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Abstract

We propose a conjecture about the detailed structure of the conformal symmetry breaking
term in the QCD generalization of Crewther relation and demonstrate its validity at the
α4

s
-level. We conclude that this new structure leads to formulation of the constrains on the

QCD expansion coefficients of the Adler D-function and the polarized Bjorken sum rule SBjp.
Using this formulation a new relation between 5-loop coefficients of these two quantities is
derived. It gives a possibility to present an additional check of the advanced results of order
α4

s
.

1. The concept of conformal symmetry forms the basis for important theoretical studies in
various massless quantum field models [1], [2], including QED [3] and QCD [4]. The attraction
of the notion on this symmetry in the process of consideration of the axial-vector-vector (AVV)
triangle amplitude revealed the existence of special relation between basic characteristics of
two main inclusive processes. These characteristics are the normalised expression D of flavour
non-singlet part of the e+e−-annihilation Adler function, DNS

A , and the non-singlet coefficient
function CBjp of the Bjorken sum rule of the polarised lepton-hadron deep-inelastic scattering
(DIS), which also enters into the non-singlet part of the Ellis-Jaffe sum rule of the polarised
lepton-hadron DIS. This relation, discovered by Crewther [5] and independently in Ref. [6]
within quark-parton model, can be extended to the case of the conformal invariant (CI) limit
of QCD as well. In both cases this relation reads

D · CBjp|CI = 1 , (1)

the entries in the l.h.s of this basic equation are defined as

DNS
A (as) =



Nc

∑

f

Q2
f



 · D(as) (2)

SBjp(as) =

(
1

6

gA

gV

)

· CBjp(as) (3)

It is known that conformal symmetry is broken by the renormalization of the coupling
constant in the renormalized massless quantum field models (for details see e.g. [7]). The
latter leads to the non-zero renormalization-group β–function. Moreover, the factor β(as)/as,
here as = αs/π, appears as the result of renormalization of the trace of energy-momentum
tensor [8–12] and generates the conformal anomaly.
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The status of a generalisation of the original Crewther relation (CR) [5] to the case of gauge
theories with fermions, like QED and QCD, was unclear before the appearance of paper [13].
In this work the colour group structure of massless perturbative predictions for the l.h.s. of
Eq.(1) was analysed using the perturbative QCD expressions for the D– and CBjp– functions
evaluated in the MS-scheme up to O(a3

s) corrections. These studies discovered that the r.h.s.
of Eq.(1) can be presented at O(a3

s) in the following form:

D(as) · C
Bjp(as) = 1 + ∆csb(as), (4)

where the “Crewther unity” of CR is modified by the conformal–symmetry breaking (CSB)
term ∆csb. This term is expressed as the product of the factor β(as)/as and the polynomial
P (as), namely

∆csb(as) =

(
β(as)

as

)

P (as) =

(
β(as)

as

)
∑

m≥1

Kmam
s . (5)

The polynomial in the r.h.s of Eq.(5) has the form of power expansion in terms of the coupling
constant as where the first coefficients Ki at i ≤ 3 depend on quadratic Casimir operators
CF,CA of the SU(Nc) colour gauge group and on the number of fermion flavours nf . The
first two coefficients were fixed in [13] using the expressions for the NNLO approximations of
D and CBjp coefficient functions and the scheme-independent 2-loop expression of the QCD
β–function.

The discovery of the NNLO MS-scheme QCD generalization of the CR of [13] was the
first independent theoretical check of the validity of the O(a3

s) results for the CBjp [14] and D
functions, obtained in [15] and later on in [16] using the same calculations machinery. The result
of these calculations was then checked in [17] with the help of different theoretical techniques,
described in Ref. [17]. Note that the NLO perturbative QCD corrections to D-function were
evaluated analytically in [18] and numerically in [19]. The results were confirmed analytically
in [20]. In the case of CBjp similar perturbative corrections were obtained in [21] and confirmed
later on in [22] using another calculation method.

