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Abstract

I present results of the calculation of matrix elements of subleading operators for B0−B̄0

mixing at the Next-to-Leading Order of 1/mb expansion as obained in ref. [1].

1 Outline

The outline of my talk is as follows:

• Flavordynamics in Standard Model

• Phenomenological description of B0 − B̄0 system:
observables

• B0 − B̄0 mixing in SM:
operators, factorization, bag parameters BB

• Matrix elements in sum rules approach:

– reproducing factorization results in sum rules

– nonPT (condensates) corrections to factorization

– PT corrections: pQCD analysis of three-point correlator at three loops

• Conclusion

2 Flavors in SM

As an introduction I briefly remind of the flavor structure of the Standard Model. Three
generations of matter fields (fermions)

quarks :

(

u
d

)

,

(

c
s

)

,

(

t
b

)

+ leptons :

(

ν
e

)

, . . .

u, d, . . . – flavors (of quarks) are originally massless and form doublets and singlets with respect
of the electroweak gauge symmetry group. The masses of the fermion matter fields are generated
by the Yukawa interaction with the Higgs boson field H after the electroweak phase transition

λfHf̄f → mf f̄ f, mf = λf 〈H〉, 〈H〉 6= 0.
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Thus, the masses are proportional to the vacuum expectation value of the Higgs boson
field 〈H〉 and the Yukawa coupling constants λf . The electroweak gauge interaction of up
Ui = (u, c, t) and down Dj = (d, s, b) fields with W -bosons includes CKM matrix Vij

Vij · ŪiγµDjW
µ.

The nonvanishing off-diagonal elements of CKM matrix Vij initiate transitions between
different flavors, for example,

b→ c, b← s, s→ u, c↔ b, . . .

The CKM parameters Vij and quark masses mf (= λf ) are therefore the coupling constants
of the standard model lagrangian to be extracted from experimental data.

Strength of flavor changing transitions is governed by the CKM parameters Vij with the
quantitative hierarchy given by the value of Vus such that for λ = Vus = sin θC ≈ 0.22 one
finds the following structure of CKM matrix (Wolfenstein parameterization)

VCKM =





1− 1
2λ2 λ Aλ3 (ρ− iη)

−λ(1 + iA2λ4η) 1− 1
2λ2 Aλ2

Aλ3 (1− ρ− iη) −Aλ2 1



 + O(λ4)

The pattern of mass (or Yukawa couplings) hierarchy is not given by any formula but the
numerical values of the masses are well known

mu,d ∼ 5× 10−3 GeV, ms = 0.13 GeV,

mc = 1.3 GeV, mb = 4.2 GeV, mt = 175 GeV.

Because of large differences in the masses many flavor changing decays are kinematically allowed.
In contrast to leptons (τ , µ decays, neutrino mixing) no “free” quarks detected in experi-

ments. Experimantally, the flavor changing transitions are between flavored hadrons: b → s
means B → K or B → Xs. Here QCD enters the game: this is the most difficult and interesting
from the point of view of dynamics part of the analysis of EW flavor structure of quark sector
in SM.

Of some special interest are ∆F = 2 transitions that are also known as the mixing of different
flavor neutral mesons

sd : K0 − K̄0; cu : D0 − D̄0; bd, bs : B0 − B̄0

These processes are important as a primary source of CP violation studies in the standard
model and the place to search for new physics beyond SM.

3 Phenomenological description of B0 − B̄0 system

The time evolution of (B0, B̄0) system is given by the equation

i
d

dt

(

B0

B̄0

)

= Heff

(

B0

B̄0

)

where Heff is just a 2× 2 mass operator of a decaying particle

Heff = (M − iΓ/2)ij , i, j = 1, 2.

The non-diagonal elements M12 and Γ12 are effective ∆B = 2 interactions which are not
present in the SM fundamental Lagrangian but theoretically calculable. The observables of
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B0 − B̄0 system are:
1) Mass difference: ∆m = Mheavy −Mlight ≈ 2 |M12|,
2) Decay rate difference: ∆Γ = ΓL − ΓH ≈ −2 |Γ12| cos Φ with Φ = arg(−M12/Γ12).

Experimentally measured are the quantities for Bd system ∆md = 0.508±0.004 ps−1 while
(∆Γ/Γ)d = (9± 37) · 10−3. It is expected (theory) that (∆Γ/Γ)s = 0.158 ± 0.050.

