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Abstract

A general class of gravitational models driven by a nonlocal scalar field with a linear or
quadratic potential is considered. The Ostrogradski representation for nonlocal gravitational
models and the way of its localization are proposed. We study the action with an arbitrary
analytic function F(�g), which has both simple and double roots. The localization allows
to find exact solutions of nonlocal Einstein equations.

1 Introduction

The phenomenological relation between the pressure (Lagrangian density) p and the energy
density ̺: p = w̺ is typically used to describe various types of cosmic fluids. The function w
is called the state parameter.

Contemporary cosmological observational data [1] strongly support that the present Uni-
verse exhibits an accelerated expansion providing thereby an evidence for a dominating dark
energy component with the state parameter

wDE = − 1.0 ± 0.2. (1)

The present cosmological observations do not exclude an evolving parameter wDE. Moreover,
the recent analysis of the observation data indicates that the varying in time dark energy with
the state parameter wDE, which crosses the cosmological constant barrier, gives a better fit than
a cosmological constant [2] (see also [3] and references therein).

One of most important problem in the cosmological models is the instability problem. The
cosmological models with wDE < −1 violate the null energy condition, which is generally related
to the phantom fields appearing. As it has been shown in papers [4, 5], the adding of high order
derivative terms leads to the presence of phantoms. From a purely classical perspective, they
render the Hamiltonian unbounded below. In the Ostrogradski formulation, the kinetic energy of
the system is seen to be non-positive definite. It follows that the theory is disastrously unstable:
time evolution will generically drive certain sectors of the system to become arbitrarily excited.
The standard quantization of these models leads to instability, which is physically inadmissible.
In [6] the theory with wDE < −1 has been interpreted as an approximation in the framework
of the fundamental theory. Because the fundamental theory must be stable and must admit
quantization, this instability can be considered an artefact of the approximation.

One of the first attempts to apply string theory to cosmology [7] was related to the problem
of the cosmological singularity [8]. A possible way to avoid cosmological singularities consists
of dealing with nonsingular bouncing cosmological solutions. In these scenarios the Universe
contracts before the bounce [9]. Such models have strong coupling and higher-order string cor-
rections are inevitable. It is important to construct nonsingular bouncing cosmological solutions
in order to make a concrete prediction of bouncing cosmology.
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Recently a wide class of nonlocal cosmological models based on the string field theory1 [10]
(SFT) and the p-adic string theory [11] (that is considered as a toy model for the SFT) emerges
and attracts a lot of attention [12]–[33]. Due to the presence of phantom excitations nonlocal
models are of interest for the present cosmology. To obtain a stable model with the NEC
violation (the state parameter wDE < −1) one should construct this model as an effective
model, connected with the fundamental theory, which is stable and admits quantization. With
the lack of quantum gravity, we can just trust string theory or deal with an effective theory
admitting the UV completion.

The purpose of this paper is to study the string field theory inspired gravitational models
with a nonlocal scalar field. We consider a general form of nonlocal action for the scalar field
with a quadratic or linear potential, keeping the main ingredient, the analytic function F(�g),
which in fact produces the nonlocality, almost unrestricted.

2 Model setup

In this paper we consider nonlocality associated with a scalar field, dynamics of which governed
by a Lagrangian, containing infinite order derivative operator. The SFT inspired nonlocal
gravitation models [12] are introduced as a sum of the SFT action of tachyon field and gravity
part of the action plus the cosmological constant. One cannot deduce this form of the action
from SFT, he can just assume the minimal form of gravity interaction of all string modes2.

We consider a general class of gravity models, which include minimally coupling with a
nonlocal scalar field and are described by the following action:

S =

∫

d4x
√−g

(

R

16πGN
+

1

(α′)2g4

(

1

2
φF

(

α′
�g

)

φ− V (φ)

)

− Λ

)

, (2)

We use the signature (−,+,+,+), gµν is the metric tensor. GN is the Newtonian constant:
8πGN = 1/M2

P , MP is the Planck mass. α′ is the string length squared (the string tension).
The scalar field φ is dimensionless, a positive number g4 is a dimensionless four dimensional
effective coupling constant related with the ten dimensional open string coupling constant go
and the compactification scale. The potential V (φ) is a quadratic polynomial:

V (φ) = C2φ
2 + C1φ+ C0, (3)

where C2, C1 and C0 are arbitrary real constants. The nonlocal cosmological models with
quadratic potentials have been studied in [16, 17, 23, 24, 26, 28, 29, 30, 31].

