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Abstract

Motivated by claims of broken rotational invariance in the WMAP data, a number of
models have appeared in the literature which realize this effect through vector field(s) with
a nonvanishing spatial vacuum expectation value. We discuss why many of such models
have ghost instabilities.
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I dedicate this talk to the memory of Lev Kofman. I would like to testify my gratitude
towards Lev, for the wonderful opportunity of working with him and for the time spent together.
Our interaction has had the deepest influence on me, and I feel fortunate to have known a person
and a physicist of such caliber.

My initial interest in the subject discussed here was to understand how cosmological pertur-
bations behave when one relaxes the assumption of isotropy and homogeneity of the background.
This is in turn related to the question of “how do we really know that our universe is homoge-
neous and isotropic ?”. For definiteness, I studied the simplest case of a Bianchi I background
(essentially, a universe with different expansion rates in the different directions), which was
undergoing isotropzation at the onset of inflation. I noticed that one gravity wave polarization
had a large growth in the anisotropic regime, but I regarded this mostly as a mathematical
curiosity. On the contrary, Lev immediately understood the physical origin of the effect, and
its possible implications. The growth is rooted in the instability of Kasner spaces, studied in
seminal papers by Belinsky, Khalatnikov and Lifshitz [1]. Lev was fascinated by this effect,
due to its universality: it describes the behavior of a wide class of spaces which are contracting
towards a singularity, and which is characterized by a transition between different Kasner ge-
ometries (each of them being unstable; these are the so called BKL oscillations). Lev realized
that what we had computed was this same phenomenon for an expanding Kasner space, with
the only difference that now the instability is shut off as the inflaton takes over and the geometry
isotropizes. The growth of the tensor mode could have resulted in a large gravity wave signal;
this may be visible at the largest scales, provided that inflation hadn’t lasted too much. When
I replied that this is less appealing than the standard inflationary predictions, as it introduces
a dependence on initial conditions, Lev replied that this reminded him of the pre-inflationary
epoch, in which cosmologists were used to the fact that what we observe would have been de-
pendent on initial conditions, in a way that cannot be predicted from the underlying theory. It
is now easy to take for granted the “umbrella” protection that inflation provides by decoupling
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the (possibly) pre-existing initial conditions from what is observed. Whether this is or is not
the case is of course just matter of observations, and not of our theoretical taste. This was the
last lesson that I have had the privileged of learning from Lev.

The main theme of the series of works that I discuss here is whether it is possible to reconcile
one of the so called WMAP anomalies with the inflationary picture, and whether this could lead
to new predictions. At present, the WMAP satellite [2] provides the best data on our universe
at the largest observable scales. Over the years, a number of anomalies have been argued
to be present in the WMAP data. If of cosmological origin, such anomalies would call for a
drastic rethought of the inflationary picture. While the first of such claims regarded the very
largest scales (specifically, an alignment between the largest multiples of the CMB temperature
anisotropies decomposition [3]), for which the galactic cut and foreground removal may be an
issue, later works discussed features at higher multipoles (≡ smaller scales). For instance, ref.
[4] has claimed evidence of breaking of rotational invariance by considering multipoles up to
ℓ = 400. Specifically, it is claimed that the data suggest a primordial power spectrum with an
angular dependence with respect to a “privileged direction” in the sky. The direction emerged
from this study had no astrophysical relevance. Successive works [5] corrected this analysis;
a greater (∼ 9σ) evidence for the anomaly appears, although the privileged direction is now
found to almost coincide with the ecliptic axis, strengthening the case for a systematic origin.

A number of studies of the WMAP anomalies have put forward some parametrizations of
these effects. In many cases, the parametrization has no underlying theoretical model, and,
while it can serve as a useful template to study the data, does not improve our theoretical
understanding of the anomalies. An improvement on this is offered by a number of works
that actually propose concrete cosmological models that aim to reproduce such features. In a
particularly interesting class of models, the statistical isotropy is broken by the nonvanishing
spatial vev of some vector field(s); this can lead to either a small anisotropy in the inflationary
expansion [6, 7, 8], or to an anisotropic mechanism of generation of the primordial perturbations
[9]. All these models have some nonminimal ingredients that prevent the quick isotropization
(in this case, the quick decrease of the vector vev) that typically takes place during inflation.
Even if the later findings of [5] strongly disfavor a cosmological origin of this anomaly, there
are still various motivations for studying such models. From a phenomenological point of view,
the Planck satellite [10], whose CMB data are expected to be released in summer 2012, will
provide a nontrivial check of the WMAP results, as, if of cosmological origin, the effect of broken
rotational invariance will be even more significant in Planck (due to the greater accuracy at
large ℓ). From a theoretical point of view, when taken at face value, the models [6, 7, 8, 9]
seem to imply that it is actually not so difficult to break statistical isotropy, so that we should
not take the latter as a strong theoretical prior; in this sense, even the term “anomaly” would
appear to be unjustified: the anisotropy could simply be an extra parameter which can be easily
obtained from the theory, and that the observations indicate to be zero or small.