To understand better the origin of this form of the QCD generalization of CR, discovered
in [13], in [23] the method of the operator-product expansion was applied to the AVV triangle
diagram in the momentum space (for some extra details see [24]). The first indications that the
factor β(as)/as may be factorized in front of the CSB contribution to Eq. (5) were obtained
there in all orders of perturbation theory. Moreover, in [23] the understanding was gained that
this generalization of CR will take the form of Eq. (5) with coefficients Km of the polynomial
P (as) unfixed from the theory. This property was proved in the coordinate space in [25], [26].
The proof of [26] was published only recently [4]. The subsequent more phenomenological
QCD studies of the variant of the MS-scheme generalization of the CR, discovered in [13], were
performed in [27] and [28] within the framework of the certain multiloop extension [29] of the
BLM approach [30], and the “restored” CR was formulated.

The calculation of the O(a4
s)–correction to the CBjp(as)–function was performed recently

in [31]. They confirmed (derived by the back-of-envelope calculations) the ζ3-containing QED
contribution to conformal-invariant approximation for the Bjorken polarized sum rule, per-
formed in [32]. This allowed one to fix the whole expression of the coefficient K3 in the poly-
nomial P (as) in Eq.(5).

The main purpose of this work is to give clear theoretical arguments in favour of our new
more detailed form of the generalized CR, proposed by us previously in [33]. In this new form of
CR the conformal symmetry breaking term ∆csb on the r.h.s. of Eq.(4) has the form of double
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expansion in terms of powers of (β(as)/as) and powers of the coupling constant as, namely,

∆csb(as) =
∑

n≥1

(
β(as)

as

)n

Pn(as) =
∑

n≥1

∑

r≥1

(
β(as)

as

)n

P (r)
n ar

s (6)

=
∑

n≥1

∑

r≥1

(
β(as)

as

)n

P (r)
n [k,m]Ck

F Cm
A ar

s, (7)

where k + m=r and the coefficients P
(r)
n [k,m] contain rational numbers and the terms propor-

tional to odd ζ-functions. On the contrary to the coefficients of P (as) in the previous form of
Eq.(5), the coefficients of Pn(as) in Eq.(6) do not contain the dependence on nf .

2. We start our consideration with perturbative expansion of the normalized flavour non-
singlet part of the Adler function D from Eq.(2) and normalized CBjp function from Eq.(3),

D = 1 +
∑

n=1

dn an
s ; CBjp = 1 +

∑

l=1

cl al
s . (8)

The general expressions of the results d1, d2, d3, and c1, c2, c3 with the colour group factors are
already known for a rather long period of time. The analytical QCD expression of the 5–loop
coefficient d4 was obtained recently in [34]. This result was extended to the case of general
SU(Nc) colour group in [31]. The result for the 5-loop coefficient c4 for CBjp can be extracted
from the related order a4

s expression, obtained in [31], and reads:

c4 =

[

−
3

16
+

1

4
ζ3 +

5

4
ζ5

]
dabcd

F dabcd
A

dR
+

[
13

16
+ ζ3 −

5

2
ζ5

]
dabcd

F dabcd
F

dR
nf −

[
4823

2048
+

3

8
ζ3

]

C4
F

+

[
839

2304
+

451

96
ζ3 −

145

24
ζ5

]

C3
FTFnf +

[

−
265

576
+

29

24
ζ3

]

C2
FT2

Fn2
f +

[
605

972

]

CFT3
Fn3

f

+

[

−
3707

4608
−

971

96
ζ3 +

1045

48
ζ5

]

C3
FCA +

[

−
87403

13824
−

1289

144
ζ3 +

275

144
ζ5 +

35

4
ζ7

]

C2
FCATFnf

+

[

−
165283

20736
−

43

144
ζ3 +

5

12
ζ5 −

1

6
ζ2
3

]

CFCAT2
Fn2

f

+

[
1071641

55296
+

1591

144
ζ3 −

1375

144
ζ5 −

385

16
ζ7

]