The d’Alembert operator �g is applied to scalar functions and can be written as follows

�g =
1√−g∂µ

√−ggµν∂ν . (4)

One can introduce dimensionless coordinates x̄µ = Msxµ and rewrite action (2) as follows

S =

∫

d4x̄
√−gα′

(

R̄

16πGN
+

1

α′g4

(

1

2
φF

(

�̄g

)

φ− V (φ)

)

− Λ′

)

, (5)

where R̄ and �̄g are defined in terms of dimensionless coordinates x̄, Λ′ ≡ α′Λ.
The function F is assumed to be an analytic function, which can be represented by the

convergent series expansion:

F(�g) =

∞
∑

n=0

fn�
n
g . (6)

1One of the main motivations to construct string field theory (SFT) — an off-shell formulation of a string
theory — is a possibility to study in this framework non-perturbative phenomena in string theory.

2Note the cosmological model [32], in which a nonlocal operator acts both on gravity and on a scalar field.
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Hereafter we omit bars for simplicity. From action (5) we obtain the following equations:

Gµν = 8πGN
(

Tµν − Λ′gµν
)

, (7)

F(�g)φ =
dV

dφ
, (8)

where Gµν is the Einstein tensor. Modifying values of f0 and Λ′, we transform action (5) with
the potential V (φ) to an action with the linear potential C1φ. In other words, we can put
C2 = 0 and C0 = 0 without loss of generality.

The energy–momentum (stress) tensor Tµν is:

Tµν ≡ − 2√−g
δS

δgµν
=

1

α′g4

(

Eµν + Eνµ − gµν (gρσEρσ +W )
)

, (9)

Eµν ≡ 1

2

∞
∑

n=1

fn

n−1
∑

l=0

∂µ�
l
gφ∂ν�

n−1−l
g φ, W ≡ 1

2

∞
∑

n=2

fn

n−1
∑

l=1

�
l
gφ�

n−l
g φ− f0

2
φ2 + C1φ.

3 The Ostrogradski representation

Our results are generalizations of the Ostrogradski representation. Let us remind the classical
results in the Minkowski space [34, 35]. We consider such

F(�) = F1(�) ≡
N
∏

j=1

(

1 +
�

ω2
j

)

(10)

that all roots of the polynomial F1(�), which are equal to −ω2
j , are simple. The d’Alembert

operator in the Minkowski space is denoted as �.
For the local Lagrangian LF the Ostrogradski representation is as follows

LF ≡ φF1(�)φ ∼= Ll =

N
∑

j=1

cjφj(� + ω2

j )φj , (11)

where the sign ′ ∼=′ means equality up to a full derivative. We define

φj =

N
∏

k=1,k 6=j

(

1 +
1

ω2

k

�

)

φ, ⇒
(

� + ω2

j

)

φj = 0. (12)

Substituting φj in Ll, one gets that equality (11) is equivalent to [35]:

Ll = LF ⇔
N
∑

k=1

ckω
4

k

ω2

k + �
=

1

F1(�)
⇒ ck =

F ′
1
(−ω2

k)

ω4

k

, F ′
1(−ω2

k) ≡
dF1(J)

dJ
|J=−ω2

k

.

Let F1(�) has two real simple roots, it is evident that F ′
1
> 0 in one and only one root.

Therefore, we get a model with one phantom scalar field and one standard scalar field.

4 The initial value problem in the case of nonlocal models

If F(�) is a N degree polynomial, for example F(�) = F1(�), then the general solution of (8)
depends on 2N independent parameters, therefore, to uniquely specify a solution it is enough
to set values of φ and its (2N − 1) derivatives at the initial moment t0.
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If F(�) is not a polynomial, but an analytic function with an infinite Taylor series, then
it is nontrivial to state the initial value problem [22]. When does equation (8) admit a well-
defined initial value problem – even formally, that is ignoring issues of convergence – and how
many initial data are required to determine a solution? Such questions are fundamental to any
physical application.

