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Abstract

A classification of the three-quark light-cone distribution amplitudes (LCDAs) for the
ground state heavy baryons with the spin-parities JP = 1/2+ and JP = 3/2+ in QCD in
the heavy quark limit is presented. Several lowest moments of LCDAs are calculated based
on the QCD sum rules. Simple models for the heavy-baryon distribution amplitudes are
analyzed with account of their scale dependence.

1 Introduction

B-meson factories at SLAC and KEK, after approximately a decade of their operation, have
made a great impact on a clarification of CP -violation origin in the quark sector of the Standard
Model (SM). Study of heavy bottom baryons at LHC can serve as an additional test of the
Kobayashi-Maskawa mechanism. Specific processes with bottom baryons, such as rare decays
involving flavor-changing neutral currents (FCNC) transitions, are potential sources of new
physics beyond the SM. In a difference to B-mesons, a non-zero spin of baryons allows also
an experimental study of spin correlations. The spectrum of heavy bottom baryons have been
enlarged substantially thanks to the effort done by the CDF and D0 collaborations at the
Tevatron collider during last several years. Unlike these progress, study of FCNC motivated
decays of bottom baryons remains to be statistically limited. A grater effort is expected at the
LHC where heavy baryons will be copiously produced, and their weak decays may be measured
precisely enough to provide important clues on physics beyond the Standard Model.

The theory of bottom baryon decays into light hadrons is more complicated compared to
the B-meson decays and, hence, was receiving less attention. Calculations of heavy-baryon
decays into light particles based on the heavy quark expansion, see e. g. [1], or using sum rules
of the type proposed in [2–4] require the primary non-perturbative objects — the distribution
amplitudes of heavy baryons. For a long period, the only existed models of heavy-baryon
distribution amplitudes [5,6] have been motivated by quark models and not consistent with QCD
constraints. In the paper [7], the complete classification of three-quark light-cone distribution
amplitudes (LCDAs) of the Λb-baryon in QCD in the heavy quark limit were given and the
scale-dependence of the leading-twist LCDA is discussed. In addition, simple models of the
LCDAs were suggested and their parameters were fixed based on estimates of the first few
moments by the QCD sum rules method. The analysis of [7] can be extended on all the ground
state b-baryons with the spin-parity both JP = 1/2+ and JP = 3/2+. The basic steps and
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Figure 1: The SU(3)F flavor multiplets of bottom baryons. The SU(3)F triplet with the spin-
parity JP = 1/2+ and scalar (jp = 0+) light-quark state is to the left. The SU(3)F sextet with
the axial-vector (jp = 1+) light-quark state is to the right. The particle content on the diagram
corresponds to the bottom baryons with the spin-parity JP = 1/2+. The ones with JP = 3/2+

have the ∗-modification of names.

main results of such an analysis are summarized in this talk and all the details are presented in
the forthcoming paper [8].

2 Interpolating Currents of Heavy Baryons in HQET

Baryons with one heavy quark Q = c, b in HQET (for a textbook about this topic see [9])
are classified according to the angular momentum ℓ and parity p of the light quark pair called
diquark. The heavy quarks are non-relativistic particles which decouple from the diquark in
the leading order of the 1/mQ expansion.

The ground-state baryons (ℓ = 0) with spin-parity JP are characterized by the spin-parity jp

of the diquark. The spins of the light quarks produce two states with jp = 0+ and jp = 1+.
In the state with jp = 0+ the spin wave-function is antisymmetric, while Fermi statistics of the
baryon state and antisymmetry in color space require antisymmetric flavor wave-function. This
results in a baryonic state with isospin I = 0 constructed from the light u- and d-quarks which
is called the ΛQ-baryon (the spin-parity is JP = 1/2+). When the spin-parity of the diquark
is jp = 1+, the spin part of the baryon wave-function is symmetric which requires symmetry
of the wave-function in the flavor space. In the case of light u- and d-quarks only, this gives
two degenerate states with isospin I = 1, which are called ΣQ- and Σ∗

Q-baryons having the

spin-parities JP = 1/2+ and JP = 3/2+, respectively. Inclusion of the s-quark increases the
number of heavy baryons in the multiplet, which is characterized by strangeness S. If S = −1,
there are two baryonic states ΞQ and Ξ′

Q with JP = 1/2+ and Ξ∗
Q-baryon with JP = 3/2+.

For S = −2, the baryons with JP = 1/2+ and JP = 3/2+ are called ΩQ and Ω∗
Q. The SU(3)F

multiplets of b-quark baryons are shown in Fig. 1.
The heavy baryon local currents have the following general structures [10,11]:

J
HQ

1 = εabc

[
ψaT CΓT ψb

]
Γ′Qc

v, J
HQ

2 = εabc

[
ψaT CΓv/T ψb

]
Γ′Qc

v, (1)

where a, b, c = 1, 2, 3 are the color indices, ψ is the SU(3)F triplet in the flavor space, vµ is the
four-velocity of the heavy quark, v/ = (vγ), Qv is the effective static field of the heavy quark
satisfying v/Qv = Qv, the index T means a transposition, C is the charge conjugation matrix
with the properties CγT

µ C−1 = −γµ and Cγ5C−1 = γ5, and T is a matrix in the flavor space.
For each of the ground-state baryons there are two independent interpolating local cur-

rents J1 and J2 with both having the appropriate quantum numbers. They can be constructed
as suggested in Refs. [10–13]. For the states belonging to the SU(3)F antitriplet 3̄ (see Fig. 1a),
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the currents are:

J
ΛQ

1 = εabc

[
uaT Cγ5d

b
]
Qc

v, J
ΛQ

2 = εabc

[
uaTCγ5v/d

b
]
Qc

v, (2)

J
ΞQ

1 = εabc

[
qaT Cγ5s

b
]
Qc

v, J
ΞQ

2 = εabc

[
qaTCγ5v/s

b
]
Qc

v, (3)

where q = u or d is one of the isodoublet quark fields. There are also two SU(3)F sextet 6

states (see Fig. 1b) which differ by the total spin of the state. For the 1/2+ baryons, the local
interpolating currents are:

