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Abstract

We study how the helicity of hypermagnetic fields is related to the magnetic helicity of
Maxwellian fields during the electroweak phase transition (EWPT). We show that during
this phase transition on the surface separating the phases a separation of magnetic helicity
exists. The magnetic helicity being collected in Maxwellian phase in the course of this sepa-
ration is conserved then in further expansion of the Universe and the subsequent formation
of galaxies.

The magnetic helicity is a relatively new and very attractive point of interest in cosmic Magneto-
HydroDynamics (MHD) and dynamo theory. The point is that the magnetic helicity

∫

AHd3x
where H is the magnetic field and A is the vector potential is an inviscid integral of motion
in MHD. Relatively recently experts in cosmic MHD recognized that the magnetic helicity
conservation is much more restrictive in astrophysical objects than the energy conservation [1].

The cosmological magnetic field as a seed of galactic magnetic fields and its helicity can be
formed as a result of phase transitions in the early Universe and, in particular, in the electroweak
phase transition (EWPT). In this phase transition the hypermagnetic field converts into the
Maxwellian electromagnetic field.

For dynamo mechanism that provides the amplification of galactic magnetic fields [2] the
helicity coefficent α is the most important parameter. In the absence of rotation and vortices
in early Universe such hydrodynamical pseudoscalar parameter αMHD = − < V · (∇×V) > /3
vanishes while a new helicity scalar coefficent α originated by the parity violation in SM of
particle physics arises [3, 4, 5].

The helicity coefficent αY for a long-ranged massless hypercharge field Yµ has different
forms in dependence on whether we take into account the anomalous Chern-Simons term in
SM Lagrangian [3, 6], or not as we did in paper [5]. For the problem of the conversion of
hypermagnetic helicity into the magnetic one such a concrete choice of αY does not matter
since the final result for transferred helicity does not depend on αY as we see below.

This scalar coefficent enters the parity violating (last) term in generalized Maxwell equation
[3, 5]:

−∂EY

∂t
+ ∇× BY = σcond [EY + V × BY + αY BY ] . (1)

Neglecting in MHD the displacement current ∂EY /∂t and using the Maxwell equation ∂tBY =
−∇×EY we easily derive in the rest frame of the medium as a whole (V = 0) both the Faraday
equation for the the hypermagnetic field BY before EWPT,

∂BY

∂t
= ∇× αY BY + ηY ∇2

BY , (2)
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and the analogous one for the Maxwellian field B after EWPT but with different coefficent α
[4]. Here ηY ≈ η = (4πσcond)

−1 is the hypermagnetic (magnetic) diffusion coefficent.
Let us consider a bubble (an embryo of the Maxwell phase) of the radius R, inside of the

hot plasma in the early Universe at the EWPT moment with the temperature TEW ∼ 100 GeV.
Let us assume that this bubble is growing with the constant velocity, R(t) = v(t− tEW ), where
the velocity v itself (v = 0.1− 1 according to [7]) is unessential (to be cancelled) in the solution
to our problem.

It is important for our calculation that the value (t − tEW )/tEW ≪ 1 is small, or that the
temperature during the phase transition remains constant at the moment tEW = M0/2T

2

EW =
0.23 × 10−10 c , where M0 = MP l/1.66

√
g∗ is given by the Plank mass MP l = 1.2 × 1019 GeV

and by the degree of freedom g∗ ∼ 100. This implies that the radius of the bubble is much
less than the horizon size (2tEW = lH = 1.44 cm), R ≪ lH . More precisely, we shall assume
that the radius of the bubble is much less than the scale of the mean hypermagnetic field,
R ≪ ηY /αY ≪ lH .