At the first sight one can determine the function φ and all its derivatives at some moment
t0 by arbitrary way, but it is not correct. Indeed, if we assume that φ(t) is an analytic function,
then we unique define this function in the neighbourhood of some moment of time t0, setting
the values of φ and all its derivatives at t = t0. So, we come to conclusion that an arbitrary
analytic function is a solution of (8) with the suitable initial data. We get a contradiction.

Note that from the equation (8) it follows not only the condition

F(�)φ(t)|t=t0 = V ′(φ)|t=t0 , (13)

but also an infinite number of conditions

(∂nt F(�)φ(t))|t=t0 = ∂nt V
′(φ)|t=t0 , (14)

which should be satisfied. For cosmological models with a quadratic potential it is possible to
localize the Einstein equations and to specify correct initial data, using the technique, proposed
in [23]. In the next section we demonstrate the algorithm of localization a nonlocal gravitational
model with an arbitrary quadratic or linear potential. By linearizing a nonlinear model about
a particular field value, one is able to specify initial data for nonlinear models, which he then
evolves into the full nonlinear regime using the diffusion-like equation [24].

5 Localization of Nonlocal Gravitational Models

Our goal is to generalize the Ostrogradski representation on gravitational models with action
(5). We assume that an analytic function F(�g) has simple or double roots.

Let us start with the case C1 = 0 and consider an analytical function F(J), which has
simple roots Ji and double roots J̃k. A particular solution to F(�g)φ = 0 is the function

φ0 =

N1
∑

i=1

φi +

N2
∑

k=1

φ̃k, (15)

where
(�g − Ji)φi = 0, (�g − J̃k)

2φ̃k = 0. (16)

Without loss of generality we assume that for any i1 and i2 6= i1 conditions Ji1 6= Ji2 and
J̃i1 6= J̃i2 are satisfied. The fourth order differential equation (�g − J̃k)(�g − J̃k)φ̃k = 0 is
equivalent to the following system of the second order equations:

(�g − J̃k)φ̃k = ϕk, (�g − J̃k)ϕk = 0. (17)

The energy–momentum tensor, which corresponds to φ0, has the following form [28]:

Tµν (φ0) = Tµν

(

N1
∑

i=1

φi +

N2
∑

k=1

φ̃k

)

=

N1
∑

i=1

Tµν(φi) +

N2
∑

k=1

Tµν(φ̃k), (18)

where all Tµν are given by (9) and

Eµν(φi) =
F ′(Ji)

2
∂µφi∂νφi, W (φi) =

JiF ′(Ji)

2
φ2

i , (19)
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Eµν(φ̃k) =
F ′′(J̃k)

4

(

∂µφ̃k∂νϕk + ∂ν φ̃k∂µϕk

)

+
F ′′′(J̃k)

12
∂µϕk∂νϕk, (20)

W (φ̃k) =
J̃kF ′′(J̃k)

2
φ̃kϕk +

(

J̃kF ′′′(J̃k)

12
+

F ′′(J̃k)

4

)

ϕ2

k, (21)

where a prime denotes a derivative with respect to J : F ′ ≡ dF
dJ

, F ′′ ≡ d2F
dJ2 and F ′′′ ≡ d3F

dJ3 .
Let us consider the following local action

Sloc =

∫

d4xα′
√−g

(

R

16πGN
− Λ′

)

+

N1
∑

i=1

Si +

N2
∑

k=1

S̃k, (22)

where

Si = − 1

g4

∫

d4x
√−gF

′(Ji)

2

(

gµν∂µφi∂νφi + Jiφ
2

i

)

, (23)

S̃k =− 1

g4

∫

d4x
√−g

(

gµν

(

F ′′(J̃k)

4

(

∂µφ̃k∂νϕk + ∂ν φ̃k∂µϕk

)

+

+
F ′′′(J̃k)

12
∂µϕk∂νϕk

)

+
J̃kF ′′(J̃k)

2
φ̃kϕk +

(

J̃kF ′′′(J̃k)

12
+

F ′′(J̃k)

4

)

ϕ2

k

)

.

