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Abstract

We discuss the end-point behavior of the pion distribution amplitude (DA) and calculate
its slope using QCD sum rules with nonlocal condensates. This is done in terms of the
standard derivative and also with the help of an “integral derivative”, recently obtained by
us. Our approach favors a value of the slope of the order (or less) of the asymptotic DA
and is in clear disagreement with flat-type pion DAs.

1 Introduction

The main technique to analyze hard exclusive processes within QCD, is provided by the factor-
ization of the underlying dynamics into a hard and a soft part. The hard part forms the partonic
amplitude of the subprocess at a large value of the momentum transfer and is amenable to QCD
perturbation theory. The soft part depends on the distribution amplitude of the hadron(s) and
contains the dynamics at typical hadronic scales; it has, therefore, to be determined by nonper-
turbative methods or be extracted from experimental data. The collinear factorization applied
to the transition form factor (FF) of two far off-shell photons to a pion leads to the convolution
of these two parts, which, at the leading order of twist two, reads (x̄ ≡ 1 − x)

F γ∗γ∗π(Q2, q2) =

√
2

3
fπ

∫ 1

0

1

Q2x̄ + q2x
ϕπ(x)dx + O(1/(Q2x̄ + q2x)2) (1)

modulo twist-four terms, ignored here. The main ingredient of the above equation is the pion
DA ϕπ(x) which encodes all unknown binding effects of the pion state. At the considered level
of twist two, it is defined by the following universal matrix element [1]

〈0|d̄(z)γµγ5[z, 0]u(0)|π(P )〉|z2=0 = ifπPµ

∫ 1

0
dx eix(z·P )ϕ(t=2)

π (x, µ2
0) , (2)

where x is the longitudinal momentum fraction carried by the valence quark (x̄ for the antiquark)
in the pion and the path-ordered exponential, i.e., the light-like gauge link,

[z, 0] = P exp

[

−ig

∫ z

0
dyµtaAa

µ(y)

]

, (3)

ensures gauge invariance. It is useful to expand the pion DA in terms of the Gegenbauer har-

monics 6xx̄ C
3/2
n (2x−1) which provide the eigenfunctions of the one-loop Efremov-Radyushkin-

Brodsky-Lepage (ERBL for short) evolution equation [2, 3]. One finds for ϕ(t=2) at the typical
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hadronic scale µ2
0:

ϕ(t=2)(x;µ2
0) = ϕas(x)

[

1 + a2(µ
2
0) C

3/2
2 (2x − 1) + a4(µ

2
0) C

3/2
4 (2x − 1) + . . .

]

, (4)

in which the asymptotic (abbreviated by Asy) pion DA appears: ϕas(x) = 6xx̄. By virtue of

the leptonic decay π → µ+νµ, one obtains the normalization
∫ 1
0 dx ϕ

(t=2)
π (x, µ2

0) = 1, which
fixes a0 = 1.

While a process involving two photons with large virtualities is theoretically preferable, be-
cause one can safely apply QCD perturbation theory, experimentally, the asymmetric kinematic
with one of the photons being quasi real is more accessible. Indeed, such measurements have
been carried out by several collaborations, namely, the CELLO [4], the CLEO[5], and, most
recently, the BaBar Collaboration [6]. Taking the limit q2 → 0 in convolution (1), one finds
that the FF for the γ∗γ → π0 transition is actually given by the inverse moment of the pion
DA

〈x−1〉π =

∫ 1

0
dx

1

x
ϕπ(x) . (5)

Therefore, this quantity is one of the key elements of the pion-photon transition FF. Because
this form factor has such a simple structure within QCD, it has attracted over the years the
attention of many theorists (see, e.g., [7, 8, 9, 10, 11] and references cited therein).

However, the most recent measurement of this observable by the BaBar Collaboration [6]
has provided controversial results, because, unexpectedly, the high-energy data points above
10 GeV2 grow with Q2 — see Fig. 1. At moderate values of the momentum transfer, up to
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Figure 1: Predictions for the photon-to-pion transition FF calculated in next-to-leading order (NLO) light-
cone sum rules using a Breit-Wigner model for the meson resonances. The pion is parameterized in terms of the
following DAs: Asy — dashed-doted line, BMS “bunch” [10] — shaded (green) strip, CZ model [12] — upper
long-dashed (red) line, flat-top model [13] — short-dashed (blue) line. Experimental data are shown on both
panels using the following notations: BaBar data [6] — (red) boxes with error bars, CELLO data [4] — (black)
diamonds with error bars, CLEO data [5] — (violet) triangles with error bars. The horizontal solid line denotes
the asymptotic QCD prediction

√
2fπ. The left panel provides a zoom-in view into the low and intermediate

range of Q2, whereas the right panel shows the results for the whole interval of momenta probed by the BaBar
experiment.

