
QED

and ortho- and para- positronium mass difference

G. V. Efimov
a∗

a JINR, BLTP

141980, Dubna

Abstract

Bound state problem in the relativistic QED is investigated by the functional integral
methods. The ortho- para- positron mass difference is calculated. Contribution of the
”nonphysical” time variable turned out to be important and leads to the nonanalytic
dependence of the bound state mass of the order α

2

3 . It is shown that the relativistic
and non-relativistic QED gives different results for this mass shift. In addition so-called
abnormal states as ”time excitations” arise.

Sequential application of relativistic QED to bound state problem is in contradiction
with real ortho- and para- positronium bound states.

The conclusion: the relativistic QED is not suited to describe real bound states correctly.

1 Introduction.

We believe that the relativistic quantum electrodynamics (QED) is a uniquely correct univer-
sal theory giving an exhaustive description of all interactions between electrons and photons
including possible bound states like positronium. Only our inability to calculate something
out of perturbation method does not permit us to obtain all the desired details. Earlier, some
scientists considered that QED should have its own applicability region. A short review of the
history and the development of quantum field theory is done in [1]. Supporting these doubts
we will show in this paper that the sequential use of the standard QED does not give a correct
description of the positronium spectra, namely, the ortho- para- positronium mass difference.

First of all let us realize what is the status of bound states in non-relativistic quantum
mechanics (QM) and relativistic quantum field theory (QFT).

The total Hamiltonian H = H0 +gHI can be constructed in QM and QFT. However, in QM
H is a well defined operator, so that the non-relativistic Schrödinger equation is mathemati-
cally correct and time development of a quantum system can be described. Solutions of the
Schrödinger equation contain both free and bound states. One can remark that in QM a bound
state (positronium) is created by real particles (electron-positron), i.e. constituent particles are
on mass shell.

In QFT the Fock space F is defined by the noninteracting free Hamiltonian H0 and contains
the free particles only. However, HI is not defined on F . As a result, the bound state as
an eigenvalue problem of the relativistic Schrödinger equation on the Fock space cannot be
formulated mathematically in a correct way (see [2]). Besides, the time development of quantum
field system cannot be obtained. The only way to overcome these problems is to construct the
S-matrix which contains all elastic and inelastic scattering amplitudes of free particles from the
time t → −∞ to the time t → ∞. It is important that the S-matrix is a unitary operator on
the Fock space. It means that the bound states like positronium, which is a unstable particle,
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cannot belong to any Fock space in principle. In addition, our computing abilities are restricted
to the perturbation theory.

Nevertheless, we believe that the S-matrix amplitudes should contain some correct informa-
tion on possible bound states. The simplest way to realize this idea is to postulate that a bound
state is a simple pole of an elastic scattering amplitude of constituent particles with appropriate
quantum numbers. It means, that the amplitudes out of mass shell and out of perturbation
approach should be calculated. Standard methods to go out of perturbation calculations are
reduced to sum appropriate classes of Feynman diagrams and this summation can be formu-
lated in a form of integral equations. The best known approaches are the Bethe-Salpeter and
Schwinger-Dyson equations. The important difference comparable with the nonrelativistic case
is that bound states in these equations are created by particles which are out of mass shell so
that the role of time becomes important.

One remark on these equations. We know that the perturbation series are asymptotic series
so that the problem is how to sum them? The exact amplitudes should have some singularity
at the point α = 0 in QED (see [3]). What is a precise character of this singularity is not known
up to now. Standard perturbation expansions are connected with Feynman diagrams. Usual
methods are reduced to summation of an appropriate class of Feynman diagrams. Result of a
summation of any definite class of Feynman diagrams is a kind of geometrical progression, i.e.
it is an analytic function at the point α = 0. However, it should be stressed that the generally
accepted point of view - non-perturbed behavior is a sum of a definite class of Feynman diagrams
- is not true.

One of probably successful proposals to calculate the relativistic corrections to bound state
problem is the so-called non-relativistic QED (NRQED) (see [4]). The basic idea is that the
QM is correct, only non-relativistic momenta are responsible for bound state properties. In
other words, the Hamiltonian should not depend on time and the problem is to find somehow
relativistically small corrections to the non-relativistic Coulomb potential. The basic idea is
that for small coupling constants the Born approximation is a good approximation which is
directly defined by the Fourier transform of the potential. The aim is to extract from the rel-
ativistic S-matrix some relativistic corrections to non-relativistic Hamiltonian. The hypothesis
is that the scattering amplitudes in the non-relativistic Schrödinger theory and the relativistic
S-matrix theory should coincide in the low energy limit. The procedure is to write down the
non-relativistic Lagrangian with a set of all possible terms, and coefficients in front of them are
calculated by identification with appropriate amplitudes of relativistic S-matrix. This prescrip-
tion allows one to remove effectively time out of the relativistic equations, in other words, to
place all intermediate particles on their mass shell. It seems NRQED is supported by experi-
mental data.

