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Abstract

We investigate the propagation of a charged particle in a spatially constant but time
dependent pseudoscalar background. Physically this pseudoscalar background could be
provided by a relic axion density. The background leads to an explicit breaking of Lorentz
invariance; as a consequence processes such as p → pγ or e → eγ are possible within some
kinematical constraints. The phenomenon is described by the QED lagrangian extended
with a Chern-Simons term that contains a 4-vector which characterizes the breaking of
Lorentz invariance induced by the time-dependent background. While the radiation induced
(similar to the Cherenkov effect) is too small to influence the propagation of cosmic rays
in a significant way, the hypothetical detection of the photons radiated by high energy
cosmic rays via this mechanism would provide an indirect way of verifying the cosmological
relevance of axions. We discuss on the order of magnitude of the effect.

1 Axions

Cold relic axions resulting from vacuum misalignment[1, 2] in the early universe is a popular and
so far viable candidate to dark matter. If we assume that cold axions are the only contributors
to the matter density of the universe apart from ordinary baryonic matter its density must be[3]

ρ ≃ 10−30gcm−3 ≃ 10−46GeV4. (1)

Of course dark matter is not uniformly distributed, its distribution traces that of visible matter
(or rather the other way round). The galactic halo of dark matter (assumed to consist of axions)
would correspond to a typical value for the density[4]

ρa ≃ 10−24gcm−3 ≃ 10−40GeV4 (2)

extending over a distance of 30 to 100 kpc in a galaxy such as the Milky Way. Precise details
of the density profile are not so important at this point. The axion background provides
a very diffuse concentration of pseudoscalar particles interacting very weakly with photons
and therefore indirectly with cosmic rays. What are the consequences of this diffuse axion
background on high-energy cosmic ray propagation? Could this have an impact on cosmic ray
propagation similar to the GZK cutoff [5]? This is the question we would like to address here.

The fact that the axion is a pseudoscalar, being the pseudo Goldstone boson of the broken
Peccei-Quinn symmetry[6], is quite relevant. Its coupling to photons will take place through
the anomaly term; hence the coefficient is easily calculable once the axion model is known

∆L = gaγγ
α

2π

a

fa
F̃F. (3)
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Two popular axion models are the DFSZ[7] and the KSVZ[8] ones . In both models gaγγ ≃ 1.
Here a is the axion field and fa is the axion decay constant. Further details are provided in
section 3.

2 Cosmic Rays

Cosmic rays consist of particles (such as electrons, protons, helium and other nuclei) reaching
the Earth from outside. Primary cosmic rays are those produced at astrophysical sources (e.g.
supernovae), while secondary cosmic rays are particles produced by the interaction of primaries
with interstellar gas. In this work, the effect of axions on the propagation of these cosmic rays
will be studied. We will separately consider proton and electron cosmic rays and ignore heavier
nuclei because the effect on them will be far less important as will become clear later (the
axion-induced Bremsstrahlung depends on the mass of the charged particle).

2.1 Cosmic Ray Energy Spectrum

We are interested in the number of protons in cosmic rays. Experimentally, one sees that the
number of cosmic ray particles with a given energy depends on energy according to a power law

J(E) = NiE
−γi , (4)

where the spectral index γi takes different values in different regions of the spectrum (see [9]).
For protons we have

Jp(E) =















5.87 · 1019E−2.68 109 ≤ E ≤ 4 · 1015

6.57 · 1028E−3.26 4 · 1015 ≤ E ≤ 4 · 1018

2.23 · 1016E−2.59 4 · 1018 ≤ E ≤ 2.9 · 1019

4.22 · 1049E−4.3 E ≥ 2.9 · 1019

, (5)

while for electrons the power law is[10]

Je(E) =

{

5.87 · 1017E−2.68 E ≤ 5 · 1010

4.16 · 1021E−3.04 E ≥ 5 · 1010 (6)

and the flux typically two orders of magnitude below that of protons, although it is more poorly
known. Our ignorance on electron cosmic rays is quite regrettable as it has a substantial impact
in our estimation of the radiation yield.

