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Abstract

A common way to consider the cosmological perturbation theory is decomposing the
metrics and, hence, the energy–momentum tensor into background and perturbation, that is,
to proceed from the left-hand side of the Einstein equations to the right-hand side. However,
the material term of the gravitational field equations offers us natural non-perturbative
variables, energy density and pressure, from the very beginning. Therefore, we propose to
invert the procedure and find such geometrical variables in the left-hand side of the Einstein
equations that would include both background and perturbations.

1 Introduction

Having made its first appearance in the pioneering work by Lifshitz [1], the theory of cos-
mological perturbations deals with small ripples on homogeneous and isotropical cosmological
background. As it often happens in theoretical physics, once zeroth approximation is simple
and well studied and there is some kind of smallness in a theory, one can decompose equations
with respect to perturbations and make conclusions about a slightly more complicated case. In
the theory of cosmological perturbations it was soon realized that the splitting into background
and perturbations is not unique. In fact, each observer defines their own background depending
on their reference frame, or gauge. However, the spirit of general relativity, which is the base of
the cosmological perturbation theory, prescribes to consider invariant quantities. In 1980’s this
would lead to the development of the aptly named gauge-invariant formalism [2, 3] of the theory.
The whole set of perturbations falls into three classes – scalar, vector and tensor modes. The
scalar mode is especially interesting since the other two vanish in the background equations.

Now, as long as we decompose the gravitational part of Einstein’s equations into zeroth time-
dependent background and first-order inhomogeneous perturbations, we tend to do the same
with the right-hand term. Afterwards we construct gauge-invariant combinations. Nevertheless,
the material term offers us invariant quantities from the very beginning. For example, if the
Universe is filled with a scalar field, the latter does the job. The ideal fluid also [4] provides
scalars: energy density ε and pressure p. These general invariants contain, of course, every order
of the cosmological perturbation theory including zeroth and first ones. Therefore, a question
arises: what if we revert the scheme and try to formulate the left-hand side of Einstein’s
equations in variables, which would comprise both background and perturbations?

Since the homogeneous background we start with is appropriately expressed in terms of
sections t = const (t is time variable), the natural framework for fulfilling our goal appears to
be the Arnowitt–Deser–Misner formalism [5] (ADM). Then we proceed to briefly describe it.
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2 ADM in a nutshell

In the ADM formalism the space–time interval takes the form:1

ds2 = (Ndt)2 − γij

(
dxi + N idt

) (
dxj + N jdt

)
. (1)

Spatial indices are lowered by the 3-metrics γij. Let us introduce the 4-vector nα ≡ (N, 0, 0, 0).
Its contravariant components are nα = (1/N,−N i/N). Then the Einstein–Hilbert action can
be written in terms of the metric variables and matter Lagrangian L[m]:

S[N,N i, γij ,m] =
1

2

∫
√

γdtdx

(
2NL + NR(3) +

1

N

(
κijκ

ij − κ2
)

+ 2Eα
;α

)
, (2)

where

κij ≡
1

2

(
∂tγij − Ni|j − Nj|i

)
,

Eα = nαnβ
;β − nβnα;β

and the semicolon stands for covariant derivative with respect to the full metrics whereas the
vertical line and the curvature R(3) refer to the 3-dimensional quantities.

Variating S with respect to the set of variables [N,N i, γij ] and matter fields m yields Ein-
stein’s equations and material equation-of-motion.

3 Application to cosmology

To begin with, one can easily show that under arbitrary gauge transformations keeping the time
t intact and treating it as a free parameter,

t → t,

x → x̃
i (t,x) ,

the variable N acts as a scalar and γij appears to be genuine tensor.
These transformations are particularly relevant, because they do not alter the comoving

condition. Thus, if we take the comoving reference frame it is not entirely fixed, it rather
allows the above-mentioned class of transformations. In the cosmological framework the spatial
part γij is of the form [6] ã2(δij + Gij), where ã is the cosmological scale factor extended to
the inhomogeneous case. In the perturbation theory it turns out to be a genuine scalar, even
beyond the comoving-friendly gauge transformations. The point is we now have at least two
variables (the second is N , being scalar only within the certain group of transformations) that
contain both zeroth and first orders — exactly what was intended.

Still holds a question about how to fix the potential vector generated in a scalar sector
and, besides, there are the vector and tensor modes (V i and Gij , respectively). But in realistic
cosmologies all of those appear in the mere first order. Leaving the accurate definition of the
quantities to a more detailed paper, we can now represent the action (2) as a functional of the
’cosmological’ variables:

S = S[N, ã, V i,Gij ,m]. (3)

1Latin indices range from 1 to 3 while the Greek letters run from 0 to 3. Metrics signature is (+ −−−) and
the gravitational constant is normalized so that 8πG = 1.
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4 Conclusion

Speaking about slightly inhomogeneous cosmology in terms of background and perturbations
does not seem to be a natural way of describing it. Since the full geometry we live in is formed by
the general distribution of matter, rather than separately by homogeneous background and small
ripples over it, physically appropriate language should not discriminate between background and
perturbations, which is only possible if it includes invariants embracing every order. First of
all, it applies to the scalar mode and in this work we proposed a way to define such invariants.
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