These observables can be used to extract the CKM parameters from data provided that the
relevant theoretical formulae are accurate. What are theoretical formulae then?

4 B0 − B̄0 mixing in SM: operators, factorization,

and BB parameters

In theory, at the quark level in SM the ∆B = 2 processes go through a box diagram that
produces a complicated, non-local transition operator (an effective Hamiltonian). However,
this non-local transition operator simplifies because of mass and CKM hierarchies: it shrinks
to a point reducing the effective Hamiltonian to a set of local operators. The mechanisms are
different for ∆m and ∆Γ though. For the ∆m case: because Vtb ≫ Vcb, Vub the top quark
saturates the loop, and because mt ≫ mb one can localize the loop with the NLO QCD result

M12 =
G2

F M2
W

4π2
(Vtb

∗Vtd)
2 ηBS0(xt)

[

α(5)
s (µ)

]

−6/23
[

1 +
α

(5)
s (µ)

4π
J5

]

〈B̄0|Q(µ)|B0〉

Here ηB = 0.55 ± 0.1, J5 = 1.627 in the NDR scheme, S0(xt) is the short distance function,
xt = m2

t /m
2
W , Q(µ) = (b̄LγσdL)(b̄LγσdL)(µ) is the local four-quark operator that represents a

genuine QCD quantity with a “current⊗current” (J ⊗ J) structure.
The width difference (for Bs) is given by

∆Γ ∼ Γ12 = 〈B̄s|T |Bs〉/2MBs

The final states in decays are (c, u) “quarks”, mb ≫ mc,mu and Heavy Quark Expansion
in 1/mb can be used in the form

〈B̄s|T |Bs〉 =
∑

n

Cn

mn
b

〈B̄s|O∆B=2
n |Bs〉

where the coefficients Cn are calculable in PT as series in the strong coupling constant. The
nonPT (long distance or infrared sensitive) physics is contained in matrix elements (ME) of the
local operators O∆B=2

n . At LO in 1/mb the two relevant four-quark operators in T are

Q = (b̄isi)V −A(b̄jsj)V −A, QS = (b̄isi)S−P (b̄jsj)S−P .
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At NLO in 1/mb there are in total five operators. The two most important ones are

R2 =
1

m2
b

(b̄i
←−
DµDµsi)V −A(b̄isi)V −A,

R3 =
1

m2
b

(b̄i
←−
DµDµsi)S−P (b̄isi)S−P .

Thus M12 and Γ12 reduce to evaluation of 〈B̄|Qi|B〉 in QCD that is a genuine nonPT task. No
direct techniques are available for this evaluation at present.

In phenomenological applications the most popular approximation for the evaluation of
these ME is factorization which is intuitive for four-quark operators. Indeed, since Qi ∼ J · J
with J ∼ s̄b and 〈B̄|′′ =′′ sb̄ it is tempting “to factorize” the matrix element according to the
following rule

〈B̄|Qi|B〉 = 〈B̄|J · J |B〉 = Ccomb〈B̄|J |0〉〈0|J |B〉.
For the current J = b̄LγµdL one has 〈0|b̄LγµdL|B0(p)〉 = ipµfB/2 and the complicated ME is

expressed through a leptonic decay constant fB . The main problem for such an approximaton
is an accuracy that is not under any control. Writting 〈B̄s|Oi|Bs〉 = Bi〈B̄s|Oi|Bs〉fac one
introduces bag parameters Bi – genuine dynamical QCD quantities controlling the accuracy of
the factorization, with normalization Bi = 1 in factorization approxmation.

For relevant operators one writes the expressions

〈B̄|Q|B〉 = f2
BM2

B2

(

1 +
1

Nc

)

B

〈B̄|QS |B〉 = −f2
BM2

B

M2
B

(mb + ms)2

(

2− 1

Nc

)

BS

〈B̄|R2|B〉 = −f2
BM2

B

(

M2
B

m2
b

− 1

) (

1− 1

Nc

)

B2

〈B̄|R3|B〉 = f2
BM2

B

(

M2
B

m2
b

− 1

) (

1 +
1

2Nc

)

B3,

The main theoretical uncertainties for the analysis of mixing are related to the ME of the local
operators Oi ∈ {Q,QS , R2, R3}, or equivalently, the bag parameters Bi.