Note that the above ones are values measured locally in the inner solar system. It is known
that the intensity of cosmic rays increases with distance from the sun because the modulation
due to the solar wind makes more difficult for them to reach us, particularly so for electrons.
In addition, the hypothesis of homogeneity and isotropy holds for proton cosmic rays, but not
necessarily for electron cosmic rays. Indeed because cosmic rays are deflected by magnetic
fields they follow a nearly random trajectory within the Galaxy. We know that on average a
hadronic cosmic ray spends about 107 years in the galaxy before escaping into intergalactic
space. This ensures the uniformity of the flux, at least for protons of galactic origin. On the
contrary, electron cosmic rays travel for approximately 1 kpc on average before being slowed
down. However, because l ∼ t1/2 for a random walk, 1 kpc corresponds to a typical age of an
electron cosmic ray ∼ 105 yr[11]. In addition, the lifetime of an electron cosmic ray depends on
the energy in the following way

t(E) ≃ 5 × 105(
1 TeV

E
) yr =

T0

E
, (7)

with T0 ≃ 2.4×1040. To complicate matters further, it has been argued that the local interstellar
flux of electrons is not even representative of the Galaxy one and may reflect the electron debris
from a nearby supernova ∼ 104 years ago[12].
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Figure 1: Proton cosmic ray energy spectrum

2.2 The GZK Cut-off

The GZK (Greisen-Zatsepin-Kuzmin) limit[5] states that the number of cosmic rays above a
certain energy threshold should be very small. Cosmic rays particles interact with photons from
the Cosmic Microwave Background (CMB) to produce pions

γCMB + p −→ p+ π0 or γCMB + p −→ n+ π+. (8)

The energy threshold is about 1020 eV. Because of the mean free path associated with these
reactions, cosmic rays with energies above the threshold and traveling over distances larger than
50 Mpc should not be observed on Earth. This is the reason of the rapid fall off of the proton
cosmic ray spectrum above 1020 eV as there are very few nearby sources capable of providing
such tremendous energies.

Note that the change in slope of the spectrum at around 1018 eV is believed to be due to
the appearance at that energy of extragalactic cosmic rays.

3 Solving QED in a Cold Axion Background

In this section we shall describe in great detail the theoretical tools needed to understand the
interactions between the highly energetic cosmic rays we have just described and the cold axion
background described in the first section.

The interaction of axions and photons is described by the following piece in the lagrangian

Laγγ = gaγγ
α

2π

a

fa
Fµν F̃µν , (9)

where

F̃µν =
1

2
εµναβFαβ (10)

is the dual field strength tensor.
The axion field is originally misaligned and in the process of relaxing to the equilibrium

configuration coherent oscillations with q = 0 are produced, provided that the reheating tem-
perature after inflation is below the Peccei-Quinn transition scale[6]. In late times the axion
field evolves according to
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a(t) = a0 cos(mat), (11)

where the amplitude a0 is related to the initial misalignment angle. With this, (9) becomes

Laγγ = gaγγ
α

2π

1

fa
a0 cos(mat)F

µν F̃µν = gaγγ
α

πfa
a0 cos(mat)ǫ

µναβ∂µAνFαβ . (12)

Integrating by parts (dropping total derivatives) and taking into account that ǫµναβ∂µFαβ = 0,
we get

Laγγ = gaγγ
αmaa0

πfa
sin(mat)ǫ

ijkAiFjk, (13)

where Latin indices run over the spatial components only.
A cosmic ray particle (which travels at almost the speed of light) will see regions with quasi-

constant values of the axion background, of a size depending on the axion mass, but always
many orders of magnitude bigger than its wavelength. Thus, we can approximate the sine in
(13) by a constant (1

2 , for example). Then, it can be written as

Laγγ =
1

4
ηµAνF̃

µν , (14)

where ηµ = (η, 0, 0, 0) and η = 4gaγγ
αmaa0

πfa
. The “constant” η changes sign with a period

∼ 1/ma.

The oscillator has energy density ρa =
1

2
ȧ2

max =
1

2
(maa0)

2, so maa0 =
√

2ρa. Then, the

constant η is

η = gaγγ
4α

π

√
2ρa

fa
∼ 10−20 eV, (15)

for ρa = 10−4 eV4 and fa = 107 GeV = 1016 eV.
The extra term in (14) corresponds to Maxwell-Chern-Simons Electrodynamics. Although

in Maxwell-Chern-Simons Electrodynamics one can have in principle any four-vector ηµ, the
axion background provides a purely temporal vector. We shall assume ηµ to be constant within
a time interval 1/ma.