C2
FC2

A

+

[
1238827

41472
+

59

64
ζ3 −

1855

288
ζ5 +

11

12
ζ2
3 −

35

16
ζ7

]

CFC2
ATFnf

+

[

−
8004277

248832
+

1069

576
ζ3 +

12545

1152
ζ5 −

121

96
ζ2
3 +

385

64
ζ7

]

CFC3
A . (9)

In the representation of SU(Nc)-group one has CF = (N2
c − 1)/(2Nc), CA = Nc, TF = 1/2,

dabcd
F dabcd

A /dR = Nc(N
2
c + 6)/18, dabcd

F dabcd
F /dR = (N4

c − 6N2
c + 18)/(36N2

c ), while in the case of
QCD CF = 4/3, CA = 3, dR = 3 and dabcd

F dabcd
A = 15/2, dabcd

F dabcd
F = 5/12 .

The C4
F–term in Eq.(9) coincides with the expression, obtained in Ref. [32] using CR of

Eq.(1) and the perturbatively quenched QED 5-loop part of the D-function (which was first
presented in Ref. [35]). This agreement provides the first strong check of the validity of the
calculations in [34] and gives the positive answer to the question “Is it possible to check urgently
the 5-loop analytical results for the e+e−-annihilation Adler function ?”1 raised in [32]. The
second, even stronger, confirmation of the self-consistency of the results in [34], [31] follows
from the explicit demonstration of the validity of the 4-loop MS-scheme QCD generalization of
CR of Ref. [13] (see Eq. (5)) at the 5-loop level [31], in agreement with the general proof in
Ref. [25].

1For a possible explanation of the appearance of the “puzzling” ζ3-term in the 5-loop perturbatively quenched
QED results see Ref. [36]
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The NNLO expression for the polynomial P (as) in Eq.(5), can be expressed as [13]:

K1 = K1[1, 0, 0]CF, (10)

K2 = K2[2, 0, 0]C
2
F + K2[1, 1, 0]CFCA + K2[1, 0, 1]CFTFnf , (11)

The 5-loop calculations of [31] express the third term in the polynomial P (as) as the sum of six
gauge structures of SU(Nc)-group, namely

K3 = K3[3, 0, 0]C
3
F + K3[2, 1, 0]C

2
FCA + K3[1, 2, 0]CFC2

A + K3[2, 0, 1]C
2
FTFnf (12)

+K3[1, 1, 1]CFCATFnf + K3[1, 0, 2]CF(TFnf)
2,

The expression for the last coefficient K3[1, 0, 2] in (12) coincides with the 5-loop term obtained
in [13] in the process of “large nf” calculations.

The 5-loop approximation of the generalized CR of Refs. [13], [25] of Eqs.(4–5) (see Ref. [23]
as well) contains the three-loop approximation of the MS-scheme β-function defined as

µ2 d

dµ2
as = β(as) = −a2

s

(
β0 + β1as + β2a

2
s

)
(13)

where the βi-terms can be expressed in the following form:

β0 = β0[0, 1, 0]CA + β0[0, 0, 1]TFnf , (14)

β1 = β1[0, 2, 0]C
2
A + β1[0, 1, 1]CATFnf + β1[1, 0, 1]CFTFnf (15)

β2 = β2[0, 3, 0]C
3
A + β2[0, 2, 1]C

2
ATFnf + β2[1, 1, 1]CFCATFnf

+β2[0, 1, 2]CAT2
Fn2

f + β2[2, 0, 1]C
2
FTFnf + β2[1, 0, 2]CFT2

Fn2
f , (16)

with the following coefficients

β0[0, 1, 0] =
11

12
, β0[0, 0, 1] = −

1

3
(17)

β1[0, 2, 0] =
17

24
, β1[0, 1, 1] = −

5

12
, β1[1, 0, 1] = −

1

4
(18)

β2[0, 3, 0] =
2857

3456
, β2[0, 2, 1] = −

1415

1728
, β2[1, 1, 1] = −

205

576
(19)

β2[0, 1, 2] =
79

864
, β2[2, 0, 1] =

1

32
, β2[1, 0, 2] =

11

144
. (20)

They are known from the three-loop analytical calculations performed in Ref. [37] and confirmed
later on [38].