J
ΣQ

1 = −εabc

[
qaT
1 Cγtµq

b
2

]
γµ

t γ5Q
c
v, J

ΣQ

2 = −εabc

[
qaT
1 Cγtµv/q

b
2

]
γµ

t γ5Q
c
v, (4)

J
Ξ′

Q

1 = −εabc

[
qaT Cγtµs

b
]
γµ

t γ5Q
c
v, J

Ξ′
Q

2 = −εabc

[
qaTCγtµv/s

b
]
γµ

t γ5Q
c
v, (5)

J
ΩQ

1 = −εabc

[
saTCγtµs

b
]
γµ

t γ5Q
c
v, J

ΩQ

2 = −εabc

[
saTCγtµv/s

b
]
γµ

t γ5Q
c
v, (6)

where γµ
t = γµ − v/ vµ. For the 3/2+ baryons, the flavor structure is the same as for the

1/2+ baryons above, but the Dirac structure acting on the heavy-quark field is different. We
exemplify such currents by the ones corresponding to the Σ∗

Q-baryon:

J
Σ∗

Q

1µ = εabc

[
qaT
1 Cγν

t q
′b
2

](
gµν − 1

3
γtµγtν

)
Qc

v, (7)

J
Σ∗

Q

2µ = εabc

[
qaT
1 Cγν

t v/q
′b
2

](
gµν − 1

3
γtµγtν

)
Qc

v.

These currents satisfy the condition γµ
t J

Σ∗
Q

iµ = 0 (i = 1, 2).

Matrix elements of the local operators (2)-(7) define the baryonic couplings f
(i)
HQ

:

JP = 1/2+ : 〈0|JHQ

i |HQ(v)〉 = f
(i)
HQ

uHQ(v), (8)

JP = 3/2+ : 〈0|JH∗
Q

iµ |H∗
Q(v)〉 =

1√
3
f

(i)
H∗

Q
u

H∗
Q

µ (v), (9)

where the coefficient in the matrix element 〈0|JH∗
Q

iµ |H∗
Q(v)〉 is chosen such that f

(i)
HQ

= f
(i)
H∗

Q
in

the heavy-quark symmetry limit. The Dirac spinors uHQ(v) of the heavy baryon HQ with the
non-relativistic normalization ūHQ(v)uHQ(v) = 1 satisfy the condition v/ uHQ(v) = uHQ(v). In
the case of the H∗

Q-baryons, the wave-function is represented by the Rarita-Schwinger vector-

spinor u
H∗

Q
µ (v), for which the following relations are valid: v/ u

H∗
Q

µ (v) = u
H∗

Q
µ (v) and vµ u

H∗
Q

µ (v) =

γµ u
H∗

Q
µ (v) = 0.1 The sums over their polarizations are as follows [14]:

2∑

λ=1

uHQ(λ)(v) ūHQ(λ)(v) =
1 + v/

2
≡ P+, (10)

4∑

λ=1

u
H∗

Q(λ)
µ (v) ū

H∗
Q(λ)

ν (v) = P+

[
−gµν + vµvν +

1

3
γtµγtν

]
. (11)

One can easily check the normalizations of these objects:

Sp

2∑

λ=1

uHQ(λ)(v) ūHQ(λ)(v) = 2, −gµν Sp

4∑

λ=1

u
H∗

Q
(λ)

µ (v) ū
H∗

Q
(λ)

ν (v) = 4, (12)

1A construction of the spin part of the excited baryons can be found in Ref. [14].
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accounting for the numbers of the independent polarization states.
The LCDAs of a heavy baryon can be defined through the baryon-to-vacuum matrix elements

of suitable non-local light-ray operators built from an effective heavy quark field Qc
v(0) and two

light quark fields qa
i (tin) (i = 1, 2). For the ΛQ-baryon, the complete set of three-quark light-ray

operators with respect to the diquark twist decomposition have been derived recently [7]. These
currents can be easily adapted to the ΞQ-baryons by the replacement of one of the light u- or
d-quarks by the s-quark and in general form can be written as follows:

J2(t1, t2) = εabc

[
qaT
1 (t1n)Cγ5n/q

b
2(t2n)

]
Qc

v(0),

J3s(t1, t2) = εabc

[
qaT
1 (t1n)Cγ5q

b
2(t2n)

]
Qc

v(0), (13)

J3σ(t1, t2) =
i

2
εabc

[
qaT
1 (t1n)Cγ5(n̄σn)qb

2(t2n)
]
Qc

v(0),

J4(t1, t2) = εabc

[
qaT
1 (t1n)Cγ5n̄/q

b
2(t2n)

]
Qc

v(0),

where (n̄σn) = n̄µσµνn
ν and the flavors of the light quarks q = u, d, s are different (q1 6= q2)

(for the quark content of real heavy baryons, see Fig. 1). The subscripts 2, 3, 4 refer to the
twist of the diquark operator, nµ and n̄µ are light-like vectors normalized as (n̄n) = 2 which
we choose such that vµ = (nµ + n̄µ) /2 and (nv) = (n̄v) = 1. The matrix elements of the
operators (13) can be parametrized in accordance with [7]:

〈0|J2(t1, t2)|HQ(v)〉 = f
(2)
HQ

Ψ2(t1, t2)u
HQ(v),

〈0|J3s(t1, t2)|HQ(v)〉 = f
(1)
HQ

Ψ3s(t1, t2)u
HQ(v), (14)

〈0|J3σ(t1, t2)|HQ(v)〉 = f
(1)
HQ

Ψ3σ(t1, t2)u
HQ(v),

〈0|J4(t1, t2)|HQ(v)〉 = f
(2)
HQ

Ψ4(t1, t2)u
HQ(v).