3.1 Euler-Lagrange Equations

In the presence of an axion background the QED Lagrangian is

L = −1

4
FµνFµν + ψ̄ (i 6∂ − e 6A−me)ψ +

1

2
m2

γAµA
µ +

1

4
ηµAν F̃

µν . (16)

Here also an effective photon mass has been considered (equivalent to a refractive index, see
[2]). It is of order

m2
γ ≃ 4πα

ne

me
. (17)

The electron density in the Universe is expected to be at most ne ≃ 10−7 cm−3 ≃ 10−21 eV3.
This density corresponds to mγ ≃ 10−15 eV, but the more conservative limit (compatible with
[13]) mγ = 10−18 eV will be used here.

The second term of (16) gives the kinetic and mass term for the fermions and also their
interaction with photons. Dropping it, we get the Lagrangian for (free) photons in the axion
background (see [14] for further details):

L = −1

4
FµνFµν +

1

2
mγAµA

µ +
1

4
ηµAν F̃

µν

= −1

2
∂µAν(∂

µAν − ∂νAµ) +
1

2
m2

γAµA
µ +

1

4
ǫµναβηµAν∂αAβ. (18)
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The Euler-Lagrange (E-L) equations are

∂σ
∂L

∂(∂σAλ)
− ∂L
∂Aλ

= 0, (19)

∂L
∂Aλ

=
∂

∂Aλ

(

1

2
m2

γg
µνAµAν +

1

4
ǫµναβηµAν∂αAβ

)

=
1

2
m2

γ(gλνAν + gµλAµ) +
1

4
ǫµλαβηµ∂αAβ

= m2
γA

λ +
1

4
ǫµλαβηµ∂αAβ. (20)

∂σ
∂L

∂(∂σAλ)
= ∂σ

∂

∂(∂σAλ)

[

−1

2
∂µAνg

αµgβν(∂αAβ − ∂βAα) +
1

4
ǫµναβηµAν∂αAβ

]

= ∂σ

{

−1

2

[

gασgβλ(∂αAβ − ∂βAα) + ∂µAν(gσµgλν − gλµgσν)
]

+
1

4
ǫµνσληµAν

}

= ∂σ

[

−(∂σAλ − ∂λAσ) +
1

4
ǫµνσληµAν

]

= −∂σ∂
σAλ + ∂λ∂σA

σ +
1

4
ǫµνσληµ∂σAν . (21)

Rearranging the indices, the equations are

−�Aλ + ∂λ∂σA
σ −m2Aλ − 1

2
ǫβλµαηµ∂αAβ = 0. (22)

If we choose the Lorenz gauge ∂αA
α = 0 the second term vanishes. The equations can also be

written as

−gβλ
�Aβ − gλβm2

γAβ − 1

2
ǫβλµαηµ∂αAβ = 0. (23)

We are interested in writing these equations in momentum space. To this end, define the Fourier
transform of the field:

Aµ(x) =

∫

d4k

(2π)4
e−ikxÃµ(k). (24)

The relevant derivatives are

∂αAβ =

∫

d4k

(2π)4
(−ikα)e−ikxÃβ(k) (25)

and

�Aβ =

∫

d4k

(2π)4
(−k2)e−ikxÃβ(k). (26)

The E-L equations are then

∫

d4k

(2π)4

[

gβλ(k2 −m2
γ) +

i

2
ǫβλµαηµkα

]

e−ikxÃβ(k) = 0. (27)

Therefore,
[

gβλ(k2 −m2
γ) +

i

2
ǫβλµαηµkα

]

Ãβ(k) = 0, (28)

or

KµνÃν(k) = 0, Kµν = gµν(k2 −m2
γ) +

i

2
ǫµναβηαkβ. (29)
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3.2 Polarization Vectors and Dispersion Relation

We now define
Sν

λ = ǫµναβηαkβǫµλρση
ρkσ. (30)

This can be put in a more convenient form using the contraction of two Levi-Civita symbols
ǫµλρσǫ

