ′ sinφ′〈(qa

V )2〉 + ... (38)

where 〈(qa
V )2〉 is given by the same expression (34) with the change FV (q) → fV (q1, q2, q3)

where

fV (q1, q2, q3) =
2iq3
q̂

∫

dx1 e
iq1x1

∫

0
ρJ1(q̂ρ)dρ (39)
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In the same way 〈(qv1

V )2〉 corresponds to the exchange q3 ↔ q2 and sinφ ↔ cosφ. Making use
of (4), (25) and (38) we obtain the following relation for the asymmetry

〈q2V 〉 = 〈(qa
V )2〉 − 〈(qv1

V )2〉 = −
∑

α,β=±

αβ cos(φα + φβ
′) (40)

〈q2V 〉 = N2 ·
(

〈(a+ − a−)2〉e − 〈(v1,+ − v1,−)2〉e
)

=

= T

∫

dq

(2π)3
q23 − q22
q23 + q22

∣

∣

∣

∣

∫

dx1 e
iq1x1

∫

0
ρJ1(q̂ρ)dρ

∣

∣

∣

∣

2

Π44(q, 0) (41)

It is obvious that the above expression has to be proportional to magnetic field since there
is no other O(3)-violating factors in the problem. The effect we are looking for corresponds to
strong enhancement of (41) in external magnetic field and hence, from experimental point of
view, strong dependence of (41) on centrality. It is to be stressed that the multiplicity factor
N2 is by itself strongly centrality-dependent. This dependence is kinematical and has nothing
to do with magnetic field dependence of 〈q2V 〉. Only the latter lies at the heart of CME.

5 General structure of polarization operator

In this section we analyze general structure of polarization operator in the background of nonzero
temperature and magnetic field. As is clear from the above discussion, this is a necessary
prerequisite before one can compute the charge fluctuation asymmetry (41).

First of all let us make a few general comments about space-time dependence of current-
current correlator. In confinement phase (i.e. at sufficiently low temperatures) at large distances
and for weak magnetic field one expects general structure of Euclidean polarization operator of
the following form

〈j(x)j(x′)〉 ∝ e−mρ|x−x′| + C(B) · e−mπ |x−x′| (42)

with C(B) ∝ B2. This interesting effect of different parity states mixing in external field is
similar to the one observed long time ago in [47] at finite temperature. The long-distance
correlations are thus saturated by the lightest degrees of freedom (i.e. pions in the confinement
phase). On the other hand, in deconfinement phase at strong fields, if Larmor radius is much
smaller than Λ−1

QCD no quarks can propagate in transverse direction at all:

〈j(x)j(x′)〉 ∝ e−eB(x−x′)2⊥/2 (43)

Large-Nc suppressed transverse correlations are possible only due to gluon degrees of freedom.
We confine our attention in what follows to a particular case of purely magnetic constant

abelian background field Fµν in the thermal bath rest frame at nonzero temperature T . We have
chosen F12 = −F21 = B, i.e. magnetic field is directed along the third axis. The temperature
effects break Lorentz-invariance and the physical answers depend on 4-vector uµ which repre-
sents four-velocity of the thermal bath. It is normalized as uµu

µ = 1. In the present paper we
take zero chemical potential µ = 0. It is to be noticed that many general conclusions concerning
the structure of polarization operator stay intact for µ 6= 0 since the latter is associated with
the same four-vector uµ given by uµ = (1, 0, 0, 0) in the medium rest frame.

The polarization operator (32) is a rank two tensor depending on two polar vectors qµ
and uµ and antisymmetric tensor Fµν . The general decomposition of (32) in terms of inde-
pendent tensors was extensively studied in the literature starting from [48, 49], see [50] for
recent exposition and [51] for a useful collection of references. Generally, one is to deal with
4×4 = 16 independent tensor structures, built by multiplying the four independent base vectors
qµ, uµ, q

αFαµ, q
αF β

αFβµ. It can be shown however that general requirements of being transversal

qµΠµν(q) = qνΠµν(q) = 0 (44)
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and Bose symmetric Πµν(q) = Πνµ(−q) together with generalized Furry’s theorem [48]

Πµν(q, u, F ) = Πµν(q,−u,−F ) (45)

reduce the number of independent tensor structures to six. Two of them are field-independent,
the other two depend on Fµν linearly and the last two - quadratically (notice that our numeration
of the tensors is different from the one adopted in [48]). Their explicit form reads

Ψ(1)
µν = q2δµν − qµqν

Ψ(2)
µν = (q2uµ − qµ(uq))(q2uν − qν(uq))