Multiplying Eq. (2) and its analogue for Maxwellian field by the corresponding vector
potential and adding the analogous construction produced by evolution equation governing the
vector potential (multiplied by hypermagnetic or magnetic field) after the integration over the
space we get the evolution equation for the total helicity H =

∫

(B · A)d3x +
∫

(BY · Y)d3x,
where the integration is carried over the domains with Maxwell phase and hypermagnetic field
correspondingly. This equation takes the form:

dH

dt
= −2

∫

(E ·B)d3x −

−
∮

S

((E × A + A0B) · n)d2S + . . . , (3)

where the dots mean analogous terms for hypermagnetic field. We take into account the surface
integrals which are omitted in problems for a monophase medium [8] as integrals over an infinite
boundary of the domain. In our problem namely these integrals determine the flow of the helicity
through the boundary of a bubble of the radius R, on which a separation of the helicity takes
place. Accounting for the boundary condition Aµ = cos θW Yµ, where sin2 θW = 0.23 is the
parameter of the standard Weinberg-Salam model, the integrals above are calculated over the
surface as the following sum of them [9]:

dHY

dt
= − sin2 θW

∮

(EY × Y + Y0BY )nY d2S, (4)

where the unit normal vector nY = −êr = (−1, 0, 0) is directed inwards the bubble with
Maxwellian phase (the phase with broken symmetry).

The flow of hypermagnetic helicity density, penetrated inside the bubble through the surface
at the moment of electroweak phase transition, is the pseudovector given by the formula

S = nY hY (t) = nY

(

1

4πR2(t)d

)
∫ t

tEW

dt
dHY (t)

dt
. (5)

This flow is analogous to the vector flow of the energy of a flat electromagnetic wave S = Wn,
where W = (E2 + B2)/8π is the energy density of the field. Here 4πdR2(t) is the volume of a
thin spherical layer with the thickness d of the domain wall separating the two phases.

It is not difficult to prove that the surface integrals are equal to zero, i.e. there is no
separation of the helicity if we substitute the Chern-Simons wave for hypermagnetic field, Y0 =
Yz = 0, Yx = Y (t) sin k0z, Yy = Y (t) cos k0z. But in the case of 3D- field with nonzero
helicity the considered integrals are nontrivial. Let us consider the following potential of the
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hypermagnetic field with the number of the linked loops equal to n :

Yr(t, ρ, θ) =
−Y (t) cos θ

(ρ2 + 1)2
,

Yθ(t, ρ, θ) =
Y (t) sin θ

(ρ2 + 1)2

[

1 + B(ρ − 1)2 + b(ρ − 1)3
]

,

Yφ(t, ρ, θ) =
−Y (t)n sin θ

(ρ2 + 1)2

[

ρ + C(ρ − 1)2 +

+(C + c)(ρ − 1)3
]

, (6)

where Y (t) is the hypermagnetic field amplitude and ρ = r/R.
From the Faraday equation Eq. (2) governing the hypermagnetic field BY = ∇×Y we can

find the constant coefficents B = −1, b = −2, c = −5/3 as well as C(t) changing over time due
to the bubble expansion R(t) [9]:

C(t) =
2(n − n−1)αY R−1 + 4ηY R−2

nαY R−1 + 2ηY R−2
. (7)

A straightforward calculation of the surface term (4) we are looking for gives the following
equation:

dHY (t)

dt
=

2π sin2 θW n

3
R(t)Y (t)

∫ t

tEW

Y (t
′

)

R(t′)
dt

′

, (8)

where we substituted in the expression EY = −∂Y/∂t −∇Y0 the gradient ∇Y0,

∇Y0 =
1

R(t)

∫ t

tEW

Y (t
′

)dt
′

R(t′)

[ 4 sin θêθ

(ρ2 + 1)3
−

−4 cos θ(1 − 5ρ2)êr

(ρ2 + 1)4

]

, (9)

and took into account that in the case of the axial-symmetric configuration (6) the vector BY
r

is independent of the coordinate φ. The values in Eq. (8) including ∇Y0 × Y = êr(∇Y0)θYφ

are calculated at the surface of bubble ρ = 1.
Hence the problem is reduced to the calculation Y (t) from the Faraday equation (2) which for

the considered potential (6) takes the form (coming from the azimuthal component ∂tBφ = ...)
:

Ẏ

Y
− Ṙ

R
=

αY n(2 − C)