µναβ = −3!δν
[λδ

α
ρ δ

β
σ] (the minus sign is there because in Minkowski space ǫ0123 = −ǫ0123):

Sµν =
[

(η · k)2 − η2k2
]

gµν − (η · k) (ηµkν + kµην) + k2ηµην + η2kµkν . (31)

It satisfies

Sµ
νη

ν = Sµ
νk

ν = 0, S = Sµ
µ = 2

[

(η · k)2 − η2k2
]

, SµνSνλ =
S

2
Sµ

λ. (32)

If ηµ = (η, 0, 0, 0) we have S = 2η2~k2 > 0. Now we introduce two projectors:

Pµν
± =

Sµν

S
∓ i√

2S
ǫµναβηαkβ. (33)

These projectors have the following properties:

Pµν
± ην = Pµν

± kν = 0, gµνP
µν
± = 1, (Pµν

± )∗ = Pµν
∓ = P νµ

± ,

Pµλ
± P±λν = Pµ

±ν , Pµλ
± P∓λν = 0, Pµν

+ + Pµν
− =

2

S
Sµν . (34)

With these projectors, we can build a pair of polarization vectors to solve (29). We start from
a space-like unit vector, for example ǫ = (0, 1, 1, 1)/

√
3. Then, we project it:

ε̃µ = Pµν
± ǫν . (35)

In order to get a normalized vector, we need

(ε̃µ±)∗ε̃±µ = P νµ
± ǫνP±µλǫ

λ = P ν
±λǫνǫ

λ =
Sνλǫνǫλ

S

=
S/2ǫµǫµ + η2(ǫ · k)2

S
= −1

2
+

(ǫ · k)2

2~k2
(36)

(this is of course negative because ǫ is space-like). Then, the polarization vectors are

εµ± =
ε̃µ±

√

−ε̃ν±ε̃∗±ν

=

[

~k2 − (ǫ · k)2

2~k2

]−1/2

Pµν
± ǫν . (37)

These polarization vectors satisfy

gµνε
µ∗
± ε

ν
± = −1, gµνε

µ∗
± ε

ν
∓ = 0 (38)

and

εµ∗± ε
ν
± + εµ±ε

ν∗
± = − 2

S
Sµν = − Sµν

η2~k2
(39)

With the aid of the projectors, we can write the tensor in (29) as

Kµν = gµν(k2 −m2
γ) +

√

S

2

(

Pµν
− − Pµν

+

)

. (40)

Then we have for k = (ω±, ~k)

Kµ
ν ε

ν
± =

[

(k2 −m2
γ) ∓

√

S

2

]

εν± =
(

k2 −m2
γ ∓ η|~k|

)

εµ± =
(

ω2
± − ~k2 −m2

γ ∓ η|~k|
)

εµ±. (41)

Therefore, Ãµ = εµ± is a solution of (29) iff

ω±(~k) =
√

m2
γ ± η|~k| + ~k2. (42)

This is the new dispersion relation of photons in the cold axion background in the approximation
where η is assumed to be piecewise constant.
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4 The Process p −→ p γ

4.1 Kinematic Constraints

We now consider p(p) −→ p(q)γ(k), or e(p) −→ e(q)γ(k). This process is forbidden in normal
QED due to the conservation of energy. It is, however, possible in this background (the cold
axion background even allows the process γ → e+e−, see [15]). Momentum conservation means
~q = ~p − ~k. Calling m the mass of the charged particle (proton or electron), conservation of
energy leads to

E(q) + ω(k) = E(p),

√

m2 + (~p− ~k)2 +
√

m2
γ ± η|~k| + ~k2 =

√

m2 + ~p2,
√

E2 + k2 − 2pk cos θ +
√

m2
γ ± ηk + k2 − E = 0

(43)

In the last line, a lighter notation has been adopted:

E = E(p) =
√

m2 + ~p2, p = |~p|, k = |~k|, ~p · ~k = pk cos θ. (44)

As will be seen, if η is positive (negative) the process is only possible for negative (positive)
polarization. Therefore, ±η = −|η| in these cases. To take into account both of them, we will
use the minus sign and write η instead of |η|.