The simplest way to construct the complete set of the three-particle LCDAs of baryons
with the diquark spin-parity jp = 1+ is to switch off the spin of the heavy quark (we denote
it as Q̃v) and introduce the LCDAs for the “axial-vector baryon” state H̃Q(v, η), which in this
case is characterized by the polarization vector ηµ satisfying the condition (vη) = 0. The LCDA
definitions are borrowed from the light-cone analysis of the vector mesons [15]. Let us separate
eight interpolating currents into two groups similar to the chiral-even and chiral-odd LCDAs of
a vector meson [15]. The first set is:

J2V (t1, t2) = ǫabc

[
qaT
1 (t1n)Cn/qb

2(t2n)
]
Q̃c

v(0), (15)

J4V (t1, t2) = ǫabc

[
qaT
1 (t1n)Cn̄/qb

2(t2n)
]
Q̃c

v(0), (16)

Jµ
3V (t1, t2) = ǫabc

[
qaT
1 (t1n)Cγµ

⊥q
b
2(t2n)

]
Q̃c

v(0), (17)

Jµ
3A(t1, t2) = ǫabcε

µν
⊥

[
qaT
1 (t1n)Cγ⊥νγ5q

b
2(t2n)

]
Q̃c

v(0), (18)

where γµ
⊥ = γµ − (n/ n̄µ + n̄/ nµ)/2, εµν

⊥ = (i/2) εµµρσ nρn̄σ is the antisymmetric tensor in the
plane perpendicular to the light cone (satisfying the condition ε⊥µνε

νµ
⊥ = 2). The second set is:

Jµ
2T (t1, t2) = ǫabc

[
qaT
1 (t1n)Cγµ

⊥n/q
b
2(t2n)

]
Q̃c

v(0), (19)

Jµ
4T (t1, t2) = ǫabc

[
qaT
1 (t1n)Cγµ

⊥n̄/q
b
2(t2n)

]
Q̃c

v(0), (20)

J3T (t1, t2) =
i

2
ǫabc

[
qaT
1 (t1n)C (n̄σn) qb

2(t2n)
]
Q̃c

v(0), (21)

J3S(t1, t2) = ǫabc

[
qaT
1 (t1n)Cqb

2(t2n)
]
Q̃c

v(0). (22)
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It is easy to see that the linear combinations of the currents (15)-(17) and (19)-(21):

2Jµ
3V (t1, t2) − v̄µ [J2V (t1, t2) − J4V (t1, t2)] = 2ǫabc

[
qaT
1 (t1n)Cγµ

t q
b
2(t2n)

]
Q̃c

v(0), (23)

Jµ
2T (t1, t2) + Jµ

4T (t1, t2) − 2v̄µ J3T (t1, t2) = 2ǫabc

[
qaT
1 (t1n)Cγµ

t v/q
b
2(t2n)

]
Q̃c

v(0), (24)

reduce to the non-vanishing local currents with the matrix elements:
〈
0
∣∣∣ǫabc

[
qa
1(0)Cγµ

t q
b
2(0)

]
Q̃c

v(0)
∣∣∣ H̃Q(v, η)

〉
= λ̃1 η

µ, (25)
〈
0
∣∣∣ǫabc

[
qa
1(0)Cγµ

t v/q
b
2(0)

]
Q̃c

v(0)
∣∣∣ H̃Q(v, η)

〉
= λ̃2 η

µ. (26)

Here, v̄µ = (nµ − n̄µ)/2 (with v̄2 = −1 and (vv̄) = 0) and γµ
t = γµ

⊥ − v̄/ v̄µ. With the definitions
above, the matrix elements of the non-local operators can be determined as follows:

〈
0 |J2V (t1, t2)| H̃Q(v, η)

〉
= λ̃1 (nη)Ψ2V (t1, t2), (27)

〈
0
∣∣Jµ

3V (t1, t2)
∣∣ H̃Q(v, η)

〉
= λ̃1 η

µ
⊥ Ψ3V (t1, t2), (28)

〈
0 |J4V (t1, t2)| H̃Q(v, η)

〉
= −λ̃1 (n̄η)Ψ4V (t1, t2), (29)

〈
0
∣∣Jµ

3A(t1, t2)
∣∣ H̃Q(v, η)

〉
= λ̃1 η

µ
⊥ Ψ3A(t1, t2), (30)

〈
0
∣∣Jµ

2T (t1, t2)
∣∣ H̃Q(v, η)

〉
= λ̃2 η

µ
⊥ Ψ2T (t1, t2), (31)

〈
0 |J3T (t1, t2)| H̃Q(v, η)

〉
= λ̃2 (v̄η)Ψ3T (t1, t2), (32)

〈
0
∣∣Jµ

4T (t1, t2)
∣∣ H̃Q(v, η)

〉
= λ̃2 η

µ
⊥ Ψ4T (t1, t2), (33)

〈
0 |J3S(t1, t2)| H̃Q(v, η)

〉
= λ̃2 (v̄η)Ψ3S(t1, t2), (34)

where ηµ
⊥ = ηµ + v̄µ (v̄η). In the SU(3)F -symmetry limit, the LCDAs ΨiV (t1, t2) and ΨiT (t1, t2)

are symmetric under the exchange t1 ↔ t2 and normalized as ΨiV (0, 0) = ΨiT (0, 0) = 1 while
Ψ3S(t1, t2) and Ψ3A(t1, t2) are antisymmetric and, hence, satisfy the condition Ψ3A(0, 0) =
Ψ3S(0, 0) = 0. The breaking of the SU(3)F-symmetry results in the violation of the LCDAs
symmetry properties.

The transition to the real heavy-quark field Qc
v(0) in the non-local currents (15)-(22) is

equivalent to the replacement Q̃c
v(0) → Γ′Qc

v(0), where the matrix Γ′ gives the right quantum
numbers of the specific baryon. This also improves the r.h.s. of the definitions (27)-(34) but
the set of the LCDAs remains the same (for details see [8]).

3 Scale-Dependence of Matrix Elements

A non-relativistic constituent quark picture of the Λb suggests that f
(2)
HQ

≃ f
(1)
HQ

at low scales of

order 1 GeV, and this expectation is supported by numerous QCD sum rule calculations [10,11,
16, 17]. In fact, the difference between the two couplings is only obtained at the level of NLO
perturbative corrections to the sum rules [11,17] and it is numerically small.