Ψ(3)
µν = (uq)(qµFνρq

ρ − qνFµρq
ρ + q2Fµν)

Ψ(4)
µν = (uµFνρq

ρ − uνFµρq
ρ + (uq)Fµν)

Ψ(5)
µν = Fµρq

ρFνσq
σ

Ψ(6)
µν = (q2δµρ − qµqρ)F

ρ
αF

ασ(q2δσν − qσqν) (46)

The coefficient functions of the decomposition

Πµν(q, u, F ) =
6

∑

i=1

π(i) · Ψ(i)
µν (47)

depend on q2, mixed invariants (uq)2, (qF )2, (uF )2, (qFu)2, pure field invariants F 2, F F̃ and
also the temperature T and particle data, encoded in matrices Q and M . The expression (47)
allows to discuss current correlations asymmetries in invariant way in any theory where the
expression for polarization operator can be obtained.

Having these general prerequisites let us come back to analysis of correlation patterns. For
our choice F12 = B the invariants (uF )2, (qFu)2 and FF̃ equal to zero. In what follows we
will be especially interested in a particular type of contribution to Πµν(q) proportional to the

tensor structure Ψ
(7)
µν given by the product of two axial vectors

Ψ(7)
µν = F̃µρq

ρF̃νσq
σ (48)

It is not independent and one easily checks that Ψ
(7)
µν can be expressed as a linear combination

of (46):
q2Ψ(7)

µν =
(

q2F 2/2 − (qF )2
)

Ψ(1)
µν + q2Ψ(5)

µν + Ψ(6)
µν (49)

Let us consider tensor structure of the polarization operator in more details. First of all,
since we are interested only in diagonal 11, 22, 33, 44 and also 34 components in this paper, we

have no contributions from π(3) and π(4) because the tensors Ψ
(3)
µν and Ψ

(4)
µν are antisymmetric

and also vanish for µ = 3, ν = 4 in the chosen background field. Second, we notice that for µ, ν

equal to 3 or 4, one has identically Ψ
(5)
µν = 0. Adopting conventional notation: q⊥ = (q1, q2),

q|| = (q3, q4) we can rewrite (47) using (49) as

Π||(q) = π(Q) · Ψ(1)
|| + π(T ) · Ψ(2)

|| + π̃(F ) · Ψ(7)
|| (50)

where the new invariant functions are given by

π(Q) = π(1) −
(

q2F 2/2 − (qF )2
)

π(6)

π(T ) = π(2) ; π̃(F ) = q2π(6) (51)
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As for the diagonal correlators in 12-plane, one has

Π⊥(q) = π(Q) · Ψ(1)
⊥ + π(T ) · Ψ(2)

⊥ + π(F ) · Ψ(5)
⊥ (52)

where π(Q) and π(T ) are defined by the same expressions (51) while π(F ) form-factor reads

π(F ) = π(5) − q2π(6) (53)

It is seen that the correlators of our interest can be decomposed into just three independent
structures. The first, π(Q) corresponds to purely quantum fluctuations. It has nonzero limit
at both B → 0 and T → 0, which coincides in this case with the textbook expression for
polarization operator. The second structure, π(T ) is responsible for thermal fluctuations. It
vanishes at T → 0. It is worth mentioning that both functions π(Q) and π(T ) depend on
temperature and external field (since the pattern of both quantum and thermal fluctuations is
sensitive to the external conditions) and our notation corresponds rather to the limiting form
of these functions.

We notice that the terms proportional to π(Q) and π(T ) are identical in (50) and (52) up
to obvious change of notation || ⇆ ⊥. This is to be expected since quantum and thermal
fluctuation are O(3)-isotropic. The only non-isotropic term (and the most interesting for us
here) is the last terms: π̃(F ) in (50) and π(F ) in (52). The former one takes into account
charge (and also the current component j3) fluctuations induced by the external magnetic field.
P-parity structure of this term is given by

δB〈j3j3〉 = π̃(F ) × F̃3ρp
ρ × F̃3σp

σ

P-even = P-even × axial × axial

It is to be compared with the thermal contribution proportional to Ψ
(2)
|| :

δT 〈j3j3〉 = π(T ) × p3(up) × p3(up)
P-even = P-even × vector × vector

This directly corresponds to our discussion in the introduction: in the latter case the thermal
fluctuations are distributed isotropically in the thermal bath rest frame, while in the former
one there are electric currents fluctuating along the magnetic field. The magnitude of these
fluctuations is measured by the function π̃(F ), and no physical principle forces it to vanish
either below or above critical temperature. Physically π̃(F ) corresponds to P-odd intermediate
states in the polarization operator.

