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Abstract

We propose general semiclassical method for computing the probability of soliton–antisoliton
pair production in collision of two highly energetic particles. Our method is applicable in
a class of (1 + 1)–dimensional scalar field theories. We illustrate the method by explicit
numerical calculations in a specific model. We find that the probability of the process is
exponentially suppressed and remains so at high energies.

Topological solitons are solutions to the classical field equations whose existence and stability
are guaranteed by conservation of topological charge. The simplest soliton is met in (1 + 1)–
dimensional scalar field theory with action

S =
1

g2

∫

dx dt

(

1

2
(∂µφ)2 − V (φ)

)

, (1)

where g is the coupling constant1. In what follows we assume weak coupling, g2 ≪ 1. If the
potential V (φ) has two degenerate minima v− and v+ (Fig. 1a, solid line), the model (1) admits
soliton and antisoliton solutions interpolating between the minima, see Fig. 1b.
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Figure 1: (a) Potential V (φ); (b) soliton (S) and antisoliton (A) solutions.

In quantum theory soliton and antisoliton become certain “particle–like” states obeying
relativistic energy–momentum relation. In this respect they are similar to perturbative exci-
tations about the vacua representing quantum particles. Still, at g2 ≪ 1 there is an essential
difference between solitons and perturbative excitations. Namely, the size of the (anti)soliton
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1Substitution φ → gφ brings g in front of non–linear terms of the potential.
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configuration is set by the potential V (φ) alone, while its mass MS = MA is proportional to
the additional factor 1/g2, cf. Eq. (1). At the same time, both mass and De Broglie wavelength
of perturbative excitations are independent of the coupling constant g. Due to this difference,
solitons are non–perturbative objects which can2 be described semiclassically while perturbative
excitations are not semiclassical.

In this talk we consider inclusive production of soliton–antisoliton pair in collision of two
quantum particles. We propose general semiclassical method for calculating the probability of
this process. Up to our knowledge, no method of this kind has been proposed before, cf. [1].

There are several qualitative arguments in literature [2] stating that the probability of
soliton–antisoliton pair production in two–particle collisions is exponentially suppressed,

P(E) ≈ A(E) e−F (E)/g2

, (2)

where E ≥ 2MS is the energy of the process, F > 0 is suppression exponent. From the physical
viewpoint suppression (2) is due to essential difference in length scales of the initial and final
states of the process. Namely, De Broglie wavelength of two initial particles 1/E ≤ 1/MS is
much smaller than the sizes of soliton and antisoliton in the final state.

The exponential form (2) hints that the probability of induced soliton pair production should
be calculable semiclassically. However, implementation of the standard semiclassical method
meets two obstacles. First, the initial state of the process is not semiclassical since it contains two
quantum particles. Second, soliton and antisoliton attract each other and annihilate classically
into N ∼ 1/g2 particles. Thus, there is no potential barrier separating soliton–antisoliton pair
from the particle sector, and the process itself cannot be treated as potential tunneling.

We solve the first problem by the method of Rubakov, Son and Tinyakov3 (RST) [3]. The
method is based on the conjecture4 that the leading semiclassical exponent F (E) does not
depend on the initial–state parameters as long as the latter are not semiclassically large. In
particular, F (E) is independent on the number of initial particles N if N ≪ 1/g2. RST
conjecture is used for calculation of two–particle probability in the following way. Consider
inclusive probability of soliton–antisoliton production from multiparticle states,

P(E,N) =
∑

i,f

|〈f |ŜP̂EP̂N |i〉|2 ≈ A(E,N) e−F (E,N)/g2

, (3)

where Ŝ is S–matrix, P̂E and P̂N are projectors onto initial states with fixed energy E and
multiplicity N . Sums in Eq. (3) run over all perturbative initial states above the vacuum v−
and final states containing soliton–antisoliton pair. At N ≫ 1 the initial states in Eq. (3) are
semiclassical. On the other hand, RST conjecture implies that at N ≪ 1/g2 the multiparticle
exponent F (E,N) does not depend on N and therefore coincides with the two–particle exponent
F (E). In the intersection of two regions 1 ≪ N ≪ 1/g2 semiclassical methods and RST
conjecture are both applicable; calculating F (E,N) semiclassically and taking the limit

F (E) = lim
g2N→0

F (E,N) , (4)

one obtains suppression exponent F (E) for the original two–particle process.
We solve the second problem by introducing potential barrier between the perturbative

states and states containing soliton–antisoliton pair. Namely, we modify the potential V (φ)
by adding negative energy density (−δρ) to the vacuum v+, see Fig. 1b, dashed line. After
modification v− and v+ become false and true vacua respectively, and the process of soliton–
antisoliton pair production turns into the process of false vacuum decay. The latter process

2De Broglie wavelength 1/MS of the soliton is much smaller than its size.
3See Refs. [4] for the alternative method.
4This conjecture has been checked in field theory [5] and proved in the context of quantum mechanics [6].