9 GeV2 (see the left panel of Fig. 1), the new high-precision BaBar data agree well with the
previous CLEO data [5]. From the second column of Table 1 and the left panel of Fig. 1, we
may conclude that all data up to 9 GeV2 can be best described by pion DAs that have their
end-points strongly suppressed [11, 14, 15]. A characteristic example of such a DA is provided
by the Bakulev-Mikhailov-Stefanis (BMS) model [10], which has been derived from QCD sum
rules (SR)s with nonlocal condensates (NLC)s, originally developed in [16]. In contrast, the
high-Q2 BaBar data (see the right panel of Fig. 1) show, as already mentioned, an unexpected
growth with Q2 which cannot be understood on the basis of the collinear factorization and
calls (see the fifth column of Table 1)) for pion DAs that have instead their end-points strongly
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enhanced [13, 17]. This intriguing behavior has triggered the use of flat-type pion DAs and
provided the main motivation for our analysis in [18], on which we report here. The result
obtained by Radyushkin [13] with the flat-top model (ϕπ(x) = 1) is shown in Fig. 1 as a dashed
(blue) line in comparison with the BMS bunch (green strip) [10] and the CZ pion DA model
(long-dashed line in red color) [12]. As we see from this figure, the high-Q2 BaBar data are
rather well-described in Radyuskin’s approach [13]. A recent independent analysis [19] comes
to the conclusion that a flat pion DA, when used in a fully consistent way, yields to predictions
for the pion’s electromagnetic and transition form factors which are in striking disagreement
with experiment.

Table 1: Deviations of theoretical predictions for the quantity Q2F γ∗γπ(Q2) in terms of χ̄2 ≡ χ2/ndf
(ndf = number of degrees of freedom) for several pion model DAs: Asy, BMS model, and CZ model (more
details in [11]). Predictions based on the flat-top model DA (18), discussed in [13], are also included. The second
column shows the results for the combined sets of the CLEO [5] and the CELLO [4] data above 1 GeV2. The
third column compares model predictions with all data in the interval [1, 9] GeV2, while the fourth column takes
into account only the BaBar data above 9 GeV2. The last two columns show the values of the inverse moment
and the standard derivative of selected pion DAs at the origin.

Model CLEO&CELLO All dataQ2<9 GeV2 BaBarQ2>9 GeV2 〈x−1〉π ϕ′
π(0)

Asy 2.7 6.35 18.9 3 6

BMS [10] 0.56 0.86 11.7 3.15 1.12

CZ [12] 5.9 33.9 7.9 4.5 26

DA [13] 4.15 4.15 1.0 — —

In our recent investigation [18], we revisited the QCD SR approach of [10] focusing our
attention on the behavior of the pion DA in the end-point region x ∼ 0 with the aim to
understand the fine structure of the pion DA in this region vs the ansatz for the quark-virtuality
distribution in the nonperturbative QCD vacuum. As we shall explain in Sec. 3, QCD SRs were
mainly developed with the purpose to study the integral characteristics of the pion DA. To
overcome this restriction, we constructed in [18] an operator for integral derivatives of the pion
DA. The results obtained this way supplement those found with SRs which employ the standard

derivative of the pion DA.
Our presentation will concentrate on the following issues, organized in sections. In Sec. 2,

we discuss the QCD SR approach with NLCs and focus on the peculiarities of the pion DA in
the end-point region x ∼ 0. In Sec. 3 we define and study the integral derivative of the pion
DA, the purpose being to overcome the restrictions inherent in QCD SRs which were created in
order to probe the integral characteristics of the pion DA. In Sec. 4 we also study the SRs for
the standard derivative of the pion DA at the origin and complete our presentation by drawing
our conclusions in Sec. 5.

2 Slope of the pion DA and the nonperturbative QCD vacuum

As already mentioned in the Introduction, the fine details of the pion DA in the region around
the origin x ∼ 0 are of crucial importance. To illustrate the differences in the end-point behavior
of existing model DAs, we show the corresponding profiles in Fig. 2 (left panel). We depict four
models: BMS [10] model — solid line; CZ [12] — dashed-dotted (blue) line; flat-top DA given
by Eq. (18)—short-dashed (red) line; dotted line — asymptotic DA. Using the values of the
derivative of the pion DA, collected in the last column of Table 1, we can classify the pion DA
models according to their end-point behavior: end-point suppressed (Asymptotic and BMS) and
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end-point enhanced (CZ and flat-top (18)). A zoomed-in view of the end-point characteristics
of the above DAs is displayed in the right panel of Fig. 2.
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Figure 2: Comparison of selected pion DA models. The left panel shows their shapes, while the right panel
shows a magnified view of the endpoint region x ∼ 0. Solid line — central line of the BMS bunch [10]; dashed-
dotted (blue) line — CZ model [12]; short-dashed (red) line — flat-top DA from Eq. (18) with α = 0.1; dotted
line — asymptotic DA. All DAs are normalized at the same scale µ2

0 ≃ 1 GeV2.