3. The question now arises whether it is possible to obtain uniquely a more detailed gener-
alization of CR from Eq.(6), which reveals factorization of multiple powers of the β-function. In
this section, we support our initial guess, made in [33], and give more substantiated arguments
in favour of the existence of this “multiple-power” generalization of the CR using the results
of the 5-loop approximation [31] for the initial single-power β-function factorizable extension of
CR, given in Eqs.(4–5).

The derivation of our more detailed generalization of CR is based on the requirement that
the coefficients of polynomials Pn in Eq.(6) should not depend on the β–function coefficients,
and on the number of fermion flavours nf , in particular. This property may be realized by
extending the expression of the conformal symmetry breaking term in Eq.(4) represented in the
“single-power” β-function factorizable form in Eq.(5) to the “multiple-power” β–function one
in Eq.(6). This was proposed in [33] before the appearance of the results of 5-loop analytical
calculations in [31].
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To get this new expression, one should equate the r.h.s. of both representations for ∆csb to
each other. At the α3

s-level the coefficients in the r.h.s. of Eq.(5) are related to the ones in the
r.h.s. of Eq.(7) by the following system of linear equations:

K1[1, 0, 0] = P
(1)
1 [1, 0]

K2[2, 0, 0] = P
(2)
2 [2, 0]

K2[1, 1, 0] = P
(2)
1 [1, 1] − β0[0, 1, 0]P

(1)
2 [1, 0]

K2[1, 0, 1] = P
(1)
1 [1, 0] + β0[0, 0, 1]P

(1)
2 [1, 0]

K3[3, 0, 0] = P
(3)
1 [3, 0]

K3[2, 1, 0] = P
(3)
1 [2, 1] − β0[0, 1, 0]P

(2)
2 [2, 0]

K3[1, 2, 0] = P
(3)
1 [1, 2] − β0[0, 1, 0]P

(2)
2 [1, 1] − β1[0, 2, 0]P

(1)
2 [1, 0] + (β0[0, 1, 0])

2P
(1)
3 [1, 0]

K3[2, 0, 1] = −β1[1, 0, 1]P
(1)
2 [1, 0] − β0[0, 0, 1]P

(2)
2 [2, 0]

K3[1, 1, 1] = −β1[0, 1, 1]P
(1)
2 [1, 0] − β0[0, 0, 1]P

(2)
2 [1, 1] + 2β0[0, 1, 0]β0 [0, 0, 1]P

(1)
3 [1, 0]

K3[1, 0, 2] = (β0[0, 0, 1])
2P

(1)
3 [1, 0] (21)

The unique solution of this system determines the explicit expressions of three polynomials

Pn(as) in Eqs.(22-25) with flavour independent coefficients P
(r)
n [k,m], namely,

P1(as) =

(

−
21

8
+ 3ζ3

)

CFas +

[(
397

96
+

17

2
ζ3 − 15ζ5

)

C2
F +

(

−
47

48
+ ζ3

)

CFCA

]

a2
s (22)

+

[(
2471

768
+

61

8
ζ3 −

715

8
ζ5 +

315

4
ζ7

)

C3
F

+

(
16649

1536
−

11183

192
ζ3 +

1015

24
ζ5 −

105

8
ζ7 +

99

4
ζ2
3

)

C2
FCA

+

(
2107

192
+

2503

72
ζ3 −

355

18
ζ5 − 33ζ2

3

)

CFC2
A

]

a3
s + O(a4

s); (23)

P2(as) =

(
163

8
− 19ζ3

)

CFas +

[(

−
13597

384
−

2523

16
ζ3 +

375

2
ζ5 + 27ζ2

3

)

C2
F

+

(
1433

32
−

1

4
ζ3 −

170

4
ζ5 − 6ζ2

3

)

CFCA

]

a2
s + O(a3

s); (24)