The scale dependence of the couplings is given by

f
(i)
HQ

(µ) = f
(i)
HQ

(µ0)

(
αs(µ)

αs(µ0)

)γ
(i)
1 /β0

[
1 − αs(µ0) − αs(µ)

4π

γ
(i)
1

β0

(
γ

(i)
2

γ
(i)
1

− β1

β0

)]
, (35)

where the anomalous dimensions of the local interpolating operators:

d ln f
(i)
HQ

(µ)

d lnµ
≡ −γ(i) = −

∑

k

γ
(i)
k ak(µ), a(µ) ≡ αMS

s (µ)

4π
, (36)
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Figure 2: The total set of one-gluon-exchange diagrams for calculating the scale-dependence of
LCDAs of the heavy baryon. Normal and bold solid lines correspond to light and heavy quarks,
respectively. Dashed and curly lines describe the Wilson links and exchanged gluons.

are known to NLO [17], and the β-function expansion:

da(µ)

d lnµ
= −β0 a

2(µ) − β1 a
3(µ) + · · · , (37)

was used to NLO with the coefficients β0 = 2 (11 − 2nf/3) and β1 = 4 (51 − 19nf/3).
For the numerical value of the couplings, let us quote the result of the NLO QCD sum rule

analysis in Ref. [7, 11]:

f
(1)
Λb

(1 GeV) ≃ f
(2)
Λb

(1 GeV) ≃ (0.030 ± 0.005) GeV3, (38)

at the renormalization scale µ = 1 GeV. Note that these couplings cannot coincide at all scales
since the corresponding operators have different anomalous dimensions.

The LCDAs introduced in Sec. 2 are scale dependent. To work it out, it is convenient to
make a Fourier transform of LCDAs into the momentum space:

Ψk(t1, t2) =

∞∫

0

dω1

∞∫

0

dω2 e
−i(t1ω1+t2ω2)ψk(ω1, ω2) =

∞∫

0

ω dω

1∫

0

du e−iω(t1u+t2ū)ψ̃k(ω, u), (39)

so that ψ̃k(ω, u) = ψk(uω, ūω) with ū = 1 − u. In the first representation ω1 and ω2 are the
energies of the light quarks and in the second one ω = ω1 + ω2 is the total energy carried by
light quarks (in the heavy-quark rest frame) whereas the dimensionless variable u corresponds
to the energy fraction carried by the quark called q1.

The leading-order (LO) evolution equation for the leading-twist LCDAs ψ2(ω1, ω2;µ) can be
derived following the usual procedure [7] by identifying the ultraviolet singularities of one-gluon-
exchange diagrams presented in Fig 2. The result can be expressed in terms of the two-particle
kernels familiar from the evolution equations of the B-meson and π-meson LCDAs [7]:

µ
d

dµ
ψ2(ω1, ω2;µ) = −αs(µ)

2π

(
1 +

1

Nc

){ ∞∫

0

dω′
1 γ

LN(ω′
1, ω1;µ)ψ2(ω

′
1, ω2;µ) (40)

+

∞∫

0

dω′
2 γ

LN(ω′
2, ω2;µ)ψ2(ω1, ω

′
2;µ) −

1∫

0

dv V (u, v)ψ2(vω, v̄ω;µ) +
3

2
ψ2(ω1, ω2;µ)

}
,

where the last term in the curly brackets, 3ψ2/2, is a result of the subtraction of the one-loop

renormalization of the coupling f
(2)
HQ

.
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OΓ(t1, t2) J̄Γ′

(x)

0

t2

t1

nµ

xµ

Figure 3: The correlation functions involving the non-local light-ray operator OΓ(t1, t2) and a
suitable local current J̄Γ′

(x). The bold solid line corresponds to the heavy-quark propagator
and the solid lines with the blob insertion are the propagators of the light quarks which are
modified by contributions of the non-local quark condensates.

The first two convolution integrals in Eq. (40) are associated with the heavy-light dynamics:
each of them involves just one of the light quarks. Indeed, the kernel γLN(ω′, ω;µ) coincides with
the one controlling the evolution of the B-meson distribution amplitude, the Lange-Neubert
anomalous dimension [18]. In turn, the last convolution integral in Eq. (40) describes the
interaction between the light quarks. V (u, v) is the celebrated ER-BL kernel [19].

For small evolution ranges, ln(µ/µ0) . 1, it is sufficient to interpret the derivative on the
l.h.s. of (40) as a finite difference [ψ2(ω1, ω2;µ) − ψ2(ω1, ω2;µ0)]/ ln(µ/µ0) and substitute the
initial condition ψ2(ω1, ω2;µ0) for ψ2(ω1, ω2;µ) on the r.h.s. Obviously, this corresponds to tak-
ing into account one-loop renormalization only, neglecting the resummation of potentially large
logarithms. As it was demonstrated in [7], this single-evolution-step (one-loop) approximation
is quite good in practice, e. g. for µ0 = 1 GeV and µ ≃ mb/2. In order to go beyond the
one-loop approximation, one possibility is to integrate the evolution equation (40) numerically.
In Ref. [7], the other, semi-analytic, approach have been suggested which has an advantage that
it allows one to understand the structure of the solution.