Relying upon the QCD SR approach with NLCs, developed in [10], we direct our attention
to the end-point behavior of the pion DA. This will allow us to obtain predictions for the slope
of the pion DA in the end-point region with smaller errors than those obtained from the BMS
bunch [10] in this region [18]. Recall that the basic idea underlying the NLC parametrization of
the QCD vacuum, is that it has a domain structure, parameterized in terms of condensates, the
latter possessing a certain correlation length by virtue of which the vacuum quarks acquire a non-
zero average virtuality 〈k2

q 〉 (see, for instance, [20]). To analyze the nonlocality of the vacuum
condensate, it is useful to parameterize the lowest condensate in terms of1 〈q̄(0)[0, z]q(z)〉 ≡
MS(z2). This quantity can be related to the vacuum distribution function fS(α) via [16]

MS(z2) = 〈q̄q〉
∞
∫

0

fS(α) eαz2/4 dα , (6)

where α is the vacuum-quark virtuality. Assuming that the vacuum quarks have a fixed virtu-
ality λ2

q , one has

fS(α) = δ(α − λ2
q/2) , (7)

leading for the scalar-quark condensate [16] to the Gaussian model

〈q̄(0)q(z)〉 = 〈q̄(0)q(0)〉e−|z2 |λ2
q/8 . (8)

The parameter λ2
q here represents the typical quark momentum in the QCD vacuum and it can

be given the following definition

2〈k2
q 〉 =

〈q̄(0)∇2q(0)〉
〈q̄(0)q(0)〉 ≡ λ2

q . (9)

In our study [18], presented here, we use the value λ2
q = 0.4 GeV2, which is supported by

several analyses, though values within the interval [0.35 ÷ 0.45] GeV2 are still acceptable (see
[21, 10, 22] and references cited therein).

The QCD SRs with nonlocal condensates for the pion DA write [10]

f2
π ϕπ(x) + f2

A1
ϕA1(x) e

−m2
A1

/M2

+

∞
∫

s0

ρpert (x) e−s/M2
ds =

∞
∫

0

ρpert (x) e−s/M2
ds

+∆ΦG(x,M2) +
[

∆ΦS(x,M2) + ∆ΦV(x,M2) + ∆ΦT(x,M2)
]

Q
, (10)

1In this work we use the “fixed-point” gauge zµAµ = 0, so that [0, z] = 1.
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where ϕA1 is the A1-meson DA and fπ and fA1 are, respectively, the decay constants of the pion
and the A1-meson. Note that the A1-meson state is an effective state which takes into account
both the π′ and the a1 meson. The nonperturbative input in the theoretical part of the SR
(right side) are the gluon-condensate term ∆ΦG(x,M2) and the quark-condensate contribution
[...]Q. This latter contribution contains the vector-condensate term (V), the mixed quark-gluon
condensate term (T), and the scalar condensate term (S). The explicit expressions for the

perturbative and the nonperturbative contributions to the NLO spectral density ρ
(NLO)
pert (x) can

be found in [16, 23]. Remarkably, the first radiative correction in the spectral density in the end-
point region is of O(αs) and comes out too large relative to both the zeroth-order perturbative
contribution as well as the nonperturbative parts. For this reason, we resort in our analysis

[18] to the leading-order (LO) approximation ρ
(LO)
pert (x) = 3xx̄/2π2. In fact, in order to include

radiative corrections into the spectral density (when analyzing the end-point region), one would
be obliged to resum all radiative corrections — a formidable task for the future.

Among the nonperturbative terms, the scalar-quark condensate provides the largest smooth
contribution at the origin x ∼ 0, notably,

∆ΦS(x,M2) = 18AS(Φ′x + Φ′′x2 + O(x3)) (11)

with the coefficients

Φ′ ≃
∫ ∞

0
dα

fS(α)

α2
= 〈q̄q〉−1

∫ ∞

0
z2MS(z2)dz2 and Φ′′ ≈ Φ′

∫ 1/2

0
dt fS(M2t)

t

1 − t
. (12)

Inspection of the expression for the first coefficient Φ′ reveals that the end-point behavior of the
pion DA is directly related to the behavior of the scalar-quark condensate at large/moderate
distances.

On the other hand, all nonperturbative terms in the local condensate model (λ2
q = 0) are

concentrated exactly at the endpoints (∆Φloc
S (x) ∼ δ(x)), as shown in Fig. 3 in terms of the

scalar-condensate contribution. In contrast, the nonlocal condensate leads to an end-point-
suppressed nonperturbative contribution.
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ρpert(x)

∆ΦNLC
S (x)

x

Figure 3: Comparison of the leading nonperturbative contribution in the local (∆Φloc
S (x)) and the nonlocal

(∆ΦNLC
S (x)) condensate models along with the perturbative contribution (∆Φpert(x)).