(24)

We can see that solutions of the Einstein equations and equations in φk, φ̃k and ϕk, obtained
from this action, solves the initial system of nonlocal equations (7). Thus, we obtained that
special solutions to nonlocal equations can be found as solutions to system of local (differential)
equations. The result has been obtained for an arbitrary metric. If F(J) has an infinity number
of roots then one nonlocal model corresponds to infinity number of different local models. In
this case the initial nonlocal action (5) generates infinity number of local actions (22).

Remark. We should prove that the way of localization is self-consistent. To construct local
action (22) we assume that equations (16) are satisfied. Therefore, the method of localization is
correct only if these equations can be obtained from the local action Sloc. The straightforward
calculations show that

δSloc
δφi

= 0 ⇔ �gφi = Jiφi;
δSloc

δφ̃k
= 0 ⇔ �gϕk = J̃kϕk. (25)

Using (25) we obtain
δSloc
δϕk

= 0 ⇔ �gφ̃k = J̃kφ̃k + ϕk. (26)

So, the way of localization is self-consistent in the case of F(J) with simple and double
roots [28]. The self-consistence of similar approach for F(J) with only simple roots has been
proven in [23, 26].

In spite of the above-mention equations we obtain from Sloc the equations:

Gµν = 8πGN
(

Tµν(φ0) − Λ′gµν
)

, (27)

where φ0 is given by (15) and Tµν(φ0) can be calculated by (18). So, we obtained such systems
of differential equations that any solutions of these systems are particular solutions of the initial
nonlocal equations (7).

Let us consider functions F(J) with two and only two simple roots. If F(J) has two real
simple roots, then F ′(J) > 0 at one root and F ′(J) < 0 at another root, so we get a quintom
model, in other words, local model with one standard scalar field and one phantom scalar field.
In the case of two complex conjugated simple roots Jj and J∗

j one gets the following action:

Sc = − 1

2g4

∫

d4x
√−g

(

F ′(Jj)
(

gµν∂µφj∂νφj + Jjφ
2

j

)

+ F ′∗(Jj)
(

gµν∂µφ
∗
j∂νφ

∗
j + J∗

j φ
∗
i
2

))

.
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We introduce real fields ξ and η such that φj = ξ + iη, φ∗j = ξ − iη, denote dr ≡ ℜe(F ′(J)),
di ≡ ℑm(F ′(J)), and obtain:

Sc = − 1

2g4

∫

d4x
√−g

(

drg
µν (∂µξ∂νξ − ∂µη∂νη) + dig

µν(∂µξ∂νη − ∂µη∂νξ) + V1

)

,

where V1 is a potential term. In the case di = 0 we get a quintom model, in opposite case
the kinetic term in Sc has a nondiagonal form. To diagonalize the kinetic term we make the
following transformation:

χ = υ + C̃σ, η = − C̃υ + σ, where C̃ ≡
dr +

√

d2
r + d2

i

di
, (28)

and get a quintom model:

Sc = − 1

2g4

∫

d4x
√−g

(

2
(

d2
r + d2

i

)

d2

i

(

dr +
√

d2
r + d2

i

)

(∂µυ∂νυ − ∂µσ∂νσ) + V1

)

.

In the case of a real double root J̃k we express φ̃k and ϕk in terms of new fields ξk and χk:

φ̃k =
1

2F ′′(J̃k)

((

F ′′(J̃k) −
2

3
F ′′′(J̃k)

)

ξk −
(

F ′′(J̃k) +
2

3
F ′′′(J̃k)

)

χk

)

, (29)

ϕk = ξk + χk, (30)

we obtain the corresponding S̃k in the following form:

S̃k = − 1

2g4

∫

d4x
√−g

(

gµν
F ′′(J̃k)

4
(∂µξk∂νξk − ∂νχk∂µχk) +

+
J̃k
4

(

(F ′′(J̃k) −
2

3
F ′′′(J̃k))ξk − (F ′′(J̃k) +

2

3
F ′′′(J̃k))χk

)

(ξk + χk) +

+

(

J̃kF ′′′(J̃k)

12
+

F ′′(J̃k)

4

)

(ξk + χk)
2

)

.

It is easy to see that each S̃k includes one phantom scalar field and one standard scalar
field. So, in the case of one double root we obtain a quintom model. In the Minkowski space
appearance of phantom fields in models, when F(J) has a double root, has been obtained in [35].
So, we come to conclusion that both two simple roots and one double root of F(J) generate
quintom models (see [3] for reviews of quintom models).

