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Abstract

We use a new method parametric attractor with drifting critical points to describe infla-
tion with λ(φ2 − v2)2 potential of the scalar field. This method allows us to easily consider
the inflaton fluctuations. We find the values of potential parameters and the mass of scalar
field.

1 Introduction

Inflation is the exponential expansion of the Universe, which has become the standard model for
the early stage of the Universe evolution before the Big Bang [1]-[5]. The inflation hypothesis
was devised to explain the classic problem of the big bang cosmology. These are the flatness of
the Universe, homogeneous and isotropic Universe in accordance with the cosmological principle.
The scalar field which is responsible for inflation is called the inflaton. This hypothesis also
explains the origin of the large-scale structure of the Universe. Quantum fluctuations of the
inflaton in the early epoch became the galaxies and its clusters.

Presently, in cosmology there is a problem in determining the parameters of the inflaton.
In this respect it would be useful to have a complete arsenal of effective methods in order to
describe various characteristics at the inflationary stage. We use the new method quasiattractor.
The notion of “quasiattractor” refers to the stable critical point of an autonomous system
with external parameters slowly drifting with the evolution. This method was offered for the
case of a quadratic potential [6], in order to generalize and develop investigations considering
the dependence of cosmological evolution on initial data [7]-[11]. We apply this approach to
λ(φ2 − v2)2 potential. Such a potential allows us to essentially expand the region of admissible
values of the potential parameters consistent with the data. This fact significantly increases
the viability of the model. In section 2 we give mathematical aspects of the model. In section
3 we compare data with experiments and derive the parameters of the inflaton. In section 4 we
discuss the results. This work is based on the paper [12].

2 Mathematical aspects

Let us consider the action of the inflaton in this form

S =

∫

dx4
√−g

{

1

2
∂µφ∂µφ − V (φ)

}

, (1)

with the potential
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V =
λ

4
(φ2 − v2)2. (2)

The evolution of the isotropic Universe is described by a Friedmann- Lemaitre-Robertson-
Walker metric

gµν = diag(1,−a2(t),−a2(t),−a2(t)).

Where a(t) is the scale factor.
The equations of motion read off as

φ̈ = −3Hφ̇ − λφ(φ2 − v2), (3)

Ḣ = −4πGφ̇2. (4)

The Friedmann relation which can be derived from equations of motion is

H2 =
4πG

3

{

φ̇2 +
1

2
λ(φ2 − v2)2

}

. (5)

Where the Hubble constant H = ȧ/a. We can say that the system “rolls” in the potential
well. If the evolution occurs from large field to the global minimum it is called chaotic inflation,
if the field “falls” from the vicinity of a local maximum at small field then it is new inflation.

At present, the basic tool of such studies is the slow-roll approximation in the field equations
of the inflation [5, 13, 14]. In this method the acceleration term φ̈ can be neglected in comparison
with the friction term −3Hφ̇ in the equation of motion (3). But we follow another way which
was suggested in [6] for the quadratic potential and applied to the quartic potential [15] (see
also [13]-[20]).

Let us introduce new dimensionless variables with presumed properties of scaling

x =
κ√
6

φ̇

H
, (6)

y =
4

√

λ

12

√

κ

H

√

|φ2 − v2|, (7)

z =
4
√

3λ√
κH

, (8)

u =
κv√

6
, (9)

where κ2 = 8πG.
The differential equations of motion take the form

x′ = 3x3 − 3x − 2y2z
√

y2 + u2z2, (10)

yy′ =
3

2
x2y2 + xz

√

y2 + u2z2, (11)

z′ =
3

2
x2z. (12)

The Friedmann equation is
x2 + y4 = 1. (13)

We can say that the terms x2 and y4 are kinetic and potential terms respectively. Here the
prime denotes the derivative with respect to N = ln(a/ainitial). We marked the initial state by
index “initial” and the end of inflation by index “end”. The equations are simplified, since they
are already differential equations of the first order, though they are nonhomogeneous, but they
are easier for analysis than the initial ones. The equations (10) and (11) can be considered as
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an autonomous system. The system could reach stable critical points on a phase plane {x, y}.
The paths converge to these points, being the attractors. The position of the critical point
is not fixed, since it is determined by the control parameter, which evolves and displaces the
critical point. But the evolution velocity of the control parameters is slow enough in order to
consider the displacement of the point in the phase space as driftage. Thus, the system motion
is the following: the system very quickly “falls” to the quasiattractor in the phase space, and
then the critical point slowly drifts during the evolution. The numerical analysis shows that
the system is stable under some definite conditions. The control parameter of an autonomous
system is the slowly varying quantity z. The system motion is appropriated by the evolution
of control parameters, and the system seems to lose some degrees of freedom.

Our first task is to search for such critical points. The equations for the critical point in
the physical case are x′ = 0, y′ = 0 (notice that the solution x = 0, y = 0 is not physical).
The equations for the critical point are reduced to the single equation in x with parameter z,
namely

3

2
xc

√

1 − x2
c + z

√

√

1 − x2
c + u2z2 = 0. (14)

The Friedmann relation gives xcδx + 2y3
cδy = 0 which means that there is the eigenvector

(2y3
c − xc)

T . The evolution goes according to the law

(

δx
δy

)

= C

(

2y3
c

−xc

)

eBN , (15)

where δx and δy are deviations from the critical point xc, yc, i.e. x = xc + δx and y = yc + δy.
And

B = −3 + 6x2
c −

2

3

z2

y2
c

. (16)

Then, there is a question of the stability of given system. We require B < 0 for the stability
of attractor. This condition is valid at small values of x and z and B is certainly less than zero.