In using the SR (10) in order to study the end-point behavior of the pion DA, we have
to find an appropriate characteristic that is capable of describing the slope of the pion DA at
the origin. Because the nonperturbative terms are strongly concentrated at the endpoints (see
Fig. 3), viz., ∆ΦV ∼ x δ′(∆ − x), ∆ΦG ∼ δ(∆ − x), . . . with ∆ = λ2

q/(2M
2), the best way to

take into account all these contributions is to investigate the integral characteristics of the pion
DA. For this reason we invented in [18] the “integral derivative”, which will occupy us in the
next section.
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If we apply the Gaussian model (8), then only the four-quark condensate ∆ΦS ∼ x θ(∆−x)
contributes in the end-point region — see Fig. 3— without leading to singularities. But, if
we assume a behavior of the various condensates differing from the delta-ansatz model, and
use, for instance, for the scalar-quark condensate a smooth model like (21) (which implies a
decay at large distances not slower than the exponential decay), then the other nonperturbative
terms (V), (G), and (T) contribute only small amounts in the small-x region. Therefore, these
terms can be neglected if one is only interested in deriving the simplest characteristic, i.e., the
derivative of the pion DA at the origin ϕ′

π(0), considered in Sec. 4.

3 “Integral” sum rules

The key features of the applied SRs are collected in Table 2. Because the QCD SRs were
developed with the aim to study the integral characteristics of the pion DA, most approaches
appeal to the moments

〈ξN 〉π ≡
∫ 1

0
dx(2x − 1)Nϕπ(x) , (13)

where ξ ≡ 2x − 1. Once these moments are known, they can be used in order to reverse
engineer the pion DA, with a precision depending upon the influence of the magnitude of the
discarded higher-order moments. The zero-order moment leads to a SR for the decay constant,
studied long ago by Shifman, Vainshtein and Zakharov [24]. The second-order term of the
Gegenbauer expansion was determined by Chernyak and Zhitnitsky [12] from the standard SRs
with local condensates (λ2

q = 0). Still higher-order coefficients were computed [10] using QCD
SRs with NLCs. It was shown there that one can de facto resort to the first two Gegenbauer
coefficients a2 and a4 because the values of ai with i = 6, 8, 10 were calculated and found to
be negligible. On that basis, the authors of [10] obtained a bunch of two-parameter dependent
pion DAs, among them also the BMS model, mentioned earlier, and an independent SR for the
inverse moment (5). The inverse moment itself is a rather good, though not sufficient (see for
arguments [25]), indicator for the end-point behavior of the pion DA, as we can see from the
fifth column of Table 1.

Table 2: Comparison of results for the moments of the pion DA obtained within different approaches which use
QCD SRs with local or nonlocal condensates.

Approach Characteristics Accuracy Condensate Result

SVZ [24] 〈ξ0〉 LO local fπ

CZ [12] 〈ξ2N 〉, N = 0, 1 LO local fπ, a2

BMS [10] 〈x−1〉, 〈ξ2N 〉, N = 0, 1, . . . , 5 NLO nonlocal fπ, a2, a4, 〈x−1〉

Here [18] ϕ′
π(0), [D(ν)ϕπ](x) LO nonlocal ϕ′

π(0), [D(ν)ϕπ](x)

In our work [18] we probed the endpoint region of the pion DA in another way which
employs an averaged “integral” derivative. As we explained in Sec. 2, the usefulness of these
derivatives follows from the fact that they can be applied to QCD SRs which may even contain
singular terms. With the help of the averaging procedure, one can take into account all these
contributions. To expose the usefulness of this procedure, let us construct the following sequence
of average derivatives obeying the condition ϕ(0) = 0:

[D(0)ϕ](x) = ϕ′(x) , [D(1)ϕ](x) = ϕ(x)/x , [D(2)ϕ](x) =
1

x

x
∫

0

ϕ(y)

y
dy . (14)
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The integral derivatives D(ν) were defined in [18] by means of the following expression:

[D(ν)ϕ](x) =
1

x

x
∫

0

ϕ(y)f(y, ν − 2, x) dy , f(y, ν, x) =
θ(x − y)

Γ(ν + 1) y

(

ln
x

y

)ν

at ϕ(0) = 0 . (15)

When ν = 2 and x = 1, the integral derivative coincides with the inverse moment of the pion
DA: [D(2)ϕ](1) = 〈x−1〉π. Assuming that the Taylor expansion of ϕ(x) at x = 0 exists, one
finds from (15)

[D(ν)ϕ](x) = ϕ′(0) + ϕ′′(0)
x

2!2ν−1
+ O

(

x2

3ν−1
ϕ(3)

)

, (16)

which is valid for any real ν, as we explained in detail in [18]. From the above equation, one
can see that the defined operator D(ν) reproduces at small x and/or large ν the derivative of
ϕ(x) at the origin x = 0.