Another quantum field idea is that a bound state is defined by an asymptotic behavior of
the vacuum mean value of the corresponding relativistic currents (see, for example, [5]) with
desired quantum numbers:

〈0|J(x)J(0)|0〉 =
∑

n

〈0|J(x)|n〉 〈n|J(0)|0〉 =
∑

n

e−En|x|| 〈0|J(0)|n〉 |2

∼ e−Mmin|x|| 〈0|J(0)|min〉 |2 for |x| → ∞. (1)

This formula gives a possibility to calculate the mass of the lowest bound state |min〉 if Mmin <

2m. Essentially, the space of states {|n〉} is supposed to contain possible bound states although
we saw that the Fock space cannot contain unstable bound states. These vacuum mean values
(1) can be represented in closed forms by functional methods. The functional methods permit
one to get formally the exact representations for Green functions which are not connected
directly with Feynman diagrams, so that it is possible to go out of standard perturbation
expansions using asymptotic methods. Development of functional methods permits one to get
the exact character of non-analyticity at the point α = 0 and to clarify the role of ”time” in
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bound state formation. Exactly this approach will be used in this paper.
The practically unique experimental object to investigate the bound state problems is the

positronium which is the result of pure QED interaction. On the one hand, the positronium is
not a stable state. It cannot belong to the asymptotic Fock space. Nevertheless, it exists. The
binding energy of positronium itself is not measured with great accuracy but the mass difference
of two possible states, ortho-positronium (13S1) and para-positronium (11S0), is known with
very large accuracy

∆ǫ = ǫortho − ǫpara = 203.38910 GHz =
7

12
α4me · 0.99512...

The main contribution can be explained by the non-relativistic Breit potential approach (see,
for example, [6]) taking into account scattering and annihilation channels

∆ǫ = ǫortho − ǫpara =
7

12
α4me,

7

12
=

(

1

3

)

scatt

+

(

1

4

)

annih

.

If we apply the relativistic current formula (1) to the positronium problem, we can write

〈0|J(x)J(0)|0〉 =
∑

particles

e−iEn|x|| 〈0|J(0)|n〉 |2 +
∑

photons

e−iEn|x|| 〈0|J(0)|n〉 |2

where
∑

particles

e−iEn|x|| 〈0|J(0)|n〉 |2 ∼ e−Mlowest|x|

and annihilation channel looks like

∑

photons

e−iEn|x|| 〈0|J(0)|n〉 |2 ∼ 1

|x|2

It means that the annihilation channel does not take part in the bound state formation in
contradiction with the non-relativistic potential approach.

Another point: we want to understand what is the role of TIME in formation of bound
states.

In this paper we apply functional methods to calculate the asymptotic behavior of vac-
uum mean value (1) of relativistic currents for positronium and clarify the role of time in the
formation of bound states.

2 Two-point Green function

All our calculations will be performed in the Euclidean space. The Lagrangian of the electron
field ψ and the electromagnetic photon field Aµ looks like

L(x) = −1

4
F 2

µν(x) + (ψ(x)[i(p̂ + eÂ(x)) −m]ψ(x)), (2)

Fµν(x) = ∂µAν(x) − ∂νAµ(x).

The object of our interest is the gauge invariant two-point Green function

GΓ(x− y) =

∫ ∫

DψDψDA

C
e

R

dx L(x)(ψ(x)Γψ(x))(ψ(y)Γψ(y)) (3)

Here Γ is a Dirac matrix which defines the local vertex with quantum numbers of the state
JΓ = (ψΓψ). We have for para-positronium Γ = iγ5 and for ortho-positronium Γ = γµ.
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After integration over the electron fields ψ and ψ we get

GΓ(x− y) = BΓ(x− y) + HΓ(x− y), (4)

where (we neglect electron loops)

BΓ(x− y) =

∫

DA

C
e−

1
2
(AµD−1

µν Aν) · Tr[ΓS(x, y|A)ΓS(y, x|A)], (5)

and

HΓ(x− y) =

∫

DA

C
e−

1
2
(AµD−1

µν Aν) · Tr[ΓS(x, x|A)] · Tr[ΓS(y, y|A)].