A third motivation is that the original proposals [6, 7, 8, 9] did not perform a complete study
of the cosmological perturbations. Such a complete study could result in new phenomenological
predictions, that could allow to prove or falsify such models as the origin of the anomaly reported
in [4, 5]. In a non-isotropic background, the scalar and tensor metric perturbations are coupled
to each other already at the linearized level. This can result in a nonstandard (and, potentially,
enhanced) gravity wave amplitude and in a sizable scalar-tensor correlation [11] (as this quantity
vanishes in the standard case, this would be a distinctive signature of the anisotropy). This
computation was actually the initial goal of our works. We however found that the models
[6, 7, 8, 9] possess ghost instabilities, which, in our opinion, invalidate any phenomenological
predictions which have been made for them.

We reported explicit and exhaustive computations for the model [7], and for the models
[8, 9] in [12] and [13], respectively. We have made analogous computations for the model of [6],
but we have not published them; they can be performed by the same methods of [12, 13]. For
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brevity reasons, we will not repeat them here. We rather perform a much simpler computation,
that disregards the metric perturbations, but that clarifies why the instability arises [14].

We start the discussion by considering a massive vector on a homogeneous and isotropic
background

S =

∫

d4x
√−g

[

−1

4
Fµν Fµν − M2

2
Aµ Aµ

]

. (1)

We assume that Aµ has negligible vev, and we decompose its fluctuations as Aµ =
(

α0, ∂iαL + αT
i

)

.
The transverse vector perturbation αT

i , satisfying ∂iα
T
i = 0 , contains two physical modes. These

modes are well behaved, and decoupled from the α0, αL perturbations. We disregard them in
the following. For M2 6= 0 , the two perturbations α0, αL encode one additional degree of free-
dom, namely the longitudinal vector polarization. Indeed the mode α0 is non-dynamical, since
it appears without time derivatives in the action, and must be integrated out. Its equation of
motion, after Fourier decomposition in the spatial directions, gives α0 =

[

p2/
(

p2 + M2
)]

α̇L ,
where p = k/a is the physical momentum of the mode, k the comoving momentum, and dot
denotes time differentiation. Inserting this solution back into (1) we obtain the action for the
dynamical mode:

Slongitudinal =

∫

dt d3k a3 p2 M2

2

[ |α̇L|2
p2 + M2

− |αL|2
]

. (2)

The longitudinal vector mode exists due to the mass term, so it is not a surprise that M2

multiplies the kinetic term. We see that this mode is a ghost in the UV for M2 < 0 . Identical
conclusions are reached by computing the vector field propagator, or by using the Stuckelberg
formalism [12]. We stress the analogy with the massive gravity case, in which also the mass
term controls the stability. Specifically, a ghost is found at the linearized level, unless the mass
is precisely of the Fierz-Pauli type. This stability considerations apply even if the longitudinal
mode is not a separate scalar field, but simply one of the polarizations of a massive vector or
tensor.

We now show that, in the models [6, 8, 9], M2 needs to have the wrong sign (we refer the
reader to [14, 12] for the discussion of the model [7]). We assume for definiteness that the
spatial vev of the vector is aligned along the x direction. This gives the line element

ds2 = −dt2 + a (t)2 dx2 + b (t)2
[

dy2 + dz2
]

. (3)

We introduce the two expansion rates Ha ≡ ȧ/a, Hb ≡ ḃ/b , and we define their average H and
rescaled difference h through H ≡ Ha+2 Hb

3
and h ≡ Hb−Ha

3
. The inflationary expansions that

we consider below are characterized by constant or slowly evolving rates. For the models we
are considering, h/H = O

(

B2
)

, where B is the rescaled vev of the vector field 〈Ax〉 ≡ Mp aB
[6, 8]. Therefore, B must also be slowly rolling during the slow roll regime. We consider the
phenomenologically relevant case of moderate anisotropy, B < 1 . To achieve slow roll, consider
the action

S =

∫

d4x
√−g

[

M2
p

2
R − F 2

4
− V

(

A2
)

+
ξ

2
R A2

]

. (4)

where the vacuum energy leading to the cosmological expansion is included in V . Expanding
the potential at quadratic order in Aµ, and comparing with eq. (1), this action leads to the
mass term

M2 = 2
∂V

∂A2
− ξ R = 2

∂V

∂A2
− 6ξ

(

2H2 + h2 + Ḣ
)

. (5)

The equations of motion for the rescaled vev B obtained from (4) is B̈ + 3H Ḃ +QB = 0, with

Q ≡ 2
∂V

∂A2
− 2H h − 5h2 − 2 ḣ + (1 − 6 ξ)

(

2H2 + h2 + Ḣ
)

. (6)
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Slow roll of B requires Q ≪ H2 (since the 3HḂ term provides a “friction” to the motion).
Ref. [6] studied solutions with constant Ha,b in absence of the A2 R term, ξ = 0 . This requires
Q = 0, or, in other terms