By applying the operator [D(ν+2)] on both sides of the QCD SR given by (10), we obtain a
new SR for [D(ν+2)ϕπ](x), viz.,

f2
π [D(ν)ϕπ](x) + f2

A1
e
−m2

A1
/M2

[D(ν)ϕA1 ](x) +

∞
∫

s0

[D(ν)ρpert] (x) e−s/M2
ds

=

∞
∫

0

[D(ν)ρpert] (x) e−s/M2
ds + [D(ν)∆ΦG](x,M2) + [D(ν)∆ΦV](x,M2)

+ [D(ν)∆ΦT](x,M2) + [D(ν)∆ΦS](x,M2) .

(17)

The detailed analysis of this SR can be found in [18]. Here we only discuss the nonperturbative
terms depicted in Fig. 4. The dominant contribution to the integral derivative [D(ν)ϕπ](0.5) of
the pion DA stems from the scalar-quark condensate (S), while the vector-condensate (V), the
mixed quark-gluon condensate (T), and the gluon-condensate (GG) contributions are compar-
atively less important. It turns out that the image of the operator D(ν) for ν ≥ 6 is numerically
very close to the result obtained with the differentiation method (see next section) — for any
x.

2 3 4 5 6
0.0

0.5

1.0

1.5 [D(ν)∆Φk](0.5)/f 2
π

ν

S

V

T

GG

Figure 4: Mutual comparison of the nonperturbative contributions (k=S, V, T, and GG) to the SR (17) for
the integral derivatives [D(ν)ϕπ](x) of the pion DA and with the value 18ASΦ′/f2

π = 72ASf−2
π λ−4

q (horizontal
solid line) of the scalar-quark contribution to the SR (19) for the standard derivative ϕ′

π(0). The scalar-quark
condensate term (k=S) is shown as a dashed (blue) line. The other terms are the vector-quark condensate term
(k=V) — dashed-dotted (green) line, the mixed quark-gluon condensate term (k=T) — dashed-dotted-dotted
(red) line, and the gluon-condensate term (k=GG) — dotted (black) line.

For large ν, the (S)-term dominates and is close to the value obtained by the standard
derivative illustrated in Fig. 4 by the horizontal line, while all other condensate terms disappear.
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Thus, the integral SR (17) becomes close to the differential one to be considerd in the next
section. For this reason, we analyze the constructed SR (17) for ν ∈ [2, 6] and x > 0.4 and
present the results in Fig. 5 in terms of a solid line that is inside the light gray strip bounded
by the short-dashed lines. For the sake of comparison, the predictions for the asymptotic DA
(dashed-dotted line) and the BMS DA bunch — obtained in the NLC SR analysis of Ref. [10]
— (shaded band limited by long-dashed lines) are also shown. From this figure we see that our
SR estimates for [D(ν)ϕSR

π ](x) agree fairly well with the BMS model — see also Table 3. This
table shows estimates for the third-order integral derivative of the pion DA for x = 0.5, using
(i) the sum rule given by Eq. (17) and (ii) the pion DA models we discussed above; in addition,
results pertaining to flat-type DAs are also included.

0.0 0.2 0.4 0.6 0.8 1.0
-4

-2

0

2

4

6

8 [D(3)ϕπ](x)

x

2 3 4 5 6
0

2

4

6

8
[D(ν)ϕπ](0.5)

ν

Figure 5: x-dependence (left panel) and ν-dependence (right panel) of [D(ν)ϕπ](x) shown for the BMS bunch of
pion DAs [10] (shaded green band within long-dashed lines) in comparison with the SR result (17) (narrow gray
strip) in both panels. The left panel shows the predictions for [D(3)ϕπ](x), whereas those for [D(ν)ϕπ ](0.5) are
presented in the right panel. The dashed-dotted line denotes the asymptotic result [D(ν)ϕas](x) = 6− 3x/2ν−2.

First, we compare the QCD SR result, obtained from (17), with what one finds with the
flat-type DA models. Consider first the flat-top DA model defined by

ϕflat(x) =
Γ(2(α + 1))

Γ2(α + 1)
xα(1 − x)α . (18)

This model was invented in [13] and attempts to describe the BaBar data via a logarithmic
behavior with Q2. For the value α = 0.1, one finds [D(3)ϕflat](0.5) = 227, which is much larger
and far outside the range of values extracted from our SR (17).

As a second option, we consider a particular flat-type pion DA which is provided by the
AdS/QCD correspondence in the holographic approach — see, for instance, Refs. [26, 27, 28, 29].
In that case one has α = 0.5 yielding [D(3)ϕhol](0.5) = 14.