Squaring twice yields

(4E2 −4p2 cos2 θ+4pη cos θ−η2)k2 −2(2E2η+2m2
γp cos θ−m2

γη)k+(4E2m2
γ −m4

γ) = 0. (45)

Neglecting mγ , η in front of m,E this is:

(E2 − p2 cos2 θ + pη cos θ)k2 − (E2η +m2
γp cos θ)k + E2m2

γ = 0. (46)

This equation has two solutions

k± =
E2η + pm2

γ cos θ ± E
√

E2η2 − 4E2m2
γ + 4p2m2

γ cos2 θ − 2pm2
γη cos θ

2(E2 − p2 cos2 θ + pη cos θ)
. (47)

These solutions only make sense if the discriminant ∆ is positive. With the approximation
cos θ ≃ 1 − 1

2 sin2 θ, the condition ∆ ≥ 0 is

sin2 θ ≤
[

p2η2 − 2pm2
γη +m2(η2 − 4m2

γ)
]

4p2m2
γ(1 − η

4p)
. (48)

Which can be rewritten as

sin2 θ ≤ η2

4p2m2
γ

1

1 − η
4p

(p − p+)(p − p−), (49)

where

p± =
m2

γ

η
± 2mmγ

η

√

1 − η2

4m2
γ

≃ ±2mmγ

η

√

1 − η2

4m2
γ

. (50)

It is clear that p+ > 0 and p− < 0. For sin2 θ to be positive we need

p > p+ = pth =
2mmγ

η

√

1 − η2

4m2
γ

. (51)

This is the threshold below which the process cannot take place kinematically. The energy
threshold

(

E2
th = m2 + p2

th

)

is:

Eth =
2mmγ

η
. (52)

7



When η → 0, the threshold goes to infinity (as is expected: the process cannot happen if η
vanishes).

There is another relevant scale in the problem: m2/η. It is many orders of magnitude above
the GZK cut-off. Therefore, we will always assume the limit p ≪ m2/η. The maximum angle
of emission for a given momentum is given by (49):

sin2 θmax(p) =
η2

4p2m2
γ

1

1 − η
4p

(p− p+)(p − p−). (53)

Its greatest value is obtained when p is large (p≫ pth):

sin2 θmax =
η2

4m2
γ

. (54)

Since this is a small number, photons are emitted in a narrow cone θmax = η
2mγ

. This justifies
the approximation made for cos θ.

At θmax(p), the square root in (47) vanishes and

k+[θmax(p)] = k−[θmax(p)] =
pth≪p≪m2/η−−−−−−−−−→

2m2
γ

η
. (55)

The minimum value for the angle is θ = 0:

k±(0) ≃
E2η + pm2

γ ±
(

E2η − pm2
γ − 2

m2m2
γ

η

)

2(m2 + pη)
. (56)

This gives the maximum and minimum values of the photon momentum. In the limit pth ≪
p≪ m2/η they are:

kmax = k+(0) =
ηE2

m2
. (57)

kmin = k−(0) =
m2

γ

η
. (58)

These two values coincide at the energy threshold.
Here we can see that the process is possible for negative (positive) polarization only if η > 0

(η < 0). Otherwise, the modulus of the photon momentum would be negative.
Note that the incoming cosmic ray wavelength fits perfectly within the 1/ma size, so it

indeed sees an almost perfectly constant η. Whether η is positive or negative there is always a
state with slightly less energy to which decay and lose part of its energy (of O(η)) emitting a
soft photon. So even if the process is a rare one it does not average to zero. An exact analysis
will we presented elsewhere.

4.2 Amplitude

The next thing we need is to compute the matrix element for the process. Using the standard
Feynman rules we get

iM = ū(q)ieγµu(p)ε∗µ(k). (59)

Its square is

|M|2 = ū(q)ieγµu(p)ε∗µ(k)[ū(q)ieγνu(p)ε∗ν(k)]∗ = e2ε∗µ(k)εν(k)tr [u(q)ū(q)γµu(p)ū(p)γν ] .
(60)
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Figure 2: The solution k± of the energy conservation equation (43). It can be seen that (57)
and (58) are indeed the maximum and minimum values.