P3(as) =

(

−
307

2
+

203

2
ζ3 + 45ζ5

)

CFas + O(a2
s). (25)

Note that the 4-loop term β3 of the SU(Nc) group β(as)-function, analytically evaluated in
[39] and confirmed in [40], contains three new group structures dabcd

A dabcd
A , dabcd

F dabcd
A nf and

dabcd
F dabcd

F n2
f , which did not appear in lower order expressions of Eqs.(14–16). Due to the

validity of “single-power” β–function factorization, Eq.(5), in all orders of perturbation theory
(see Ref. [25], [4]), we conclude that the appearance of these extra group terms will not spoil the
β–function factorization property in both the “single-power” and the “multiple-power” Eq.(6)
expansions. More detailed arguments in favour of this statement will be presented elsewhere.

One more conclusion comes from “large-nf” calculations (or calculations of the terms pro-
portional to largest powers of β0), performed in [13]. In fact, the results there contain all leading
coefficients in polynomials of the “multiple-power” factorizable expression for the ∆csb term of
Eq.(6)

Pn(as) =
Sn

4n
3(n−1)CFas + O(a2

s). (26)
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The first nine coefficients Sn (1 ≤ n ≤ 9) are fixed explicitly by the results of [13].
4. The expansion (6) can be obtained in a different way with the help of the β-expansion

formalism developed in [41]. Within this approach, instead of commonly used expansions in
powers of TFnf and the colour group factors, one should consider the expansions of the coeffi-
cients dn and cn in powers of the β0, β1 . . . of the β-function with the coefficients dn[n0, n1, . . .],
cn[n0, n1, . . .]. Their first arguments correspond to n0 powers of β0, the second one – n1 pow-
ers of β1 and so on. The elements dn[0, 0, . . . , 0], cn[0, 0, . . . , 0] represent “genuine” corrections
with powers ni = 0 of all coefficients βi. The latter elements coincide with expressions for the
standard coefficients dn, cn in the imaginary limit of nullification of the QCD β–function in all
orders of perturbation theory. This limit corresponds to restoration of the conformal symmetry
of some quantum field model and will be considered here as the technical trick. If all arguments
ni after index m of the elements dn[. . . ,m, 0, . . . , 0], cn[. . . ,m, 0, . . . , 0] are equal to zero, then,
for the sake of a simplified notation, we will omit these arguments and write instead dn[. . . ,m].
As a result, we obtain the following representation for several coefficients of Eq.(8), namely

d2 = β0 d2[1] + d2[0] , (27)

d3 = β2
0 d3[2] + β1 d3[0, 1] + β0 d3[1] + d3[0] , (28)

d4 = β3
0 d4[3] + β1 β0 d4[1, 1] + β2 d4[0, 0, 1] + β2

0 d4[2] + β1 d4[0, 1] + β0 d4[1] + d4[0] . (29)

The same ordering in the β-function elements may be applied for all higher coefficients dn and cl

as well. The presentations like Eq.(27–29) are unique. The coefficients dn[n−1] are identical to
the terms generated by the renormalon chain insertions and can be obtained, e.g., from Eq.(26).
For others elements it is a separate and not straightforward task. The diagrammatic meaning
of the different contributions to the expansion was discussed in [41]. We shall consider later on
the way to obtain the results at the level of order a3

s-corrections.
The expansion (6) together with Eq.(27–29) provides the relation between the unknown yet

elements of the 5-loop terms d4, c4, and already known elements of the 4-loop results. Indeed,
Eq.(1) is satisfied at β = 0, when all the coefficients have genuine content only, dn (cn) ≡
dn[0] (cn[0]). This provides evident relation between the genuine elements in any loops, namely,

cn[0] + dn[0] +

n−1∑

l=1

dl[0]cn−l[0] = 0. (30)

They express the sum of the n–loop elements through the ones resulting from (n − 1)–loop
calculations. In particular, the following expression of the sum of 5-loop coefficients c4[0], d4[0]
can be obtained:

c4[0] + d4[0] = 2d1d3[0] − 3d2
1d2[0] + (d2[0])

2 + d4
1. (31)

This equation contains contributions proportional to CF and CA. Note that the projection of
the relation (31) onto the maximum power of CF, C4

F, was suggested in [32] to check the QED
results for d4, available from [35].