4 QCD Sum Rules

1. Models for the heavy-baryon LCDAs can be obtained by applying the QCD sum rules to the
correlation functions involving the non-local light-ray operator OΓ(t1, t2) and a suitable local
current J̄Γ′

(x) which is shown in Fig. 3. For a suitable local current of the heavy baryons one
can take

J̄Γ′

(x) = A J̄
HQ

1 +B J̄
HQ

2 = εabc

[
q̄a
2(x) (A+Bv/) Γ′CT q̄bT

1 (x)
]
Q̄c

v(x), (41)

where CT is the matrix transpose to C. Specific values of the coefficients A and B allow to
account for the variation caused by the uncertainty in the choice of the local current. The

currents of the type J̄
HQ

1 (x) and J̄
HQ

2 (x) have been used in Ref. [11] to write the diagonal, non-
diagonal and constituent-type sum rules. For the baryons with the diquark spin-parity jp = 0+,
one should take Γ′ = γ5 and for the jp = 1+ diquark in the baryon, there are two possibilities
Γ′ = γ| or Γ′ = γ⊥. The current J̄Λ(x) adopted in Ref. [7] for the Λb-baryon, having jp = 0+

of the diquark, is the current (41) with A = B = 1/2, which picks up the contributions of both
even and odd dimensions, i.e. J̄Λb

2 (x) produces the perturbative theory and quartic condensate

contributions, while J̄Λb

1 (x) results into the non-local quark condensates.
The procedure of constructing the QCD sum rules is well known and results the following

general form:

fk

(
Af

(1)
HQ

+Bf
(2)
HQ

)
ψ̃SR

k (t1, t2) e−Λ̄/τ = B[Πk](t1, t2; τ, s0), (42)

where fk = f
(2)
HQ

for the even twists and fk = f
(1)
HQ

for the twist-3 distribution amplitudes. The

7



effective baryon mass is introduced as the difference Λ̄ = mHQ
−mQ with mQ being the mass

of the heavy quark, τ is the Borel parameter, and s0 is the continuum threshold. The r.h.s. in
Eq. (42) is the Borel-transformed continuum-subtracted invariant function determined through
the correlation function Πk(t1, t2; τ).

For practical applications, one needs to know the LCDAs in the momentum space. The
Fourier transform of the LCDAs has been defined in Eq. (39) and the one of the scalar correlation
function is as follows:

Πk(ω, u; τ) =

∞∫

−∞

dt1
2π

∞∫

−∞

dt2
2π

eiω(ut1+ūt2) Πk(t1, t2; τ). (43)

In the momentum space, the sum rules (42) can be rewritten in the following form:

fk

(
Af

(1)
HQ

+Bf
(2)
HQ

)
ψ̃SR

k (ω, u) e−Λ̄/τ = B[Πk](ω, u; τ, s0). (44)

Taking into account the leading-order perturbative contribution to the sum rules only, one
obtains:

ψ̃2(ω, u) =
30τ4

N

[
ω̂2 uū+

A

B
ω̂ (m̂2u+ m̂1ū)

]
E1 (2ŝω) e−ω̂, (45)

ψ̃4(ω, u) =
30τ4

N

[
E3 (2ŝω) +

A

B
(m̂1 + m̂2)E2 (2ŝω)

]
e−ω̂, (46)

ψ̃3s(ω, u) =
15τ4

N

{[
ω̂ +

B

A
(m̂1 + m̂2)

]
E2 (2ŝω) (47)

+
B

A
ω̂ (m̂2u+ m̂1ū)E1 (2ŝω)

}
e−ω̂,

ψ̃3σ(ω, u) =
15τ4

N

{[
ω̂ (u− ū) +

B

A
(m̂1 − m̂2)

]
E2 (2ŝω) (48)

+
B

A
ω̂ (m̂2u− m̂1ū)E1 (2ŝω)

}
e−ω̂,

where sω = s0 − ω/2, ω̂ = ω/(2τ), ŝω = sω/(2τ), and m̂1,2 = m1,2/(2τ). The normalization
integral N is introduced via the decay constant:

∣∣∣f (i)
HQ

∣∣∣
2

e−Λ̄/τ =
1

20π4

∫ s0

0
ds s5 e−s/τ ≡ N

20π4
. (49)

In Eqs. (45)-(48) it appears convenient to introduce the function:

Ea(x) =
1

Γ(a+ 1)

∫ x

0
dt tae−t = 1 − Γ(a+ 1, x)

Γ(a+ 1)
, (50)

where Γ(a+1, x) =
∫∞
x dt tae−t is the incomplete Γ-function. For integer values of the parameter

(a = N), this function is reduced to the well-known representation:

EN (x) = 1 − e−x
N∑

n=0

xn

n!
, (51)

In practical numerical estimations, it is more convenient to use the integration by parts

Ea(x) = Ea+1(x) +
xa+1 e−x

Γ(a+ 2)
(52)
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to re-express the negative value of the parameter a in Ea(x) through a positive one, as done
in [7].

In order to evaluate the non-perturbative contributions to the sum rules, one is forced to
use the non-local quark condensates as explained in Refs. [20,21] for the B-meson case. In the
present analysis, we use the general parametrization [22,23]

〈q̄(x)q(0)〉 = 〈q̄q〉
∞∫

0

dν eνx2/4 f(ν), (53)

where 〈q̄q〉 is the local quark condensate and f(ν) is the model function [21,24]:

f(ν) =
λa−2

Γ(a− 2)
ν1−a e−λ/ν , a− 3 =

4λ

m2
0

. (54)

The parameters λ and m2
0 entering the model function f(ν) have the meanings of the corre-

lation length and the ratio of the mixed quark-gluon and quark local condensates. A more
comprehensive analysis of the non-local quark and gluon condensates has been undertaken in
Ref. [25].