On the other hand, the CZ model — being also endpoint-enhanced — yields third-order in-
tegral derivatives which are incompatible with the values derived from our SR (17) (cf. Table 3).
Note that a similar statement also applies to the pion DA proposed in [30], which employs a
Brodsky-Huang-Lepage ansatz for the k⊥-dependence of the pion wave function — see Table 3.
The main message from this table is that the SR for the integral derivative of the pion DA is
fulfilled by the BMS bunch, whereas flat-type DAs and the CZ model DA have no overlap with
the estimated range of values. By contrast, the pion DA model proposed in [30] — though it
provides a similarly large integral derivative like the CZ DA — has a usual derivative at the
origin which is zero due to the strong exponential suppression of this DA in the small vicinity
of the origin. Finally, the model DA defined by Eq. (18) has no derivative at the origin while
the integral derivative is well-defined. As we see from these examples, the integral derivative
allows one to compare a broader range of the pion DA values in the end-point region than the
standard one.
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Table 3: Results for the third-order integral derivative at the value x = 0.5 and such for the standard derivative
of the pion DA, using different SR approaches (first three rows) and pion DA models (six last rows).

Approach/Model “Integral derivative” [D(3)ϕπ](0.5) Derivative ϕ′
π(0)

1 Integral SR (17) 4.7 ± 0.5 5.5 ± 1.5

2 Differential SR (19) — 5.3 ± 0.5

3 SR (19) with smooth NLC (21) — 7.0 ± 0.7

4 BMS bunch [10] 5.7 ± 1.0 1.7 ± 5.3

5 Asymptotic DA 5.25 6

6 CZ DA [31] 15.1 26.2

7 DA from [30] 14 0

8 AdS/QCD DA [26] 14 ≫ 6

9 flat-top DA (Eq. (18), α = 0.1) 227 ≫ 6

It is worth mentioning that the usual derivative ϕ′
π(0) of the pion DA encapsulates the key

characteristics of the pion DA at small x. This quantity can be extracted from [D(ν)ϕSR
π ](x),

which can be derived from the SR (17) employing different values of ν and x. The results
are shown in Fig. 5. To determine ϕ′

π(0) one can first use two terms of the Taylor expansion
(16) and then subtract the second derivative for which the asymptotic value ϕ′′

π(0) = −12(6) is
taken. That yields the estimate ϕ′

π(0) = 5.5 ± 1.5 for any 0.4 < x and 2 ≤ ν ≤ 6.

4 Differential sum rules

Another way to study the behavior of the pion DA in the small-x region is provided by the
differentiation of the SR (10), which yields

f2
π ϕ′

π(0,M2) =
3

2π2
M2

(

1 − e−s0/M2
)

+ 18ASΦ′ − f2
A1

ϕ′
A1

(0) e
−m2

A1
/M2

. (19)

We shall evaluate this SR for the threshold value s0 = 2.61 GeV2, recalling that we are employing
a LO expression for the spectral density. As it was shown in our recent work [18], only the
four-quark condensate survives and gives a contribution to the SR defined by Eq. (12). From
this equation we see that the nonperturbative contribution to the SR is mainly due to the
scalar-quark condensate at large/moderate distances z2 & 4/〈k2

q 〉. Employing the delta-ansatz
fS(α) = δ(α−λ2

q/2) the nonperturbative contribution to SR (19) reduces to the following simple
expression

Φ′ = Φ′
delta =

4

λ4
q

. (20)

Having fixed the ingredients of the SR, we are now able to consider the implications of
using the smooth model for the quark-virtuality distribution in the differential SR. Despite the
usefulness of the Gaussian model, we have to take into account the possibility that the scalar-
quark condensate may behave differently at asymptotically large distances. Indeed, there are
indications from heavy-quark effective theory [32] that it could decay exponentially. Note that
in order to ensure the existence of the vacuum matrix element 〈q̄(D2)Nq〉, the quark-virtuality
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distribution fS(α) should decrease faster than any power 1/αN+1 as α → ∞ [16]. Following
this reasoning, a two-tier model for fS was proposed in [22, 33] which has a smooth dependence
on the quark virtuality α. Hence, one has

fS(α; Λ, n, σ) =
(σ/Λ)n

2Kn(2Λσ)
αn−1e−Λ2/α−α σ2

, (21)

where Kn(z) is the modified Bessel function. This so-called “smooth model”, depends on two
parameters Λ and σ which serve to take into account the long- and the short-distance behavior
of the nonlocal condensates. For large distances | z| =

√
−z2, this model leads to the asymptotic

form

〈q̄(0)q(z)〉 | z|→∞−→ 〈q̄q〉| z|−(2n+1)/2e−Λ|z|2
(2n−1)/2√π σn

√
Λ Kn(2Λσ)

. (22)