Here S(x, y|A) is the electron propagator in the external field Aµ:

S(x, y|A) =
1

i(p̂ + eÂ(x)) −m
δ(x− y) (6)

The loop BΓ contains all possible (ψΓψ)-bound states. If the mass of the lowest state
MΓ < 2m, then the asymptotic behavior of this loop for large |x− y| looks like

BΓ(x− y) ∼ e−MΓ|x−y| (7)

where MΓ is the mass of the lowest state in the current (ψΓψ), i.e. the mass of a possible bound
state. This mass can be calculated by the formula

MΓ = − lim
|x|→∞

1

|x| lnBΓ(x) = 2m− ǫΓ. (8)

Here ǫΓ defines the binding energy of the lowest bound state. Our aim is to calculate the
functional integral (5) in the limit |x− y| → ∞ and to find MΓ, according to (8).

The loop H describes so the called annihilation channel and contains long-range contribu-
tions of photons:

HΓ(x− y) ∼ 1

|x− y|2

This term does not contain any bound state.

3 The electron propagator

The electron propagator (6) can be represented by the functional integral (see, for example,
[9, 10]):

S(x, y|A) = [i(p̂x + eÂ(x)) +m]

∞
∫

0

ds

8π2s2
e
− 1

2

»

m2s+
(x−y)2

s

–

·
∫

Dη

C
e
−

s
R

0

dt
η̇2(t)

2
+ie

s
R

0

dtżµ(t)Aµ(z(t))
Tt







e

e
4

s
R

0

dtσµν (t)Fµν (z(t))







, (9)

z(t) = x
t

s
+ y

(

1 − t

s

)

+ η(t).

The boundary conditions are η(0) = η(α) = 0. The symbol Tt means the time-ordering of the
matrix σµν(τ) to the time variable t.
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Our aim is to calculate the functional integral (5) in the limit |x| → ∞ (we put y = 0). For
large x→ ∞ and small α the saddle-point in the integral over s is realized for s = X

m
. Putting√

x2 ⇒ x4 = X > 0, t = X
m
τ , one can get for X → ∞

S(x, 0|A) ⇒ const

X
1
2

(1 + γ0)e
−mX · S(x)

S(x) =

∫

Dη

C
e
−

X
R

0

dτ
mη̇2(τ)

2
+ie

X
R

0

dτ żµ(τ)Aµ(z(τ))
R[z],

R[z] = Tτ







e

e
4m

X
R

0

dτ σµν(τ)Fµν(z(τ))







with z(τ) = nτ + η(τ) =

{

η(τ),
τ + η4(τ).

3.1 Mass of the bound state

The next step is to substitute electron propagators in the form (10) into the representation (5)
for the Green function BΓ(x) and then to integrate over the photon field A. We have for large
X → ∞

BΓ(X) ∼ e−2mX

∫∫

Dη1Dη2

C
e
−m

2

X
R

0

dτ [η̇1
2(τ)+η̇2

2 (τ)]
FΓ[X, η1, η2], (10)

with

FΓ[X, η1, η2] (11)

=

∫

DA

C
e
− 1

2
(AµD−1

µν Aν)+ie
X
R

0

dτ ż
(1)
µ (τ)Aµ(z(1)(τ))+ie

X
R

0

dτ ż
(2)
µ (τ)Aµ(z(2)(τ))

·1
4
Tr

[

Γ (1 + γ0)R[z(1)] Γ (1 − γ0)R[z(2)]
]

.

We omit here all calculations, they are done in [11]. Finally the desired mass difference can
be represented as

δM = Mortho −Mpara =
1

3
· α4m · ∆(α), (12)

where

∆(α) = lim
Y →∞

1

Y

∫

Y
∫

0

dv1dv2

∫∫

dqdq

2π3
· q2 eiq(v1−v2)− 1

4
[α2q2+q

2]|v1−v2|

q2 + α2q2

·
∫

Dρ

Cρ

e
−

Y
R

0

dv
h

1
4
ρ̇

2
(v)− 1

|ρ(v)|

i

e−
iq
2

(ρ(v1)+ρ(v2))

·
∫

Dρ

Cρ
e
−

Y
R

0

dv[ 1
4
ρ̇2(v)+ α

8
|ρ(v)|]

e−
iαq

2
(ρ(v1)+ρ(v2)).