Taking into account the non-local quark condensates, the sum rules are as follows:

f
(2)
HQ

(
Af

(1)
HQ

+Bf
(2)
HQ

)
ψ̃SR

2 (ω, u) e−Λ̄/τ = (55)

3τ4

2π4

[
Bω̂2 uū+A ω̂ (m̂2u+ m̂1ū)

]
E1(2ŝω)e−ω̂

−〈q̄1q1〉τ3

π2
[Aω̂ū+Bm̂2] f(2τωu)E2−a(2ŝκ) e−ω̂

−〈q̄2q2〉τ3

π2
[Aω̂u+Bm̂1] f(2τωū)E2−a(2ŝκ̄) e−ω̂

+
2B

3
〈q̄1q1〉 〈q̄2q2〉 τ2 f(2τωu) f(2τωū)E3−2a(2ŝκκ̄) e−ω̂ ,

f
(2)
HQ

(
Af

(1)
HQ

+Bf
(2)
HQ

)
ψ̃SR

4 (ω, u) e−Λ̄/τ = (56)

3τ4

2π4
[BE3(2ŝω) +A (m̂1 + m̂2)E2(2ŝω)] e−ω̂

−〈q̄1q1〉τ3

π2
[AE3−a(2ŝκ) +Bm̂2E2−a(2ŝκ)] f(2τωu) e−ω̂

−〈q̄2q2〉τ3

π2
[AE3−a(2ŝκ̄) +Bm̂1E2−a(2ŝκ̄)] f(2τωū) e−ω̂

+
2B

3
〈q̄1q1〉 〈q̄2q2〉 τ2 f(2τωu) f(2τωū)E3−2a(2ŝκκ̄) e−ω̂,

f
(1)
HQ

(
Af

(1)
HQ

+Bf
(2)
HQ

)
ψ̃SR

3s (ω, u) e−Λ̄/τ = (57)

3τ4

4π4
{[Aω̂ +B (m̂1 + m̂2)]E2(2ŝω) +Bω̂ (m̂2u+ m̂1ū)E1(2ŝω)} e−ω̂

−〈q̄1q1〉τ3

2π2
[BE3−a(2ŝκ) + (Bω̂ū+ 2Am̂2)E2−a(2ŝκ)] f(2τωu) e−ω̂

−〈q̄2q2〉τ3

2π2
[BE3−a(2ŝκ̄) + (Bω̂u+ 2Am̂1)E2−a(2ŝκ̄)] f(2τωū) e−ω̂

+
2A

3
〈q̄1q1〉 〈q̄2q2〉 τ2 f(2τωu) f(2τωū)E3−2a(2ŝκκ̄) e−ω̂,
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Table 1: Experimental measurements and theoretical predictions (based on HQET [27] and
Lattice QCD [28]) for the masses of the ground-state bottom baryons (in units of MeV). Here,
Λ̄ = mHb

−mb and the continuum thresholds s0 in HQET for mb = 4.8 GeV are also given (in
units of GeV).

Baryon JP Experiment [26] HQET [27] Lattice QCD [28] Λ̄ s0
Λb 1/2+ 5620.0 ± 1.6 5637+68

−56 5641 ± 21+15
−33 0.8 1.2

Σ+
b 1/2+ 5807.8 ± 2.7 5809+82

−76 5795 ± 16+17
−26 1.0 1.3

Σ−
b 1/2+ 5815.2 ± 2.0 5809+82

−76 5795 ± 16+17
−26 1.0 1.3

Σ∗+
b 3/2+ 5829.0 ± 3.4 5835+82

−77 5842 ± 26+20
−18 1.0 1.3

Σ∗−
b 3/2+ 5836.4 ± 2.8 5835+82

−77 5842 ± 26+20
−18 1.0 1.3

Ξ−
b 1/2+ 5790.5 ± 2.7 5780+73

−68 5781 ± 17+17
−16 1.0 1.3

Ξ′
b 1/2+ 5903+81

−79 5903 ± 12+18
−19 1.1 1.4

Ξ′∗
b 3/2+ 5903+81

−79 5950 ± 21+19
−21 1.1 1.4

Ω−
b 1/2+ 6071 ± 40 6036 ± 81 6006 ± 10+20

−19 1.3 1.5

Ω∗
b 3/2+ 6063+83

−82 6044 ± 18+20
−21 1.3 1.5

f
(1)
HQ

(
Af

(1)
HQ

+Bf
(2)
HQ

)
ψ̃SR

3σ (ω, u) e−Λ̄/τ = (58)

3τ4

4π4
{[Aω̂ (u− ū) +B (m̂1 − m̂2)]E2(2ŝω) +Bω̂ (m̂2u− m̂1ū)E1(2ŝω)} e−ω̂

−B〈q̄1q1〉τ3

2π2
[E3−a(2ŝκ) − ω̂ū E2−a(2ŝκ)] f(2τωu) e−ω̂

+
B〈q̄2q2〉τ3

2π2
[E3−a(2ŝκ̄) − ω̂uE2−a(2ŝκ̄)] f(2τωū) e−ω̂,

where ŝκ = ŝω − κ/2, ŝκ̄ = ŝω − κ̄/2, ŝκκ̄ = ŝω − κ/2 − κ̄/2, and the short-hand notations are
used:

κ =
λ

2uωτ
, κ̄ =

λ

2ūωτ
. (59)

The QCD sum rules for the twist-2 LCDA (55) coincide with the ones in Ref. [7] in the limit
of massless light quarks m̂1 = m̂2 = 0 when A = B = 1/2. The impact of the quark-hadron
duality on the double condensate terms in Eqs. (55)-(57) is the appearance of the function
E3−2a(2ŝκκ̄) which in the local limit terns out to be unit, as originally obtained in Ref. [7].

In a similar way, the QCD sum rules can be obtained for heavy baryons containing the
diquark with the spin-parity jp = 1+, and corresponding equations are presented in Ref. [8].

5 Numerical analysis

To perform the numerical analysis, it is necessary to specify required input parameters. The
values of effective baryon masses Λ̄ = mHb

−mb in HQET for mb = 4.8 GeV are presented in
Table 1 where experimental measurements [26] and theoretical predictions (based on HQET [27]
and Lattice QCD [28]) for the masses (in units of MeV) of the ground-state bottom baryons
are also shown. The comparative analysis of the predictions for the heavy baryon masses can
be found in Refs. [27,29]. The continuum threshold values s0 (the last column in Table 1) used
by us are in agreement with ones from [27], used for the baryon mass evaluation to order 1/mb

within HQET. The other input parameters are presented in Table 2. For the discussion of these
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Table 2: Numerical values of the parameters entering the QCD sum rules for the LCDAs of the
bottom baryons.