Presently there are no results confronting this conjecture.
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corresponds to tunneling through the potential barrier [7], with the height of the barrier given
by the energy of critical bubble. When δρ goes to zero the critical bubble turns into widely
separated soliton–antisoliton pair, and its energy tends to the kinematic threshold 2MS for the
soliton–antisoliton pair production.

Im t

Re t
ak = eθā∗k

φ ∈ R

T δS/δφ = 0
φ(x, t)∈ C

Figure 2: Semiclassical boundary value problem.

After the above modifications the probability (3) can be calculated by the standard semi-
classical technique. Namely, at small g2 the path integral for this probability is saturated by
the saddle–point configuration φ(x, t) ∈ C satisfying the boundary–value problem in Fig. 2 [3].
In particular, φ(x, t) solves the classical field equations on the contour in complex time plane,
where the Euclidean part of the contour corresponds to tunneling. Boundary conditions at
t → ±∞ are dictated by initial and final states of the process: in the asymptotic future solution
is real, while at t → −∞ its positive and negative frequency components ak and āk are linearly
related. Parameters T and θ in Fig. 2 are Lagrange multipliers with respect to energy E and
number of particles N ; in what follows we parametrize solutions with (E, N). After finding
solution one computes the multiparticle suppression exponent

F (E,N) = 2g2ImS[φ] + boundary terms , (5)

where the boundary terms represent initial– and final–state contributions.
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Figure 3: Semiclassical solutions in E—N plane.
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Figure 4: Semiclassical solutions φ(x, t): (a) (g2E, g2N) ≈ (5.0, 3.2), (b) (g2E, g2N) ≈
(7.9, 2.9).

To summarize, we formulated a recipe to find the suppression exponent F (E) of soliton–
antisoliton pair production in two–particle collisions. One starts by describing false vacuum
decay in collision of N ≫ 1/g2 particles. To this end, one adds energy density (−δρ) to the
vacuum v+ and solves the boundary value problem in Fig. 2. Substituting semiclassical solution
φ(x, t) into Eq. (5), one computes the multiparticle exponent F (E,N). After that one takes
two consecutive limits g2N → 0, δρ → 0 and obtains the sought–for exponent F (N).

We illustrate the method by performing explicit calculations in the potential depicted in
Fig. 1a, where dashed and solid lines correspond to the cases δρ > 0 and δρ = 0 respectively.
We discretize [8] the boundary value problem in Fig. 2 and compute numerically the exponent
F (E,N), Eq. (5). We represent numerical solutions by points in E—N plane, see Fig. 3.
Solution at E = N = 0 corresponds to false vacuum decay with no particles in the initial state.
This solution is nothing else but bounce [7]; it can be easily found numerically. Solutions with
E, N > 0 are, in fact, distorted bounces. The example of such solution is shown in Fig. 4a.
Wave packets in the left part of the figure correspond to particles moving in the initial state;
after collision wave packets backreact on the “bounce” part of the solution.

At energies higher than two soliton masses transition mechanism changes [9], cf. [10]. Phys-
ically this change is related to the fact that E = 2MS is a kinematic threshold for soliton–
antisoliton pair production at δρ = 0. Thus, semiclassical solutions at E < 2MS and E > 2MS

behave differently in the limit δρ → 0. We observe that solutions at high energies are different,
indeed, see Fig. 4b. Visually, these solutions are much smaller and do not change much as δρ
decreases.

We extrapolate F (E,N) to N = 0 and obtain the two–particle exponents F (E) at different
δρ. The graphs of the latter are plotted in Fig. 5, dashed lines. One sees that the graphs in
Fig. 5 have a limit δρ → 0 (solid line in Fig. 5) corresponding to the exponent F (E).

Conclusion. We formulated the semiclassical method for computing the suppression ex-
ponent of soliton–antisoliton pair production in collision of two highly energetic particles. We
applied this method to a particular model where the suppression exponent was computed nu-
merically, see Fig. 5, solid line. In this way we explicitly demonstrated that the probability of
the process is exponentially suppressed, the suppression exponent being approximately constant
at high energies.
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