Let us now consider briefly this model — referring for technical details to [22, 33] — and
set n = 1, whereas the second parameter Λ = 0.45 GeV can be taken from the QCD SRs for
the heavy-light meson transition in heavy quark effective theory [32, 34]. The two parameters
n and Λ are responsible for the large-z behavior of the scalar-quark condensate, cf. Eq. (22).
The third parameter σ2 = 10 GeV−2 is defined in terms of the parameters n,Λ, and λ2

q via the
following equation

∫ ∞

0
α fS(α; Λ, n, σ) dα =

Λ

σ

Kn+1(2Λσ)

Kn(2Λσ)
=

λ2
q

2
, (23)

which we are going to evaluate for the value of the nonlocality parameter λ2
q = 0.4 GeV2. The

main effect of using a smooth model for the quark-virtuality distribution in comparison to the
Gaussian form, fS(α) = δ(α − λ2

q/2), is the increase of the nonperturbative contribution to the
SR, induced this way, entailing the relation

Φ′
smooth =

∫ ∞

0
dα

fS(α; Λ, n, σ)

α2
=

σ2

Λ2

Kn−2(2Λσ)

Kn(2Λσ)
> Φ′

delta . (24)

We studied the SR (19) for this model adopting the following values of its parameters:
fS(α; Λ = 0.45 GeV, n = 1, σ2 = 10 GeV−2). It turns out that the average value of the derivative
ϕ′

π(0,M2) in the fiducial Borel interval is ϕ′
π(0) = 7.0(7), meaning that the nonperturbative

contribution Φ′
smooth, obtained from the smooth model, is approximately two times larger than

the analogous contribution Φ′
delta for the delta ansatz Φ′

smooth ≈ 2.3Φ′
delta. Appealing to the

relation (12), it seems reasonable to conclude that choosing a model for the condensate that has
a slower decay at large distances (small n or Λ), may induce an increase of the nonperturbative
contribution to the SR (10) and, hence, entail an increase of the value ϕ′

π(0) as well. The option
of having a condensate model with a faster decay at large distances (large n or Λ), leads to a
decrease of the nonperturbative contribution to the SR (10) and therefore to a decrease of the
value ϕ′

π(0). To facilitate the comparison of these two distinct possibilities for the scalar-quark
condensate, we give in the last column of Table 3 the values of the (usual) pion DA derivative
at x ≃ 0, using various SR approaches (first three rows) and selected pion DA models (last six
rows).

5 Conclusions

In the present work we proposed a direct way to access the end-point characteristics of the
pion DA in the QCD SR approach with nonlocal condensates. To characterize the slope of
the pion DA at the origin, we introduced [18] a suitable operator for integral derivatives that
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allows us to describe a broader range of the pion DA in the end-point region than the standard
derivative. Moreover this operator provides the possibility to include all condensate terms up
to the dimension six.

Our results have been presented in the second and the third column of Table 3 for the range
of values of the integral and the standard derivatives of the pion DA, respectively. The same
table contains also the values of the derivatives of some characteristic pion DA models, viz.,
the BMS, the CZ, the asymptotic, and the flat-top DA given by Eq. (18) with α = 0.1. The
dependence of the integral derivative on its parameters x and ν is displayed in Fig. 5.

From Table 3, we conclude that the differential (19) and the integral (17) SRs agree rather
well with each other. The integral and the standard derivatives of the pion DA, based on the
new SRs (17) and (19), which have been derived in [18], give values that are smaller than the
asymptotic value and overlapping with the range of values determined with the BMS bunch of
pion DAs [10], while there is no agreement with the CZ DA and the considered flat-top model.

It is worth remarking that, employing the integral and the differential sum rules, the leading-
order QCD sum rules (10) — which employ the minimal Gaussian model for the nonlocal
condensates — cannot be satisfied by flat-type pion distribution amplitudes. Using a physically
motivated exponential decay model by means of expression (21), leads to a higher value of the
slope of the pion DA at the origin ϕ′

π(0), though it is still much smaller than the corresponding
value of the flat-type pion distribution amplitudes.

Some final comments: It turns out that the nonperturbative content in the differential
SR for ϕ′

π(0) is mainly due to the scalar-quark condensate, a feature valid also for the slope
obtained with the integral SR. To be specific, the scalar-quark condensate term is proportional
to the second inverse moment (12) of the distribution fS(α) of the vacuum-quark virtuality
and is determined by the behavior of the quark condensate at large/moderate distances of the
vacuum quarks. By virtue of (12), we may conclude that, adopting a model for the scalar-quark
condensate that has a slower decay at large distances, entails an increase of the nonperturbative
contribution to the SRs (17 and 19), so that also the value of the pion DA slope defined via the
integral and the standard derivatives increases.

The presented analysis shows that it is difficult to reconcile QCD sum rules, and related
techniques and features of the QCD nonperturbative vacuum in terms of nonlocal condensates,
with flat-type pion DAs.