Let us consider the model with action (5) in the case C1 6= 0. For the string field theory
inspired form of F(�) the case f0 6= 0 has been considered in [24]. In this case we work in a
new scalar field χ = φ− C1/f0 and get the energy–momentum tensor (9) with

Eµν =
1

2

∞
∑

n=1

fn

n−1
∑

l=0

∂µ�
l
gχ∂ν�

n−1−l
g χ, W =

1

2

∞
∑

n=1

fn

n−1
∑

l=1

�
l
gχ�

n−l
g χ− f0

2
χ2 +

C2
1

2f0

.

The constant C2
1
/(2f0) can be consider as a part of the cosmological constant. Thus, in terms

of χ we obtain a model without a linear term and can conclude that at f0 6= 0 the adding of a
linear term to the potential shifts the scalar field φ on the constant and the changes the value
of cosmological constant.

Let us consider the case f0 = 0. In this case J = 0 is a root of F(J). It is easy to show,
that the function

χ̃ = φ0 + ψ, (31)
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where φ0 and ψ are solutions of the following equations

F(�)φ0 = 0, �
mψ =

C1

fm
, (32)

m is the order of the root J = 0, satisfies

F(�)χ̃ = C1. (33)

The function φ0 is given by (15), but the sum do not include φi0 , which corresponds to the root
J = 0, because this function can not be separated from ψ. We consider the cases of m = 1 and
m = 2. In the last case, when J = 0 is a double root, we denote the function ψ as ψ̃.

To localize the Einstein equations one should calculate the energy–momentum tensor for χ̃.
The straightforward calculations show [30], that

Tµν(χ̃) = Tµν(ψ) + Tµν(φ0), (34)

where

W (ψ) = C1ψ +
f2C

2
1

2f2
1

, Eµν(ψ) =
1

2
f1∂µψ∂νψ. (35)

The function φ0 is given by (15) and satisfies equation (8) with C1 = 0, therefore, we use
W0 instead of W to calculate Tµν(φ0) and obtain equality (18).

In the case of the double root J = 0 equation

�
2ψ̃ =

C1

f2

, ⇐⇒











�ψ̃ = τ,

�τ =
C1

f2

.
(36)

We obtain
Tµν(χ̃) = Tµν(ψ̃) + Tµν(φ0), (37)

Eµν(ψ̃) =
1

2

(

f2(∂µψ̃∂ντ + ∂ν ψ̃∂µτ) + f3∂µτ∂ντ
)

, W (ψ̃) =
f2

2
τ2 + C1ψ̃ +

f3C1

f2

τ. (38)

For an arbitrary quadratic potential V (φ) = C2φ
2 + C1φ + C0 there exists the following

algorithm of localization:

• Change values of f0 and Λ such that the potential takes the form V (φ) = C1φ.

• Find roots of the function F(J) and calculate orders of them.

• Select an finite number of simple and double roots.

• Construct the corresponding local action. In the case C1 = 0 one should use formula (22).
In the case C1 6= 0 and f0 6= 0 one should use (22) with the replacement of the scalar
field φ by χ and the corresponding modification of the cosmological constant. In the case
C1 6= 0 and f0 = 0 the local action is the sum of (22) and either

Sψ = − 1

2g4

∫

d4x
√−g

(

f1g
µν∂µψ∂νψ + 2C1ψ +

f2C
2
1

f2
1

)

,

in the case of simple root J = 0, or

S
ψ̃

= −
∫

d4x

√−g
2g4

[

gµν
(

f2(∂µψ̃∂ντ + ∂ν ψ̃∂µτ) + f3∂µτ∂ντ
)

+ f2τ
2 + 2C1ψ̃ +

f3C1

2f2

τ

]

in the case of double root J = 0. Note that in the case C1 6= 0 and f0 = 0 the local action
(22) has no term, which corresponds to the root J = 0.

• Vary the obtained local action and get a system of the Einstein equations and equations
of motion. The obtained system is a finite order system of differential equations.