The function π(F ) entering (52) is a sum of two terms according to (53). This also is to
be expected. Charged particles flowing in the plane perpendicular to the magnetic field are
deflected by the Lorentz force, and this diamagnetic effect is taken into account by the form-
factor π(5). It is absent in Π||. But particle’s spin interacts with the field by means of σαβF

αβ

term in Π|| as well as in Π⊥ which results in the factor q2π(6) in both expressions (50) and
(52). It is worth noting that according to our general logic the electric charge asymmetry is
computed for the full expression for Π44, not just from some part of it, proportional to π̃(F ).
Thus it is legitimate to speak about CME-interpretation of the answer (41) only in the limiting
case when π̃(F ) provides dominant contribution. We discuss that in more details below.

6 Model examples

We analyze in this section two limiting cases where one can construct π̃(F ) in explicit way.
The first one corresponds to weak magnetic fields in the confinement phase. In this case the
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intermediate states are hadron resonances of negative P-parity (see closely related discussion
in [52]). However to select explicitely physical states making dominant contribution is far from
trivial and the answer strongly depends on kinematics. We confine ourselves in this paper to
the simplest case keeping only three neutral 0−+ intermediate states: π0, η, η′. Technically
it is more convenient to consider from the very beginning matrix elements of vector currents
between vacuum and these states in external field. Making use of the definition of off-shell
vector-vector-axial form-factor Fπ ≡ Fπ0∗γ∗γ∗(q2, q21, q

2
2) (see, e.g. [53]) with q = q1 + q2

∫

dx

∫

dyeiq1x+iq2y〈0|Tr {jµ(x)jν(y)}|π0(q)〉 = ǫµναβq
α
1 q

β
2Fπ(q2, q21, q

2
2) (54)

one gets at the leading order in constant external field:

〈0|jµ(−q)|π0(q)〉F = ieqρF̃ρµ Fπ(q2, q2, 0). (55)

The expressions for η and η′ contributions are completely analogous with the replacement of
Fπ by Fη and Fη′ .

Thus the q2-dependence of polarization operator in external field is determined in this
approximation by the form-factors Fφ(q2, q2, 0) with one on-shell leg (corresponding to external
field vertex). These form-factors are essentially nonperturbative QCD objects. Let us remind
that on-shell (i.e. at the point Fφ(m2

φ, 0, 0)) they are fixed by triangle anomaly, for example for
pion:

Fπ(m2
π, 0, 0) = − Nc

12π2Fπ
(56)

Another important case is large q2 → ∞ limit where one has (for chiral fermions) Fφ(q2, q2, 0) →
χFFπ/3 where χF is QCD quark condensate magnetic susceptibility, defined by 〈0|q̄σµνq|0〉F =
eqχF 〈q̄q〉Fµν . Different approximation schemes valid at intermediate momenta are discussed in
the literature (see, e.g. [54]).

Having written the field-dependent matrix element (55) one is able to express the invariant
function π̃(F )(q2) as follows:

π̃(F )(q2) =
∑

φ=π,η,η′

|Fφ(q2, q2, 0)|2
q2 −m2

φ

(57)

From the point of view of expression (41) the dominant contribution to asymmetry is this phase
comes from the lightest degree of freedom, i.e. massless in the chiral limit pion (to be more
precise, we assume the limit mπR≪ 1). Choosing for concretness Gaussian boundary condition
(i.e. introducing the factors exp(−q2iR2/2) into (41) one obtains

〈q2V 〉 = γ

(

eB

Fπ

)2

TR3 (58)

where the numerical factor γ = 1.6·10−4 is of course specific for this boundary choice. Certainly
the result trivially follows from dimensional considerations. We see 〈q2V 〉 ≪ 1 for phenomeno-
logically reasonable choice of parameters. Contributions of mass gapped states bring additional
suppression (and, in particular, break ∼ R3 scaling).

As the second example we consider free fermions in strong field limit. This regime would
correspond to deconfinement phase where proper dynamical degrees of freedom are quarks
and gluons with perturbatively weak interaction between each other. To compute polarization
operator under external conditions in perturbation theory one usually makes use of Schwinger
proper-time technique and there is extensive literature on the subject [55, 56, 57, 58, 59] where
different kinds of external backgrounds were studied. The polarization operator in constant
magnetic field and at nonzero temperature was calculated in [60] in imaginary time formalism.
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Our aim here is to put these results in a charge fluctuations asymmetry prospective. For the
reader’s convenience we reproduce the explicit one-loop expressions for polarization operator
Π|| given by [60].