The β–expansion of d3 was obtained in [41] on the basis of the result for the Adler function
D(as, nf , ng̃) with the ng̃ MSSM gluino multiplets in [17]. The 3-loop contribution of light
gluinos coincide with the numerical result of Ref. [42], while at the 4-loop the analytical result
for gluino contribution, evaluated in Ref. [17], was confirmed in Ref. [43]. The element d3[2],
which is proportional to the maximum power β2

0 in (28), can be obtained in a straightforward
way. Then, one should separate in d3 the contributions from the terms β1 d3[0, 1] and β0 d3[1].
They both are linear in the number of quark flavours nf . Their separation is possible if one
uses additional degrees of freedom – the gluino contributions mentioned above and labelled
here by their ng̃ multiplet number.2. In this way one can obtain expressions for the functions

2Note that the possibility that gluino with mg̃ ≥ 195 GeV is lighter than the MSSM scalar quark is not
excluded by the existing Tevatron limits [44]
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nf = nf (β0, β1) and ng̃ = ng̃(β0, β1). These expressions can be obtained also after taking into
account gluino contributions to the first two coefficients of QCD β-functions known from the
two-loop calculations performed in [45]. Finally, one arrives at the evident expressions for the
coefficients in Eqs.(27–28),

d1 =
3

4
CF; d2[1] =

(
33

8
− 3ζ3

)

CF; d2[0] = −
3

32
C2

F +
1

16
CFCA; (32)

d3[2] =

(
151

6
− 19ζ3

)

CF; d3[1] =

(

−
27

8
−

39

4
ζ3 + 15ζ5

)

C2
F −

(
9

64
− 5ζ3 +

5

2
ζ5

)

CFCA; (33)

d3[0, 1] =

(
101

16
− 6ζ3

)

CF; d3[0] = −
69

128
C3

F +
71

64
C2

FCA +

(
523

768
−

27

8
ζ3

)

CFC2
A . (34)

The c3[. . .] elements there can be obtained in the same way as the d3[. . .] ones, taking into
account the relation like Eq.(31) for the c3[0] and the known d3[0],

c1 = −
3

4
CF; c2[1] = −

3

2
CF; c2[0] =

21

32
C2

F −
1

16
CFCA; (35)

c3[2] = −
115

24
CF; c3[1] =

(
83

24
− ζ3

)

C2
F +

(
215

192
− 6ζ3 +

5

2
ζ5

)

CFCA; (36)

c3[0, 1] =

(

−
59

16
+ 3ζ3

)

CF; c3[0] = −
3

128
C3

F −
65

64
C2

FCA −

(
523

768
−

27

8
ζ3

)

CFC2
A. (37)

Note that the expansions similar to those of Eqs.(27–28), where only the terms proportional
to powers of β0 were taken into account both in the case of the Adler function and Bjorken
polarized sum rule, were proposed and analyzed in Ref. [46].

Substituting now the expansions in Eqs.(27-29) and similar ones for ci into the general
relations of Eq.(6) one arrives at the following expressions:

P1(as) = −asCF

{

P
(1)
1 + asP

(2)
1 + a2

sP
(3)
1

}

= −as

{

c2[1] + d2[1] + as

(

c3[1] + d3[1] + d1

(
c2[1] − d2[1]

))

+a2
s

(

c4[1] + d4[1] + d1

(
c3[1] − d3[1]

)
+ d2[0]c2[1] + d2[1]c2[0]

)}

(38)

P2(as) = asCF

{
P

(1)
2 + asP

(2)
2

}

= as

{

c3[2] + d3[2] + as

(

c4[2] + d4[2] − d1(c3[2] − d3[2])
)}

(39)

P3(as) = asCFP
(1)
3 = −as

{
c4[3] + d4[3]