τ (0.6 ± 0.2) GeV ms (1 GeV) (128 ± 21) MeV

〈q̄q〉 (1 GeV) −(242+28
−19) MeV3 〈s̄s〉/〈q̄q〉 0.8 ± 0.2

m2
0 (0.8 ± 0.2) GeV2 λ 0.16 GeV2

parameters see [30] and references therein. Note that the shape function f(ν) in the non-local
quark condensate is assumed to be flavor independent for all light quarks.

These QCD sum rules constrain certain momentum fraction integrals (the moments). Let
us define such moments as follows:

〈f(ω, u)〉HQ

k ≡
∫ 2s0

0
ωdω

∫ 1

0
du f(ω, u) ψ̃SR

t (ω, u), (60)

where t = 2, 3s, 3σ, 4.
For the leading twist LCDAs (t = 2), one can fix the LCDAs normalization by

∫ 2s0

0
ωdω

∫ 1

0
du ψ̃SR

2 (ω, u) ≡ 1. (61)

Estimates of the moments for the Λb- and Ξb-baryons are presented in Table 3. In this case,

it is convenient to make an expansion in terms of the Gegenbauer polynomials C
3/2
n (2u − 1)

which are orthogonal with respect to the asymptotic behavior ∼ u(1 − u) of the leading twist
LCDA (55) (in the massless limit). The errors correspond to the variation of the parameters A
and B in the range: 0 ≤ A, B ≤ 1, keeping the condition A + B = 1, and the central values
of the other input parameters are given in Table 2. As a check, we reproduced the numerical
values for the moments [7] corresponding to the leading twist LCDA of the Λb-baryon. All the
moments of the Λb-baryon calculated with respect to the Gegenbauer polynomials of the odd
order are equal to zero as a consequence of the symmetry of this function under the interchange
u ↔ 1 − u. This is not true anymore for the Ξb-baryon if the SU(3)F-breaking corrections
are taken into account due to the non-vanishing s-quark mass and the difference between the
strange 〈s̄s〉 and non-strange 〈q̄q〉 local condensates. From Table 3, one can easily see that these
corrections yield typically ∼ 10% effects.

For the twist-3 LCDAs ψ̃SR
3s (ω, u) and ψ̃SR

4 (ω, u), the normalization condition (61) is used.
As for the integral (61) with the LCDA ψ̃SR

3σ (ω, u), it turns out to be zero in the SU(3)F
symmetry limit, as this function is antisymmetric under the interchange u ↔ 1 − u. To avoid
this problem, we use for the ψ̃SR

3σ (ω, u) LCDA the following normalization condition:

∫ 2s0

0
ωdω

∫ 1

0
duC

1/2
1 (2u− 1) ψ̃SR

k (ω, u) ≡ 1. (62)

Note that for these LCDAs the expansion with respect to the C
1/2
n (2u − 1) Gegenbauer poly-

nomials is more suitable. This is motivated by the analysis of the energetic π-meson for which

the twist-3 φp(x) and twist-4 φ3(x) LCDAs are described by the C
1/2
n (2u − 1) Gegenbauer

polynomials [31–33].
Numerical estimates for the Λb- and Ξb-baryon moments based on the QCDSRs are presented

in Table 3. As explained above, the errors correspond to the variation of the parameters A and B
while the central values of the other input parameters are taken from Table 2 and kept fixed
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Table 3: Numerical values of the first several moments of the heavy baryon LCDAs estimated

by the QCDSRs. The moments 〈ω−1〉, 〈ω−1C
3/2
n 〉 and 〈ω−1C

1/2
n 〉 are dimensionful, with the

entries below given in units of GeV−1, while 〈C3/2
n 〉 and 〈C1/2

n 〉 are dimensionless.

HQ t 〈ω−1〉 〈C3/2

1 〉 〈ω−1C
3/2

1 〉 〈C3/2

2 〉 〈ω−1C
3/2

2 〉 〈C3/2

3 〉 〈ω−1C
3/2

3 〉
Λb 2 1.65+0.91

−0.47 0 0 1.00+0.54
−1.03 0.61+0.76

−1.45 0 0

Ξb 2 1.46+0.54
−0.34 0.10+0.10

−0.06 0.08+0.07
−0.05 1.15+0.61

−0.98 0.86+0.68
−1.10 −0.02+0.32

−0.52 −0.10+0.24
−0.38

HQ t 〈ω−1〉 〈C1/2

1 〉 〈ω−1C
1/2

1 〉 〈C1/2

2 〉 〈ω−1C
1/2

2 〉 〈C1/2

3 〉 〈ω−1C
1/2

3 〉
3s 2.16+0.70

−0.36 0 0 −0.032+0.022
−0.041 −0.29+0.14

−0.27 0 0

Λb 3σ 0 1 1.54+0.14
−0.22 0 0 −0.034+0.034

−0.021 −0.027+0.027
−0.017

4 2.84+0.88
−0.46 0 0 −0.108+0.035

−0.018 −0.41+0.08
−0.15 0 0

3s 1.94+0.33
−0.21 0.11+0.09

−0.05 0.075+0.077
−0.047 1.05+0.14

−0.23 1.01+0.28
−0.46 −0.014+0.051

−0.032 −0.117+0.002
−0.005

Ξb 3σ 0.0019+0.0014
−0.0019 1 1.37+0.11

−0.14 0.057+0.043
−0.057 0.098+0.075

−0.098 1.11+0.46
−0.35 1.55+0.24

−0.32

4 2.73+0.61
−0.35 0.12+0.09

−0.05 0.05+0.09
−0.05 0.55+0.18

−0.11 0.99+0.16
−0.09 −0.043+0.025

−0.015 −0.18+0.02
−0.03

at their central values. It is worth noting, that for the Ξb-baryon, the integral (61) becomes
non-zero because of the SU(3)F -symmetry breaking, but numerically it is small:

∫ 2s0

0
ωdω

∫ 1

0
du ψ̃SR

k (ω, u) = −0.0049+0.0049
−0.0037. (63)