R
. (10)

Substituting the parameter (7) into Eq. (10) one obtains the ordinary differential equation for
the amplitude Y (t),

Ẏ (t)

Y (t)
− Ṙ(t)

R(t)
=

2α2

Y

nαY R(t) + 2ηY

. (11)

In the realistic situation of finite conductivity a scale of the mean hypermagnetic field
Λ = κηY /αY , where κ ≥ 1, should be much bigger than the diameter of the bubble in the
new phase, i.e. the following inequality has to be satisfied: αY R(t) ≪ κηY . If a more stronger
condition αY R(t) ≪ 2ηY /n ≤ κηY is fulfilled, then from (11) for the function BY (t) = Y (t)/R(t)
we get

BY (t) = BY (tEW ) exp

[(

α2

Y

ηY

)

(t − tEW )

]

, (12)

where BY (tEW ) is the hypermagnetic field amplitude on the scale of the bubble, αY = αY (TEW ),
ηY = ηY (TEW ) are the constant coefficients at the moment of the phase transition,
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(t − tEW )/tRW ≪ 1 is a small parameter for self-consistency of our problem (see above). This
inevitably leads to a constant value of hypermagnetic field BY (t) ≈ BY (tEW ) during EWPT, or

the helicity density transferred from the symmetric phase actually does not depend on a concrete

choice of the helicity parameter αY
1.

Substituting the amplitude of the hypercharge field Y (t) = BY (t)R(t) on the surface of the
phase separation (12) into the expression of the surface integral (8), after the integration over
time and division by the volume of the spherical layer with the thickness d we get from (5) the
value of the flow of hypermagnetic helicity density through the surface of the bubble,

hY (t)

G2cm
=

5 × 10−3n

d(cm)

(

BY (tEW )

1 G

)2 (

t − tEW

tEW

)2

. (13)

Let us note that in order to avoid the screening of the hyperelectric field EY and the temporal
component Y0 over the surface of the bubble, the thickness d of the domain wall should be less
than the Debye radius, d < rD =

√

3TEW /4πe2ne ∼ 10/TEW , that allows to estimate the factor
d−1 in the formula (13) as d−1(cm) > 1015/2. This means that a moderate hypermagnetic field
BY (tEW ) provides a huge flow of the helicity density (13).

Indeed, substituting into (13) the value of hypermagnetic field at the moment of phase
transition BY (tEW ) estimated in [10] as BY (tEW ) ∼ 5 × 1017 G, one gets h/G2cm > 6.25 ×
1047[(t − tEW )/tEW ]2. Such huge value estimated at the moment of the growth of a bubble
of the new phase, e.g, for R(t)/lH < [(t − tEW )/tEW ] ∼ 10−6, accounting for the following
conservation of the net global helicity summed over different protogalactic scales, occurs much
bigger than the helicity density of galactic magnetic field hgal ∼ 1011 G2cm, (see also estimates
of the primordial magnetic helicity in paper [11]).

The single bubble of the Maxwellian phase inside of ambient symmetric phase with the
potential given by Eq. (6) near the boundary, is a reasonable approximation during the be-
ginning of the phase transition before percolation (junction of bubbles). One can consider also
another final step of the phase transition, when a new phase with broken symmetry prevails
and a single bubble of the symmetric phase with hypermagnetic field inside exists. It is not
hard to check that in this case the change of sign ρ − 1 > 0 to ρ − 1 < 0 in the potential (6)
gives the same components of hypermagnetic field inside the bubble ρ < 1. Let us note that
in the considered approximation (6) magnetic charges near the surface of the phase transition
and over this surface itself are absent, ∇ · BY = 0.

For a single bubble of the symmetric phase the flow of the helicity density through the
surface (5) preserves the value (13). Moreover, this flow does not change the sign after the
direction of the flow is changed, nY → −nY = êr = (1, 0, 0). This well corresponds to the
meaning of the problem: magnetic helicity of the Maxwellian field rises, unless helicity of the
hypermagnetic field inside the bubble goes down.
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