We now must sum and average over initial and final proton helicities, respectively. We do
not average over photon polarizations because the process is possible only for one polarization.
Performing the trace:

|M|2 =
1

2
e2ε∗µ(k)εν(k)tr[(6q +m)γµ(6p+m)γν ]

=
1

2
e2ε∗µ(k)εν(k)tr[6qγµ6pγν +m2γµγν ]

=
1

2
e2ε∗µ(k)εν(k)[qµpν − qαpαg

µν + qνpµ +m2gµν ]. (61)

Using 4-momentum conservation, (38) and the fact that pαpα = m2, we get

|M|2 = 2e2[−pαkα + 2ε∗µενp
µpν ] = 2e2

[

−pαkα +
(

ε∗µεν + εµε
∗
ν

)

pµpν
]

. (62)

Now we use (39) to get

(

ε∗µεν + εµε
∗
ν

)

pµpν = −S
µνpµpν

η2k2
= p2 sin2 θ. (63)

The averaged square amplitude is then

|M|2 = 2e2
(

−pαkα + p2 sin2 θ
)

. (64)

The first term is positive:

−pαkα = −Eω+ pk cos θ = −Eω− pk
m2

γ − ηk − 2Eω

2pk
=

1

2
η(k−

m2
γ

η
) =

1

2
(k− kmin) > 0, (65)

so |M|2 is clearly positive.

4.3 Differential Decay Width

The differential decay width is

dΓ = (2π)4δ(4)(q + k − p)
1

2E
|M|2dQ, (66)
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where the phase space element is

dQ =
d3q

(2π)32E(q)

d3k

(2π)32ω(k)
. (67)

We can use δ(3)(~q + ~k − ~p) to eliminate d3q. The remaining δ is the conservation of energy.
Therefore, E(q) = E − ω. Next we use a property of the Dirac delta function

δ[f(x)] =
∑

i

δ(x− xi)

|f ′(xi)|
, (68)

where xi are the zeros of the function. In our case, we consider E(q) a function of cos θ:

δ[E(q) + ω − E] = δ
(

√

E2 + k2 − 2pk cos θ + ω − E
)

=

∣

∣

∣

∣

∣

−2pk

2
√

E2 + k2 − 2pk cos θ

∣

∣

∣

∣

∣

−1

δ

(

cos θ −
m2

γ − ηk − 2Eω

−2pk

)

. (69)

Next we write d3k = k2dkd(cos θ)dϕ, integrate the ϕ angle (factor of 2π) and use the delta to
eliminate d(cos θ). This fixes the value of cos θ:

cos θ =
m2

γ − ηk − 2Eω

−2pk
. (70)

Finally, the differential decay width is

dΓ =
α

2

k

Epω
(−pαkα + p2 sin2 θ)dk, (71)

where α = e2/4π and sin θ is given by (70). This decay width can be written more conveniently
for future computations:

dΓ

dk
=
α

8

1

kω

[

A(k) +B(k)E−1 + C(k)E−2
]

θ(
E2η

m2
− k), (72)

with

A(k) = 4(ηk−m2
γ), B(k) = 4ω(m2

γ−ηk), C(k) = −2m2
γk

2+2ηk3−m4
γ−η2k2+2m2

γηk. (73)

4.4 Effects on cosmic rays

We now want to compute the energy loss of protons in this background

dE

dx
=
dt

dx

dE

dt
=

1

v

(

−
∫

ωdΓ

)

. (74)

Using the previous results and v = p/E, the energy loss is (with the integration limits given by
(57) and (58))

dE

dx
= −α

2

1

p2

∫ kmax

kmin

kdk

[

1

2
(ηk −m2

γ) + p2(1 − cos2 θ)

]

= − α

8p2

∫ kmax

kmin

dk

[

2ηk2 − (4m2 + 2m2
γ + η2)k + 2η(2E2 +m2

γ)

−m2
γ(4E

2 +m2
γ)

1

k
+ 4Eη

√

m2
γ − ηk + k2 + 4Em2

γ

√

m2
γ − ηk + k2

k

]
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= − α

8p2

[

2

3
η

(

η3E6

m6
−
m6

γ

η3

)

− 1

2
(4m2 + 2m2

γ + η2)

(

η2E4

m4
−
m4

γ

η2

)

+2η(2E2 +m2
γ)

(

ηE2

m2
−
m2

γ

η

)

−m2
γ(4E2 +m2

γ) ln

(

η2E2

m2m2
γ

)

+ ...