}
= asCF

(
307

2
−

203

2
ζ3 − 45ζ5

)

(40)

asCFP (1)
n = (−1)nas

{
cn[n − 1] + dn[n − 1]

}
(41)

Let us stress that though the numerical content of Eqs.(38–40) coincides with Eqs.(22–25), it
is expressed in the above notation. The elements dn[n − 1] (cn[n − 1]) are partially formed by
the leading renormalon chain insertions and they can be obtained from [13], while the elements
dn[l], (l < n − 1) stem from the subleading renormalon chains. Using the expression of Eq.(6),
checked by us at the 5-loop level, different relations between the elements d4 (dn) and c4 (cn)
can be obtained. Indeed, the term P1(as) in (6) generates the following chain of equations:

P
(1)
1 = −c2[1] − d2[1] = −c3[0, 1] − d3[0, 1] = −c4[0, 0, 1] − d4[0, 0, 1] = . . .

= −cn[0, 0, . . . , 1
︸ ︷︷ ︸

n−1

] − dn[0, 0, . . . , 1
︸ ︷︷ ︸

n−1

] = CF

(

−
21

8
+ ζ3

)

(42)
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that fixes the universal first term P
(1)
1 in the polynomial P1. The second term of P1 in Eq.(38)

defines a similar chain of equations

P
(2)
1 = c3[1] + d3[1] + d1 (c2[1] − d2[1]) = c4[0, 1] + d4[0, 1] + d1 (c3[0, 1] − d3[0, 1]) = . . . (43)

where the explicit expression for P
(2)
1 is already known, see, e.g., the r.h.s. of Eq.(22).

However, in order to verify similar expressions for P
(3)
1 and P

(2)
2 terms independently, it is

necessary to obtain the coefficients of β-expansion for the 5-loop contributions to the D and
CBjp functions. This may be done after analytical evaluation of the gluino contributions to 5-
loop perturbative coefficients for these important quantities and taking into account the 3-loop
gluino effects in the QCD β-function, already calculated in Ref. [47].

The relations obtained previously allow us to derive a new constraint for 5-loop results for
d4+c4. To get it, we fix the number of fermions, nf , by the Banks–Zaks ansatz : β0(nf = n0) = 0
[48] which is equivalent to the following condition TFn0 = 11/4CA. As the result, we get

c4(n0)+d4(n0) = c4[0]+d4[0]−β2(n0) (c4[0, 0, 1] + d4[0, 0, 1])−β1(n0) (c4[0, 1] + d4[0, 1]) . (44)

The terms in the r.h.s. of Eq.(44) are already known from the r.h.s. of Eq.(31), Eq.(42)
(−c4[0, 0, 1] − d4[0, 0, 1]) and Eq.(43) (−c4[0, 1] − d4[0, 1]) correspondingly. Thus we get

d4(n0) + c4(n0) = −
333

1024
C4

F + CAC3
F

(

−
1661

3072
+

1309

128
ζ3 −

165

16
ζ5

)

+C2
AC2

F

(

−
3337

1536
+

7

2
ζ3 −

105

16
ζ5

)

+ C3
ACF

(

−
28931

12288
+

1351

512
ζ3

)

. (45)

Then, applying the condition TFn0 = 11/4CA to the concrete analytical expression for c4(n0)+
d4(n0), which follows from the result of Ref. [31], we reproduce the r.h.s. of Eq.(45).

Thus, the application of the Bankz-Zaks ansatz together with the β-expansion approach of
[41] give the extra argument in favour of the correctness of the results of distinguished analytical
calculations of the INR-Karlsruhe-SINP group [31]. Moreover, having a look at the r.h.s. of
Eq.(45) we observe the absence of the ζ7 and ζ2

3 -terms, which exist in analytical expressions of
both d4 and c4 (see Ref. [31] and Eq.(9). This nullification confirms the observation, made in
Ref. [31], on the proportionality of these transcendences to the first coefficient β0 of the QCD
β-function.
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