The same is true also for the 〈ω−1〉 moment as seen from Table 3.
We propose the following simple models for the baryon LCDAs at the low scale µ = 1 GeV:

ψ̃2(ω, u) = ω2u(1 − u)
2∑

n=0

a
(2)
n

ǫ
(2)
n

4 C
3/2
n (2u− 1) e−ω/ǫ

(2)
n , (64)

ψ̃3s(ω, u) =
ω

2

2∑

n=0

a
(3)
n

ǫ
(3)
n

3 C
1/2
n (2u− 1) e−ω/ǫ

(3)
n , (65)

ψ̃3σ(ω, u) =
ω

2

3∑

n=0

b
(3)
n

η
(3)
n

3 C
1/2
n (2u− 1) e−ω/η

(3)
n , (66)

ψ̃4(ω, u) =

2∑

n=0

a
(4)
n

ǫ
(4)
n

2 C
1/2
n (2u− 1) e−ω/ǫ

(4)
n , (67)

where C
1/2
0 (2u − 1) = C

3/2
0 (2u − 1) = 1. The Gegenbauer moments of the zeroth order are

defined as a
(k)
0 ≡ 1 which follows from the normalization:

∫ ∞

0
ωdω

∫ 1

0
du ψ̃k(ω, u) ≡ 1, (68)

where k = 2, 3s, 4. In the construction of the models for the LCDAs, we have truncated the
Gegenbauer expansion at the second non-asymptotic term.
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Table 4: Estimates of the parameters entering the theoretical models for the heavy baryon
LCDAs based on the QCDSRs values of the moments.

HQ t ε
(t)
0 ε

(t)
1 ε

(t)
2 a

(t)
1 a

(t)
2

2 0.201+0.143
−0.059 0 0.551+∞

−0.356 0 0.391+0.279
−0.279

Λb 3 0.232+0.047
−0.056 0 0.055+0.010

−0.020 0 −0.161+0.108
−0.207

4 0.352+0.067
−0.083 0 0.262+0.116

−0.132 0 −0.541+0.173
−0.090

2 0.228+0.068
−0.061 0.429+0.654

−0.281 0.449+∞
−0.473 0.057+0.055

−0.034 0.449+0.236
−0.380

Ξb 3 0.258+0.031
−0.038 0.750+0.308

−0.093 0.520+0.229
−0.060 0.339+0.261

−0.160 5.244+0.696
−1.132

4 0.378+0.065
−0.080 2.291+∞

−0.842 0.286+0.130
−0.150 0.039+0.030

−0.018 −0.090+0.037
−0.021

HQ t η
(t)
1 η

(t)
2 η

(t)
3 b

(t)
2 b

(t)
3

Λb 3 0.324+0.054
−0.026 0 0.633+0.0??

−0.0?? 0 −0.240+0.240
−0.147

Ξb 3 0.218+0.043
−0.047 0.877+0.820

−0.152 0.049+0.005
−0.012 0.037+0.032

−0.019 −0.027+0.016
−0.027

In terms of the LCDAs parameters, the moments of interest are:

〈
ω−1

〉HQ

k
=

{
1

3ǫ
(2)
0

,
1

2ǫ
(3)
0

,
b
(3)
0

2η
(3)
0

,
1

ǫ
(4)
0

}
,

〈
C

3/2
1

〉HQ

k
=

{
9a

(2)
1

5
,
a

(3)
1

3
,
b
(3)
1

3
,
a

(4)
1

3

}
,

〈
ω−1C

3/2
1

〉HQ

k
=

{
3a

(2)
1

5ǫ
(2)
1

,
a

(3)
1

6ǫ
(3)
1

,
b
(3)
1

6η
(3)
1

,
a

(4)
1

3ǫ
(4)
1

}
,

〈
C

3/2
2

〉HQ

k
=

{
18a

(2)
2

7
,
a

(3)
2

5
,
b
(3)
2

5
,
a

(4)
2

5

}
,

〈
ω−1C

3/2
2

〉HQ

k
=

{
6a

(2)
2

7ǫ
(2)
2

,
a

(3)
2

10ǫ
(3)
2

,
b
(3)
2

10η
(3)
2

,
a

(4)
2

5ǫ
(4)
0

}
.

In the limit of the exact SU(3)F symmetry, all the above functions have definite symmetry
properties: ψ̃2(ω, u), ψ̃3s(ω, u), and ψ̃4(ω, u) are symmetric under the exchange u ↔ 1 − u,
while ψ̃3σ(ω, u) is antisymmetric. As a result, only even Gegenbauer polynomials are entering

the model functions for the LCDAs, i.e., a
(k)
1 = 0 (k = 1, 2, 3). If we restrict ourselves to the

isospin symmetry only, then these symmetry conditions remain true for the ΛQ-baryon but not
for the ΞQ-baryon, as the s-quark contributes differently than the u- and d-quarks.

The detail numerical analysis of the baryons with the jp = 1+ diquark are presented in
Ref. [8]. Here, we exemplify it by presenting the shape functions of the JP = 1/2+ baryons in
Fig. 4. The uncertainty in the LCDAs is mainly dominated by an arbitrariness (0 ≤ A ≤ 1) in
the choice of the local interpolating current.

6 Conclusions

The total set of the non-local light-ray operators for the ground-state heavy baryons with JP =
1/2+ and JP = 3/2+ is constructed in QCD in the heavy quark limit. Matrix elements of these
operators sandwiched between the heavy-baryon state and vacuum determine the LCDAs of
different twist through the diquark current. The first several moments of LCDAs are calculated
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Figure 4: Twist 2 LCDAs of Σb (blue), Ξb (red) and Ωb (yellow) at the energy scale µ = 1 GeV
(solid lines) and energy scale µ = 2.5 GeV (dashed lines) including the most conservative error
A ∈ [0, 1] (light shade).

within the method of QCD sum rules using the non-local light-quark condensates. Simple
theoretical models for the LCDAs have been proposed and their parameters are fitted based on
the QCD sum rules estimations. SU(3)F breaking effects result the correction of order 10%.
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