One can see the mass is defined by the usual Coulomb potential and ”time” linear potential
which lead to the general spectrum

Enκ =

[

−α
2

n2
+ α2+ 2

3 ǫκ

]

m, n, κ = 0, 1, 2, ... (13)
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As a result we have the ”time excitations” (ǫκ is spectrum of the linear potential), or abnormal
states, connected with the fourth component of 4-dimensional space. These states appear in
solutions of the Bethe-Salpeter equation. Up to now it is not known exactly these states does or
does not exist in reality. It is another reason why relativistic QED does not describe correctly
the real bound states.

Our calculations give

∆(α) =

∞
∑

n=1

n−1
∑

ℓ=0

?
∑

κ=0

(−1)ℓ+κ∆nℓκ(α),

∆nℓκ(α) =
32

π2

∫

∞
∫

0

dkdq k4

k2 + α2q2
·

k2 + α2q2 + 1 − 1
n2 + α

2
3 (ǫκ − ǫ0)

(

k2 + α2q2 + 1 − 1
n2 + α

2
3 (ǫκ − ǫ0)

)2
+ 16q2

· (2ℓ+ 1)C2
nl

(

k

2

)

∣

∣

∣
Aκ

(

α
2
3 q

)
∣

∣

∣

2
(14)

Here the functions Aκ

(

α
2
3 q

)

are corresponding form-factors of the linear ”time” potential (see

[11]). The numerical results are shown in Table 1.

Table 1. The function ∆nℓ0(α)

(nℓ) (10) (20) (21) (30) (31) (32)

∆nℓ0(0) 1. 0.0987 0.0987 0.0283 0.0307 0.00244
∆nℓ0(α) 0.9999 0.09868 0.09864 0.02829 0.03071 0.002438
∆nℓ1(α) 0.96707 0.09387 0.09617 0.2683 0.002986 0.00238
∆nℓ2(α) 0.01421 0.002089 0.001173 0.0006319 0.0004049 0.00002632

For the function ∆(α) we get

∆0(0) =

3
∑

n=1

n−1
∑

ℓ=0

(−1)ℓ∆nℓ0(0) = 1.0,

∆0(α) =

3
∑

n=1

n−1
∑

ℓ=0

(−1)ℓ∆nℓ0(α) = 0.9641,

∆(α) =

3
∑

n=1

n−1
∑

ℓ=0

2
∑

κ=0

(−1)ℓ+κ∆nℓκ(α) = 0.952754.

Obviously, this result is in contradiction with the existing experimental number (∆ =
0.99512...).

4 Conclusion

In conclusion, one can say that the functional approach is the best mathematical representation
to preserve the gauge invariance. The developed technique of calculations permits one to get
accurate results in QED where the coupling constant α is small. The lowest approximation of
this functional representation is the pure non-relativistic Feynman path integral representation
of the non-relativistic Schrödinger equation with the Coulomb potential. One can see that any
regular series for next corrections to α do not exist and these corrections can not be reduced
to some terms to the non-relativistic potential in the Schrödinger picture. In other words,the
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”nonphysical” time coordinate is important and leads to corrections which is not analytic of
the order α

2
3 .

There exists a contradiction in the current algebra formula (1). On one hand, it is supposed
that the space of states {|n〉} can contain possible bound states. However on the other hand, in
reality it is the Fock space of free electrons and photons which does not contain any unstable
bound states. Nevertheless calculations of the functional representation for an appropriate
Green function in the limit t → ∞ indicate that a bound with Mbound < 2m does exist really.
Besides, the current algebra in QFT excludes influence of the annihilation channel for the bound
state formation.

Our calculations show that the role of time is very important and give essential contribution
into bound state mass. The next radiation corrections, connected with time excitations, to
electromagnetic mass difference to positronium are of the order α

2
3 , i.e. they are to large.

In addition, the ”time excitations”, or abnormal states arise in QFT calculations but they
are not exist in reality.

The experimental value of ortho- para-positronium mass difference is described in the frame-
work of the Breit potential picture with attraction of the annihilation channel. Thus, expla-
nation of experimental value para- ortho- positronium mass difference requires to take into
account annihilation channel for effective potential.

One can conclude that in the relativistic QED time corrections are important, but the bound
state problem requires the non-relativistic potential description where the time variable does
not play any essential role.

The conclusion: the relativistic QED is not suited to describe real bound states correctly.
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