6 Acknowledgments

We would like to thank Alexander Bakulev for stimulating discussions and useful remarks.
A.V.P. is indebted to Prof. Maxim Polyakov for the warm hospitality extended to him at
Bochum University. He also wishes to thank the Ministry of Education and Science of the
Russian Federation (“Development of Scientific Potential in Higher Schools” projects: No.
2.2.1.1/1483 and No. 2.1.1/1539), the Russian “Dynasty” Foundation for a research scholarship,
and the DAAD Foundation (Germany) for a research grant. This work received partially support
from the Heisenberg–Landau Program under Grants 2009 and 2010, the Russian Foundation
for Fundamental Research (Grants No. 07-02-91557, No. 08-01-00686, and No. 09-02-01149),
and the BRFBR-JINR Cooperation Program, contract No. F06D-002.

References

[1] A. V. Radyushkin, Dubna preprint P2-10717, 1977 [hep-ph/0410276] (unpublished).

[2] A. V. Efremov and A. V. Radyushkin, Theor. Math. Phys. 42, 97 (1980).

[3] G. P. Lepage and S. J. Brodsky, Phys. Rev. D22, 2157 (1980).

11



[4] H. J. Behrend et al., Z. Phys. C49, 401 (1991).

[5] J. Gronberg et al., Phys. Rev. D57, 33 (1998).

[6] B. Aubert et al., Phys. Rev. D80, 052002 (2009).

[7] A. V. Radyushkin and R. Ruskov, Nucl. Phys. B481, 625 (1996).

[8] P. Kroll and M. Raulfs, Phys. Lett. B387, 848 (1996).

[9] N. G. Stefanis, W. Schroers, and H.-C. Kim, Eur. Phys. J. C18, 137 (2000).

[10] A. P. Bakulev, S. V. Mikhailov, and N. G. Stefanis, Phys. Lett. B508, 279 (2001). ibid.
B590, 309(E) (2004).

[11] S. V. Mikhailov and N. G. Stefanis, Nucl. Phys. B821, 291 (2009).

[12] V. L. Chernyak and A. R. Zhitnitsky, Phys. Rept. 112, 173 (1984).

[13] A. V. Radyushkin, Phys. Rev. D80, 094009 (2009).

[14] S. V. Mikhailov and N. G. Stefanis, Mod. Phys. Lett. A24, 2858 (2009).

[15] S. V. Mikhailov and N. G. Stefanis, Nucl. Phys. (Proc. Suppl.) B198, 199 (2010).

[16] S. V. Mikhailov and A. V. Radyushkin, JETP Lett. 43, 712 (1986); Sov. J. Nucl. Phys.
49, 494 (1989).

[17] M. V. Polyakov, JETP Lett. 90, 228 (2009).

[18] S. V. Mikhailov, A. V. Pimikov, and N. G. Stefanis, Phys. Rev. D82, 054020 (2010).

[19] H. L. Roberts, C. D. Roberts, A. Bashir, L. X. Gutierrez-Guerrero, P. C. Tandy,
arXiv:1009.0067.

[20] A. V. Radyushkin, in Perspectives in Hadronic Physics: Proceedings of the ICTP Confer-

ence, 12–16 May 1997, Trieste, Italy, edited by S. Boffi, C. C. D. Atti, and M. Giannini
(World Scientific, Singapore, 1997), pp. 126–135.

[21] A. P. Bakulev, S. V. Mikhailov, and N. G. Stefanis, Phys. Rev. D67, 074012 (2003).

[22] A. P. Bakulev and S. V. Mikhailov, Phys. Rev. D65, 114511 (2002).

[23] S. V. Mikhailov and A. V. Radyushkin, Phys. Rev. D45, 1754 (1992).

[24] M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, Nucl. Phys. B147, 385 (1979).

[25] A. P. Bakulev, S. V. Mikhailov, and N. G. Stefanis, Phys. Rev. D73, 056002 (2006).

[26] S. J. Brodsky and G. F. de Teramond, Phys. Rev. D77, 056007 (2008).

[27] H. R. Grigoryan and A. V. Radyushkin, Phys. Rev. D78, 115008 (2008).

[28] H. J. Kwee and R. F. Lebed, Phys. Rev. D77, 115007 (2008).

[29] S. S. Agaev and M. A. Gomshi Nobary, Phys. Rev. D77, 074014 (2008).

[30] X.-G. Wu and T. Huang, Phys. Rev. D82, 034024 (2010).

[31] V. L. Chernyak and A. R. Zhitnitsky, Nucl. Phys. B201, 492 (1982).

12



[32] A. V. Radyushkin, Phys. Lett. B271, 218 (1991).

[33] A. P. Bakulev and S. V. Mikhailov, Mod. Phys. Lett. A11, 1611 (1996).

[34] A. V. Radyushkin, in Continuous advances in QCD: Proceedings of the Workshop, 18–20

Feb 1994, Minneapolis, Minnesota, edited by A. V. Smilga (World Scientific, River Edge,
N.J, 1994), pp. 238–248.

13