Let us consider Universe inflation due to the inflaton with the chosen potential. The con-
dition of accelerated expansion is the following ä > 0 which means that 3x2 < 1. Accordingly,
such the expansion regime ends up with

x2
end =

1

3
, (17)

y4
end =

2

3
, (18)

z2
end =

√
3u2 + 1 − 1

u2
√

6
. (19)

3 Comparing data with the experiments

In order to find numerical values of the theory parameters one should compare it with the ob-
servational data. Experiment measures the inhomogeneity of the cosmic microwave background
radiation, related to the inhomogeneity of matter, hence we need to find the distribution of
the inflation inhomogeneity, which leads to the matter inhomogeneity at the stage of reheating.
Such inhomogeneity is given by the quantum fluctuations of the inflaton. Then, the spectral
densities of scalar and tensor perturbations are

PS(k) =

(

H

2π

)2 (

H

φ̇

)2

=
λ

8π2

1

x2
cz

4
, (20)

PT (k) = 8κ2

(

H

2π

)2

=
6λ

π2

1

z4
, (21)
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where the wave vector k is given by the Hubble rate at the exit of the fluctuations from the
horizon.

Consider the ratio r determining the relative contribution of tensor spectrum with respect
to scalar spectrum and introduce the spectral index nS as

r =
PT (k)

PS(k)
= 48x2

c , (22)

nS − 1 =
d ln PS

d ln k
=

4(9x2
c − z2)

3(3x2
c − 1)

, (23)

one can see that ln(k/kend) = N−2 ln(z/zend), so the differentiation with respect to k is reduced
to the differentiation with respect to parameter z.

The expression for Ntotal = ln(aend/ainitial) is simplified to

Ntotal =
2

3

∫ zend

zinitial

dz

x2
cz

≈ 3

4

(

1

z2
initial

− u2 ln
1 + u2z2

initial

u2z2
initial

)

. (24)

We considered the chaotic inflation, and at x2
c ≪ 1 one gets x2

c ≈ 4

9
z2(1 + u2z2), but for the

new inflation we should put x2
c ≈ 4

9
z2(−1+ u2z2) because in this case the sign of y2

c is changed.

Figure 1: Experimental data

Limiting cases are in complete consistency with the consideration of these cases in other
approaches

r =
16

N
, nS − 1 = − 3

N
at u2 → 0, (25)

r =
8

N
, nS − 1 = − 2

N
at u2 → ∞. (26)
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Data of the WMAP collaboration [21]-[24] in the plane of the spectral parameter and the
fraction of the tensor term {nS , r} in fluctuations of density in comparison with theoretical
predictions at different values of e-folding, namely N = 60 (thick solid line) and N = 70
(dotted line) in Fig. 1. The panel shows the WMAP data after 5 years of data taking the
confidence levels equal to 1−σ and 2−σ in comparison with further constraints following from
BAO [25] and SN [26]-[29] experiments. Dashed line is the border of the applicability region for
this potential. The equation of this line is nS − 1 = −3r/(16− r) and it corresponds to u2 = 0.
The region above correspond to u2 < 0, it is irrelevant to the present work.

From the analysis of data we can obtain quite wide limits of possible values for parameters
of the model potential. Namely, using the WMAP data we obtain at 1 − σ level

N = 60+40
−20 25 6 u2

6 ∞, (27)

so v > 12mP l, where mP l = 1/
√

8πG is Planck mass. However, the amount of e-folding is, in
fact, limited by the actual history of the Universe evolution after inflation, so that the analysis
leads to the typical value of N ≈ 60 [30].

Then, for N = 60
0 6 λ 6 9.0 · 10−14, (28)

and we can calculate the inflaton mass m2 = 2λv2

1 · 1013 GeV 6 m 6 1.7 · 1013 GeV. (29)

You can see, that one could extract the mass of the inflation corresponding to maximal definite-
ness for all of the potential parameters. Our results are in agreement with the precise analysis
of a complete data set previously performed in [31, 32].

4 Conclusion

Thus, the model has allowed us to consider the scenarios of chaotic and new inflation in the
framework of the quasiattractor method, which has enabled us to quite elegantly calculate
the recently observed inhomogeneity of the cosmic microwave background and distribution of
matter in the Universe. We have shown that such model is consistent with the observational
data. One can see, of course, that this model of the potential parametrically cannot satisfy
all of the experimentally admissible values of nS and r within the empirical uncertainties, but
these restrictions are not critical within the accuracy of measurements, and the given potential
seems to be consistent with the current data. We have obtained also, that observational data on
the inhomogeneity of the Universe corresponds to the time of forming the inflation fluctuations,
when the Universe expands approximately e60 times to the end of inflation, which is in agreement
with other estimations. We have also precisely enough determined the inflaton mass.
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