It is convenient to present the Euclidean polarization operator in the following form

Πµν(q⊥, q3, n) =
∑

Aµν(q) e−φ(q) +Qµν(q) (59)

where the sum includes integration over proper-times and summation over Matsubara frequen-
cies, the functions Aµν [q] polynomially depend on momenta components q. The contact terms
Qµν(q) have no sensitivity to infrared parameters (like temperature or external field) and pro-
vide correct limit of Πµν at vanishing background.

One can notice that π̃(F ) can be simply related to the polarization operator components.
Namely, solving the system of three linear equations (50) for the choices (µν) = 44, 33 and 34
one finds all three invariant form-factors, including π̃(F ):

B2π̃(F ) = −q3q4Π44 + (q2⊥ + q23)Π34

q2⊥q3q4
(60)

where q2⊥ = q21 + q22 and q4 ≡ ωn = 2πTn.
The explicit expression for π̃(F ) looks especially simple in small T regime. It reads

π̃(F ) = − 1

(4π)2
1

eB

∫ ∞

ǫ
du

∫ +1

−1
dv

(

(1 − v2) coth ū+ f⊥(ū, v)
)

exp(−φ(0)) (61)

where ū = ueB and the functions φ(0) and f⊥(ū, v) are given in the [60]. Notice that such
form-factor was discussed in a different context in [49].

In the weak field limit one has

lim
B→0

π̃(F ) =
1

6π2

∫ 1

−1
dv

(1 − v2)(3 − v2)

(4m2 + (1 − v2)q2)2
(62)

In the strong field limit (still at small T ) the situation becomes more interesting - form-factor
π̃(F ) provides dominant contribution to the polarization operator:

Π44 → q23(eB)2π̃(F ) →

→ − eB

4π2
e
−

q2⊥
2|eB|

∫ 1

−1
dv

(1 − v2)q23
4m2 + (1 − v2)q23

(63)

up to the terms O
(

q2⊥/eB
)

. One can say that all asymmetry of charge fluctuations is due to
CME-like formfactor in this limit.

We see another interesting effect - in the chiral limit (63) does not depend on q3 at all,
while the dependence on q⊥ is suppressed by the field B. On the other hand, the essence of
the asymmetry of interest is just different dependence of the polarization operator on different
components of momentum. Since the polarization operator itself linearly rise with B for strong
field it is nor a priori clear which effect is to win. Detailed calculation shows that in fact
they balance each other and the asymmetry (41) is not asymptotically rising with B - there
is an effect of saturation. It is reasonable to separate different regimes depending on ratios
between basic parameters such as B, m, T and R where the latter one stays for the typical
3-dimensional size of the volume V3. For two light flavors one can safely neglect quark masses
m. Three other parameters are in the ballpark of 100 MeV (for large fireball one can think of
phenomenologically realistic eBR2 = 5 ÷ 10). Without intention to cook up numerical factors
but just to get feeling of the numbers, pluging (63) into (41) we get

〈q2V 〉 = γ′ · RT (64)

where again the numerical factor γ′ = 4.1 ·10−2 corresponds to Gaussian boundary shape. Thus
for asymptotically large B one reaches ”kinematical limit” for the asymmetry in our picture,
despite numerically it is still very small.
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7 Conclusions

We have discussed three possible ways to study quantum physics behind chiral magnetic effect
and electric charge fluctuation asymmetry observed in heavy ion collisions. For all approaches
the importance of scale separation is stressed - there should by hierarchy of dynamical scales
characterizing the life of quark-gluon phase after the collision and intrinsic QCD scales (perhaps
field/temperature shifted) characterizing the nonabelian topological charge fluctuation pattern.
The physical essence of CME as we tried to present it here is that the quark-gluon medium
plays the role of a measuring device with respect to the topological QCD vacuum with the
final particles electric charge asymmetry as an outcome. This is most clearly illustrated by the
expression (21).

The third approach we have considered, i.e. the analysis of P-odd × P-odd contributions
to P-even observables, is somewhat different because it provides nonzero results even for free
fermions in magnetic field, i.e. without any ”topological origin”. We believe that this can be
considered as a particular case of CME as well. Just nonzero matrix element of the vector current
between vacuum and J−+ states in external magnetic field leads to asymmetric charge/current
pattern as if there is fluctuating vector current collinear to B. Of course the detailed picture
depends on the actual quantum dynamics of these J−+ degrees of freedom, and we have shown
that indeed it is strongly suppressed in the confinement phase. Nevertheless we find it legitimate
to interpret this dynamics using the same CME-like language since namely this anomaly-driven
vector-axial correlation is at the heart of the effect, while the concrete way of life of the axial
degrees of freedom (distribution function for µ5 in the standard CME analysis) is of secondary
importance.
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