The evaluation of bag BB parameter (and the analogous parameter BK of K0− K̄0 mixing)
has long history (factorization, quark models, phenomenological unitarity, ChPT, large Nc,
lattice,...). Recently a rigouros approach to evaluation of ME emerged. QCD factorization for
B → ππ and B → Dπ (BBNS-Beneke,Buchalla,Neubert,Sachrajda). It allows for an expansion
in ΛQCD/mb as small parameter (mb = 4.2 GeV, ΛQCD = 0.5 GeV) and account for pQCD
corrections. A proper theoretical tool is the Soft-Collinear Effective Theory (SCET).

In my talk I consider the calculation based on OPE and QCD sum rules:

• very close in spirit to lattice computations, which is a model-independent, first-principles
method. QCD sum rule approach relies on asymptotic expansions of a Green’s function
(analytically in a small parameter) while on the lattice the whole function can be found
(numerically)

• sum rule techniques provide a consistent way of treating perturbative corrections to matrix
elements which is needed to retain RG invariance of physical observables usually violated
in other approximations (factorization)
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Figure 1: One-resonance hadronic spectrum and OPE approximation

5 Sum rules analysis

The starting point of the analysis is the three-point correlator

T (p1, p2) = i2
∫

d4xd4yeip1x−ip2y〈Tj(x)O(0)j(y)〉

where O ∈ {Q,QS , R2, R3} is a generic four-quark operator and j can be either AV or PS
current

jµ
5 = s̄γµγ5b (AV), j5 = s̄iγ5b (PS).

The overlap is given by the matrix elements

〈0|s̄γµγ5b(0)|B̄(p)〉 = ifBpµ, 〈0|s̄iγ5b(0)|B̄(p)〉 =
fBM2

B

mb + ms
.

For the AV current the correlator is a tensor, and one takes the tensor structure pµ
1pν

2

T µν(p1, p2) = pµ
1pν

2T (p1, p2) + . . .

The dispersion relation

T (p1, p2) =

∫

ds1ds2
ρ(s1, s2, q

2)

(s1 − p2
1)(s2 − p2

2)

determines the spectral density ρ(s1, s2, q
2) that containes physics. To derive the sum rules the

spectral density is evaluated in two ways.
1. In hadronic picture: B-meson pole plus continuum

ρhad
AV (s1, s2) = f2

Bδ(s1 −M2
B)δ(s2 −M2

B)〈B̄|O|B〉+ ρcont
AV

2. With QCD using OPE: ρOPE
i are the sum of a PT and a nonPT involving condensates.

The idea of QCD sum rules is to use duality
∫

ds1ds2 ρhad
i (s1, s2) =

∫

ds1ds2 ρOPE
i (s1, s2).

We illustrate the physical spectrum and the spectrum obtained in some approximation of
the OPE in QCD by the pictures above.

5



Figure 2: PT diagram at LO

In practice one is using two popular techniques for the analysis within sum rules:
1. Finite Energy sum rules with the duality region ∆ being the square m2

b < si < s0 in the
(s1, s2) plane

f2
B〈B̄|O|B〉 =

∫

∆
ds1ds2 ρOPE

AV (s1, s2),

2. Borel sum rules with modeling the hadronic continuum with the OPE prediction and
using Borel transform

f2
B〈B̄|O|B〉e

−
M

2

B

M2
1

−
M

2

B

M2
2 =

∫

∆
ds1ds2 e

−
s1

M2
1

−
s2

M2
2 ρOPE

AV (s1, s2).

5.1 Factorization in sum rules

It is instructive to see how factorization is implemented within the sum rules analysis. It turns
out that the OPE diagrams show that one can split the three-point correlator into two pieces

T (p1, p2) = Tfac(p1, p2) + ∆T (p1, p2).

The factorized part has an explicit form

Tfac(p1, p2) = const×Π(p1)Π(p2)

with the “const” and the Π(pi) specific to the operator involved. For the operators of V-A
structure one finds

TAV
fac(p1, p2) = 2

(

1 +
1

Nc

)

ΠV (p1)Π
V (p2)

with the definition pαΠV (p) = i
∫

dxeipx〈Tj(x)b̄γα(1−γ5)s(0)〉. The sum rule for the factorized
piece Tfac(p1, p2) yields B = 1 by construction. Then one finds a sum rule for ∆B = B − 1
directly

f2
B∆Be

−
M

2

B

M2
1

−
M

2

B

M2
2 =

∫

ds1ds2∆ρOPE
AV (s1, s2)e

−
s1

M2
1

−
s2

M2
2

for the Borel sum rule with an AV current and analogously for the other cases.
At LO in pQCD the three-point function factorizes