• Seek solutions of the obtained local system.
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6 Exact Solution in the Friedmann–Robertson–Walker metric

Let us consider the Einstein equations, which correspond to a real simple root J1 in the
Friedmann–Robertson–Walker metric [23]:























3H2 =
4πGF ′(J1)

α′g4

(

φ̇2 + J1φ
2

)

+ 8πGΛ′,

Ḣ = − 4πGF ′(J1)

α′g4
φ̇2,

(39)

where a dot denotes a time derivative, the Hubble parameter H = ȧ/a, a is the scale factor.
Exact real solutions of this system have been obtained in [18, 23]. In our notations these

solutions are as follows:
At J1 > 0

φ(t) = ±
√

3J1α
′g4

6πGF ′(J1)
(t− t0), H(t) = − J1α

′g4
6πGF ′(J1)

(t− t0), (40)

where t0 is an arbitrary constant. These solutions exist only at

Λ′ = − J1α
′g4

24G2π2F ′(J1)
. (41)

At J1 = 0 summing the first and the second equations of (39), we obtain:

Ḣ = 8πGΛ′ − 3H2. (42)

The type of solutions depends on a sign of Λ′:

• Λ′ = 0

H(t) = − 1

3(t− t0)
, φ(t) = C̃1 ±

√
3
√
α′g4

√

πGF ′(0)
ln(t− t0), (43)

where t0 and C̃1 are arbitrary constants.

• If Λ′ > 0, then we obtain solutions:

H1(t) =
2
√

6πGΛ′

3
tanh

(

2
√

6πGΛ′(t− t0)
)

, (44)

φ1(t) = ±
√

− α′g4
12πGF ′(0)

arctan
(

sinh
(

2
√

6πGΛ′(t− t0)
))

+ C̃2 (45)

and

H̃1(t) =
2
√

6πGΛ′

3
coth

(

2
√

6πGΛ′(t− t0)
)

, (46)

φ̃1(t) = ±
√

α′g4
12πGF ′(0)

ln
(

tanh
(√

6πGΛ′ (t− t0)
))

+ C̃2, (47)

hereafter t0 and C̃2 are arbitrary real constants.

• In the case Λ′ < 0 we obtain the following real solution:

H2(t) = − 2
√
−6πGΛ′

3
tan

(

2
√
−6πGΛ′(t− t0)

)

, (48)

φ2(t) = ±
√

α′g4
12πGF ′(0)

arctanh
(

sin
(

2
√
−6πGΛ′(t− t0)

))

+ C̃2. (49)

8



One of important questions is the investigation of classical stability of the obtained solutions.
The stability of isotropic solutions in the Bianchi I metric in models with minimally coupling one
or two scalar (phantom scalar) fields has been studied in [36, 37]. In particular, the stability
of the exact solutions, obtained in the Friedmann–Robertson–Walker metric [23], has been
analysed in [36]. Anisotropic exact solutions in the Bianchi I metric have been presented in [30].

7 Conclusion

The main result of this paper is the generalization of the Ostrogradski representation on grav-
itational models with a nonlocal scalar field. The algorithm of localization is proposed for an
arbitrary analytic function F(�g), which has both simple and double roots. We have proved
that the same functions solve the initial nonlocal Einstein equations and the obtained local Ein-
stein equations. We have found the corresponding local actions and proved the self-consistence
of our approach. In the case of two simple roots as well as in the case of one double root we
get a quintom model.

The consideration of simple and double roots allows us to make the conjecture that the
existence of local actions, which correspond to a nonlocal action, does not depend on order
of F(�g) roots and the method of localization can be generalized on a nonlocal action with
an arbitrary analytic F(�g). In the case of simple roots exact solutions in the Friedmann–
Robertson–Walker metric have been found in [23]. The algorithm of localization does not
depend on metric, so it can be used to find solutions in any metrics.

Cosmological perturbations in models with a single nonlocal scalar field have been studied in
papers [26, 33]. We construct the equation for the energy density perturbations of the non-local
scalar field and explicitly prove that for the free field it is identical to a closed system of local
cosmological perturbations equations in a particular model with multiple local free scalar fields.

The author is grateful to I.Ya. Aref’eva, N.V. Bulatov and A.S. Koshelev for useful and
stimulating discussions. This research is supported in part by RFBR grant 08-01-00798, grant
of Russian Ministry of Education and Science NSh-4142.2010.2 and by Federal Agency for
Science and Innovation under state contract 02.740.11.0244.
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