]

. (75)

The leading term is
dE

dx
= − α

8p2

2η2E4

m2
= −αη

2E2

4m2v2
≃ −αη

2E2

4m2
. (76)

The energy as a function of the traveled distance is then

E(x) =
E(0)

1 + αη2

4m2E(0)x
. (77)

The fractional energy loss for a cosmic ray with initial energy E(0) traveling a distance x is

E(0) − E(x)

E(0)
=

αη2

4m2E(0)x

1 + αη2

4m2E(0)x
(78)

This loss is more important the more energetic the cosmic ray is. However, αη2

4m2 is a very small
number. If we take E(0) = 1020 eV (the energy of the most energetic cosmic rays) and x = 1026

cm (about the distance to Andromeda, the nearest galaxy, therefore larger than the galactic
halo) the energy loss is smaller than 1 eV. For less energetic cosmic rays, the effect is even
weaker.

As we have seen, the effect of the axion background on cosmic rays is quite negligible.
However, the emitted photons may be detectable. Using mγ = 10−18 eV and η = 10−20 eV
as indicative values and having in mind the GZK cut-off for protons (and a similar one for
electrons1) the emitted photon momenta fall in the range

10−16 eV < k < 100 eV (79)

for primary protons and
10−16 eV < k < 400 MeV (80)

for primary electrons.
The number of cosmic rays with a given energy crossing a surface element per unit time is

d3N = J(E)dEdSdt0, (81)

where J(E) is the cosmic ray flux. These cosmic rays will radiate at a time t. The number of
photons is given by

d5Nγ = d3N
dΓ(E, k)

dk
dkdt = J(E)

dΓ(E, k)

dk
dEdkdt0dSdt. (82)

Assuming that the cosmic ray flux does not depend on time, we integrate over t0 obtaining a
factor t(E): the age of the average cosmic ray with energy E. Since we do not care about the
energy of the primary cosmic ray (only that of the photon matters), we integrate also over E,
starting from Emin(k), the minimum energy that the cosmic ray can have in order to produce
a photon with momentum k, given by (57). Therefore, the flux of photons is

d3Nγ

dkdSdt
=

∫ ∞

Emin(k)
dE t(E)J(E)

dΓ(E, k)

dk
, Eth = 2

mmγ

η
. (83)

1It is very doubtful that electrons could be accelerated to such energies but it is irrelevant anyway for the

present discussion as the intensity is extremely small at these energies
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Next we assume that t(E) is approximately constant and take t(E) ≈ Tp = 107 yr for protons
and t(E) ≈ Te = 5 · 105 yr for electrons. We know that this last approximation is not correct as
t(E) ∼ 1/E but at this point we are just interested in getting an order of magnitude estimate
of the effect.

The photon energy flux is obtained by multiplying the photon flux (83) by the energy of a
photon with momentum k:

I(k) = ω(k)

∫ ∞

Emin(k)>Eth

dE t(E)J(E)
dΓ

dk
(84)

≈ αT

8k

∫ ∞

Emin(k)
dE Ni

[

A(k)E−γi +B(k)E−(γi+1) + C(k)E−(γi+2)
]

, (85)

where Emin(k) = m
√

k
η , see (57). Numerically, the only relevant term in the decay rate is 4ηk,

from A(k). The integral can then be approximated by

I(k) ≃ αηT

2

J [Emin(k)]Emin(k)

γmin − 1
∝ k−

γ−1

2 . (86)

The value γmin is to be read from (5) or (6) depending on the range where Emin(k) falls.
Substituting the numerical values we obtain the following approximate expressions for Ip(k)

and Ie(k)

Ip(k) = 6 ×
(

Tp

107 yr

)

( η

10−20 eV

)1.84
(

k

10−7 eV

)−0.84

m−2 s−1 sr−1. (87)

Ie(k) = 200 ×
(

Te

5 × 105 yr

)

( η

10−20 eV

)2.02
(

k

10−7 eV

)−1.02

m−2 s−1 sr−1. (88)

As mentioned above these expressions are only indicative and assume constant average values
for the age of a cosmic ray (either proton or electron). For a more detailed discussion we
encourage the reader to examine our recent paper [16]. From this latter work we include the
following figure describing the radiation yield

Figure 3: Radiation yield using the exact formulae and a more appropriate parametrization
of the electron cosmic ray average lifetime as a function of the energy. From [16]. Note that
electrons in general dominate the effect at low energies.
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5 Conclusions and Outlook

In this work, the effect on charged particles of a mildly (compared to the particle momentum)
time dependent pseudoscalar background has been investigated. We have been interested both
in proton and electron cosmic rays.