T (p1, p2) = Tfac(p1, p2), ∆T (p1, p2) = 0

and
TLO(p1, p2) = TLO

fac(p1, p2) = const×ΠLO(p1)Π
LO(p2)

Then we have B = 1. But this is only LO analysis.
One can do better as higher order diagrams build up the full function ΠLO(p1)→ Π(p1) and

also
TLO

fac(p1, p2)→ Tfac(p1, p2) = const×Π(p1)Π(p2)
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Figure 3: Factorizable diagrams at NLO

Indeed, NLO pQCD gives the contribution to the factorizable part of the correlator shown
in Fig. 3. Thus the NLO factorizable contributions are given by the product of two-point
correlation functions

Πf
NLO =

8

3
(p1.p2){ΠLO(p2

1)ΠNLO(p2
2) + symm(p1, p2)}.

Note that the spectral density of ΠNLO(p2) is known analytically: this solves the problem of
the NLO analysis in the approximation of factorization.

As an example of the nonPT (condensate) factorizable contributions we give the contribution
of the gluon condensate as shown in Fig. 4.

g

g

J
J

Q

Figure 4: A factorizable nonPT GG diagram

Factorizable diagrams form an important subset of all contributions, as they are indepen-
dently gauge and RG invariant. Thus, classification of diagrams in terms of their factorizability
is consistent and gives a powerful tool of the quantitative analysis.

We turn now to the non-factorizable contributions. The first one comes from the pQCD
diagram shown in Fig. 5.

The NLO analysis of non-factorizable contributions within perturbation theory amounts to
the calculation of a set of three-loop diagrams that is a nontrivial task.

There are also non-factorizable condensate contributions that are simpler to compute as
they are given by one-loop or even tree-level diagrams.

Figure 5: A non-factorizable diagram at NLO
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(a) (b) (c)

Figure 6: Non-factorizable condensate contributions

I start my analysis of the sum rules for the three-point correlator with nonPT terms, or
vacuum condensates.

5.2 Condensates corrections to factorization

The general OPE result for the spectral density has the form

∆ρi(s1, s2) = ∆ρGG
i (s1, s2)〈GG〉 + ∆ρsGs

i (s1, s2)〈s̄Gs〉+ . . .

for each of the eight cases (AV or PS current for Q,QS , R2, R3 operators. The result for the
gluon condensate contribution for the leading order operator Q has been known since long
ago [2].

As an example I give here the explicit expression for the QS operator with PS current
because it is reasonably short

∆ρPS(s1, s2) =
1

48π2
〈αs

π
GG〉 1

s1s2

(s1s2

2
(6− 3z1 − 3z2 + z1z2) + (p1p2)

2z1z2

)

+
mb

16π2
〈s̄Gs〉

(

(−2 + z1)δ(s2 −m2
b) + (−2 + z2)δ(s1 −m2

b)
)

, zi = m2
b/si.

Fig. 7 shows the results of the Borel sum rules in HQET approximation [1]. The formal pro-
cedure of taking the HQET limit is as follows: we write MB = mb + Λ̄, s = (mb + E)2,
s0 = (mb + E0)

2 and expand QCD sum rules in 1/mb.

1.5 2 2.5

0.5

1

Q

W

−∆B (%)

1.5 2 2.5

0.5

1

QS

W

−∆B (%)

1.5 2 2.5

0.5

1

R2

W

∆B (%)

1.5 2 2.5

0.5

1

R3

W

∆B (%)

Figure 7: Plots of (−)∆B vs. W obtained with the Borel sum rules in HQET.
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Figure 8: −∆B for QS operator, AV current, in the HQET sum rule. For the condensate
variations, the dark-gray band corresponds to the gluon condensate and the larger light-gray
band to the quark-gluon condensate variation.

Numerical results and uncertainties of the analysis are presented in Fig. 8. The parameters
are 210 MeV < fBs

< 270 MeV, mb = 4.2 ± 0.2 GeV, 32 < s0 < 40 GeV2 in QCD, and
mb = 4.8 GeV, 1 GeV < E0 < 1.5 GeV in HQET. Condensates are varied by ±30%.

Uncertainty due to each parameter variation are given on the example of the QS operator
in HQET. The largest errors are associated with the value of the decay constant fB. The
dependence on Λ̄ and E0 is moderate. The results depend linearly on the condensates and the
uncertainty due to the condensates is comparable with that due to fB .