∂V

∂A2
= −H2 + H h + 2h2 = −Ha Hb < 0 . (7)

This corresponds to a negative square mass in eq. (5). Ref. [8] achieves the slow roll with a
sufficiently small ∂V/∂A2, and with ξ = 1/6. This also gives a negative square mass in eq. (5).
The model of [9] is also characterized by the action (4), with ξ = 1/6 (the requirement in this
case is related to the scale invariance of the resulting curvature perturbations), and so also
possesses a ghost, even if the background solution is isotropic (we should actually say “even if
the background anisotropy is very small”; strictly speaking, a nonvanishing vector vev - which
needs to be the case also for [9] - results in a small anisotropy; therefore, also for this model,
the relevant stability computation is the one reported in Sections IV and V of [13]).

The addition of metric perturbations significantly complicates the computation, but does not
change the above conclusions. More precisely, one perturbation (which becomes the longitudinal
mode, in the limit in which gravity is decoupled) goes from being a well behaved mode to a ghost
close to horizon crossing. When this happens, the linearized solutions for the perturbations (δgµν

included) diverge. For the model [8], for which more vectors are presents, we found that some
perturbations behave in this way, while some others are ghost during the whole sub-horizon
regime. We also found that, if a small and positive mass term is added to the model of [9]
(such mass term is already present in [8]) the perturbations also diverge when the total mass
M2 vanishes.

The computations we have performed are valid at the linearized level. One may argue
that the instability we have found manifests itself only at this level, but it is somewhat cured
by nonlinear interactions. While one cannot a priori disregard this possibility, one should
also have in mind that all the phenomenological predictions given in the literature for the
above models are based on linearized computations. One should not trust such predictions,
which are based on an approximate treatment of the linearized system of perturbations, while
the compete linearized computations that we have performed show instead that the solutions
actually diverge. Concerning nonlinear interactions, one may expect that they actually worsen
the problem, as the coupling between a healthy field and a ghost leads to vacuum decay;
therefore theories with ghost can only be considered as effective field theories, valid only up a
scale set by the mass term.

In fact, all these theories require a cut-off which makes them invalid at high energies, irre-
spectively of the sign of the mass term. We can see this based on the behavior of massive vector
fields at high energies. The models studied here have a gauge invariance that is broken in a
hard way by the explicit mass term M2A2 for the vector. It is well known that, in such cases,
the interactions of the longitudinal bosons violate unitarity at a scale which is parametrically
set by M , leading to a quantum theory out of control. For the present models, M is the Hub-
ble rate or below, so that the entire sub-horizon regime may be ill-defined. Although we are
aware of explicit computations of this problem only in Minkowski spacetime, we believe that it
applies also to the inflationary case, if one has unbroken Lorentz invariance and transitions to
a locally flat frame (moreover, during inflation the mass term for the vector is nearly constant,
and the momentum is adiabatically varying in the sub horizon regime). While this problem
is present for both signs of M2, “curing” a theory which has a hard vector mass and a ghost
is more problematic than curing a theory with only a hard vector mass. The most immediate
UV completion of a theory with a hard mass is through a higgs mechanism. The mass would
be then due to the vev of a scalar field that becomes dynamical above the scale M . In this
way the theory remains under control also in the short wavelength regime, and one can apply
all the standard computations valid for scalar fields during inflation. However, if M2 needs to
have the wrong sign, the scalar field in this UV completed theory needs to be a ghost. In fact,
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when one states that a theory with ghosts is only valid as an effective theory, one is assuming
that a UV complete theory which is ghost-free exists. However, we are not aware of any explicit
construction that realizes this.

Recently, some models [15, 16] have been proposed precisely to avoid the instabilities that
we have discussed. Although more complicated than those discussed here, such models are in-
teresting, since they are existence proofs that it is indeed possible to avoid the rapid inflationary
isotropization in a controllable fashion. They also constitute the first complete realizations in
which anisotropic signatures can be concretely computed. The model [15] is characterized by
coupling between the kinetic term of the vector field and a function of the inflaton, f (φ)F 2.
For a suitable choice of f the model can admit a slow roll anisotropic inflationary solution. As
there is no mass term for the vector, this model is free from ghost instabilities. It was first
shown in [17] that the distinctive scalar-tensor correlation is much smaller than what could
be estimated from the amount of anisotropy in the background expansion. The model [16] is
instead characterized by external time-dependent functions that multiply the kinetic and the
mass term of the vector. For a suitable time dependence, the vector field produces a scale in-
variant and statistically isotropic power spectrum. It would be interesting to extend this model
replacing these external functions with functions of a dynamical scalar field.

I conclude with a note on the references. In this written report of my talk I concentrate only
on works that I have coauthored plus works that were essential for the narrative. For a more
comprehensive review, and for proper credit to the relevant literature, I refer the interested
reader to the list of references of my two latest works [13, 17] on the subject.
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