This effect is calculable because the axion background induces a modification of QED that
is exactly solvable. This modification has some interesting features, such as the possibility of
the photon emission process p → p γ and e → e γ (which we have termed as axion-induced
Bremsstrahlung processes). Kinematical constraints on the process have been reviewed, in
particular it is seen that it is only possible for proton energies higher than a certain threshold.
The energy loss of protons in such a background has been computed. For protons that survive
the GZK cutoff this loss is totally negligible.

However, the radiated photons could still be detected. Their flux and energy spectrum have
been computed in some detail. Since the energy threshold depends on the mass of the charged
particle, it is lower for lighter particles. Also, the energy loss is proportional to the mass squared
of the charged particle, so the effect is more important for electrons. The value of kmin does not
depend on the charged particle mass, so the radiated spectrum is no very different for electrons
or protons (however the average lifetime of electron and protons cosmic rays is quite different
and this has an observable effect on the power spectrum of the radiation).

We refer the interested reader to [16] for a more comprehensive description of this phe-
nomenon and on the possibility of this diffuse radiation being measured. We summarize however
the main conclusions below.

The dominant contribution to the radiation yield via this mechanism comes from electron
(and positron) cosmic rays. If one assumes that the power spectrum of the cosmic rays is

characterized by an exponent γ then the produced radiation has an spectrum k−
γ−1

2 for proton
primaries, which becomes k−

γ

2 for electron primaries. The dependence on the key parameter η ∼√
ρ
∗

fa
comes with the exponent η

1+γ
2 and η

2+γ
2 for protons and electrons, respectively. However

for the regions where the radiation yield is largest electrons amply dominate. We have assumed
that the flux of electron cosmic rays is uniform throughout the Galaxy and thus identical to the
one observed in our neighbourhood, but relaxing this hypothesis could provide an enhancement
of the effect by a relatively large factor. The effect for the lowest wavelengths where the
atmosphere is transparent and for values of η corresponding to the current experimental limit is
of O(10−1) mJy. This is at the limit of sensitivity of antenna arrays that are already currently
being deployed and thus a possibility worth exploring.

In the case of radiation originating from our galaxy the main unknown in the present discus-
sion is whether the flux of electron cosmic rays measured in our neighbourhood is representative
of the Galaxy or not. Since it is possible to relate this flux to the galactic synchrotron radi-
ation one could deduce the former from measuring the latter. It appears[17] that either the
total number of electron cosmic rays is substantially larger than the one measured in the solar
system, or the galactic magnetic fields have to stronger than expected. This issue remains to be
further quantified. No attempt has been made to quantify the signal from possible extragalactic
sources either.

One should note that the effect discussed here is a collective one. This is at variance with
the GZK effect alluded in the first section - the CMB radiation is not a coherent one over
large scales. For instance, no similar effect exists for hot axions. A second observation is that
some of the scales that play a role in the present discussion are somewhat non-intuitive (for
instance the ’cross-over’ scale m2

p/η or the threshold scale mγmp/η). This is due to the non
Lorentz-invariant nature of this effect. Finally, it may look surprising at first that an effect that
has such a low probability may give a small but not ridiculously small contribution. The reason
why this happens is that the number of cosmic rays is huge. It is known that they contribute
to the energy density of the Galaxy by an amount similar to the Galaxy’s magnetic field[18].
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There are several aspects of the present analysis that could be improved to make it more
precise, particularly a piecewise constant oscillating axion background, or one with a serrated
time profile for that matter, could be solved easily without having to appeal to special functions
(the sinus profile involves Mathieu functions). This will be presented elsewhere but the present
analysis suffices to indicate the order of magnitude of the effect.

We hope that the present mechanism help to assess the presumed relevance of cold axions
as a dark matter candidate.
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