In all cases (except for R2), our central values for ∆B in QCD and HQET turned out to be
(nearly) equal. The reason is a slow convergence in 1/mb for R2.

The final results are given in the table.

Operator ∆B(%) QCD ∆B(%) HQET

Q −0.6± 0.5 −0.6± 0.5
QS −0.5± 0.4 −0.6± 0.4

R2 0.3± 0.3 0.8± 0.7
R3 0.3± 0.2 0.3± 0.2

These have been condensates contributions only.
Non factorizable PT terms involve three-loop diagrams and their computation is a non-trivial

task. Results are nonetheless available for the operator Q.

5.3 Non factorizable PT corrections:

pQCD analysis of three-point correlator at three loops

Due to technical difficulties of computing the spectral density of three-loop diagrams we instead
compute moments of the correlation function at p2

1 = p2
2 = 0 at the point q2 = 0 as has been

done in ref. [3]

M(i, j) ≡ ∂i+jΠ(p2
1, p

2
2, 0)

i!j!∂p2i
1 ∂p2j

2

=

∫

ρ(s1, s2, 0)ds1ds2

si+1
1 sj+1

2

.
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Figure 9: B0 − B̄0 moments topology

Computation of moments in QCD reduces to an evaluation of single scale vacuum diagrams.
This calculation is done analytically at the three-loop level with available tools for the automatic
computation of multi-loop diagrams. These diagrams have been computed using the package
MATAD for automatic calculation of Feynman diagrams. The combinatorics of disentangling
the tensorial structures has been solved and all diagrams have been reduced to scalar integrals.

Theoretical moments are given in the form

Mth(i, j) =
m6aij

m2(i+j)

(

1 +
αs

4π

(

bf
ij + bnf

ij

))

(1)

with the unique decomposition that is Renormalization Group and gauge invariance consistent.
The quantities in eq. 1 are

aij is Leading Order contribution,

bf
ij is NLO factorizable piece,

bnf
ij is NLO nonfactorizable contribution .

We have found NLO nonfactorizable contributions bnf
ij with i + j ≤ 7 analytically. Calcu-

lation required about 24 hours of computing time on a dual-CPU 2 GHz Intel Xeon machine.
The calculation of higher moments is feasible but requires considerable optimization of the code.
This work is in progress. The analytical results for the lowest finite moment Mth(2, 2):

a22 =
1

(16π2)2

(

8

3

)

, bf
22 =

40

3
+

16π2

9
,

bnf
22 = S2

8366187

17500
− ζ3

84608

875
− π2 33197

52500
− 426319

315000
.

Here

S2 =
4

9
√

3
Cl2

(π

3

)

= 0.2604 . . . , ζ3 = ζ(3)

Numerical values for higher moments are

bnf
2(2345) = {0.68, 1.22, 1.44, 1.56}
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and
bnf
3(34) = {1.96, 2.25}

To find the nonfactorizable addition to BB we form ratios of the total and factorizable
contributions

Mth(i, j)

Mf
th(i, j)

= 1 +
αs

4π

bnf
ij

1 + αs

4π bf
ij

Writing BB = 1 + ∆B we extract ∆B by a combined fit of several “theoretical” and “phe-
nomenological” moments. The final formula for the determination of ∆B reads

αs

4π
bnf
ij = ∆B + ∆R(zj−2 + zi−2) + ∆Czi+j−4

where ∆R and ∆C are parameters of the fit related to continuum model, z = m2
B/(m2

B + ∆).
Using least-square fit for all available theoretical moments and estimating all uncertainties we
finally find the NLO non-factorizable pQCD correction to ∆B

∆B = (6± 1)
αs(m)

4π
.

For m = 4.8 GeV, αs(m) = 0.2 it leads to ∆B = 0.095 ≈ 0.1.

6 Conclusion

To summarize,

• SR is a powerful tool for analysing ME of local operators relevant to flavor physics.
Factorization results are reproduced at diagram level (not only LO).

• Non-factorizable contributions due to nonPT condensates to bag parameters are small
∆Bi = 0.5− 1% for all operators {Q,QS , R2, R3}.

• Non-factorizable PT diagrams are technically difficult – three-loop massive Feynman dia-
grams. Moments of the spectral density for operator Q have been computed analytically
at three-loop level. Phenomenological analysis within QCD sum rules gives

∆B(m) = 0.10 ± 0.02
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