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Abstract

In this report we describe some specific but reasonable conditions for the formation of
superdense clumps (or minihalos) of DM. Such clumps can be produced by several mech-
anisms, most notably by spiky features in the spectrum of density perturbations. Being
produced very early during the radiation dominated epoch, these clumps evolve as isolated
objects. They do not belong to hierarchical structures for a long time after production,
and therefore they are not destroyed by tidal interactions during the formation of larger
structures. If the clumps are constituted of superheavy DM particles, the evolution of their
central part can lead to a “gravithermal catastrophe”, increasing the central density and
thus the annihilation signal. As a result annihilations of superheavy neutralinos in dense
clumps may lead to observable fluxes of annihilation products in the form of ultrahigh energy
particles.

1 Superheavy dark matter particles

Let us begin from superheavy particles. The masses of thermal relics are limited by about
mχ ∼ 100TeV [1]. But the assumption that the DM particle was in chemical equilibrium is
not necessary and does not hold for sufficiently heavy particles. Superheavy particles can be
produced at the end of inflation and they can play the role of DM particles [2, 3]. Gravitational
production in the nonstationary gravitational field provides the natural mechanism for the
origin of superheavy dark matter [4]. Their decays can result in UHE gamma-rays [2, 3] but
this scenario is very restricted now.

We shall use as candidate for superheavy DM particles the neutralino with masses 1011 GeV
in the model of superheavy supersymmetry, as suggested in [5].

The possibility of indirect detection of stable SHDM depends on their annihilation rate, that
scales roughly as Ṅann ∝ m−4

χ . Since backgrounds like cosmic rays from astrophysical sources
or the diffuse photon flux decrease only as 1/Eα with α ≤ 3, indirect detection of DM seems
to become more and more difficult for increasing DM masses. The possibility which overcomes
this difficulty is the annihilation in the superdense central region of DM clumps [6], but one
needs the realistic scenario for the very high density of DM. The 2nd possibility is the formation
of superdense clumps [7], [8] with very high mean density.

Aim of our work is to study the detection prospects for stable superheavy particles through
their annihilation in superdense clumps.
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2 Kinetic decoupling of superheavy DM particles

The mass spectrum of DM clumps has a low-mass cutoff Mmin due to the leakage of particles
from a clump. This mass is strongly model dependent. The mass spectrum of DM clumps
formed by standard ∼ 100 GeV neutralinos has a cutoff near the Earth mass. The cutoff can
be diminished significantly in the case of superheavy particles.

The kinetic decoupling for bino and higgsino occurs at the temperatures (MSUSY = 1012 GeV):

Td ≃
{

2 × 1011 GeV , bino
2GeV , higgsino,

(1)

and the mass of DM inside the horizon in these cases are

Md ≃
{

6 × 10−12 g , bino
6 × 1021 g , higgsino.

(2)

The mass Md corresponds to the possible cutof of the mass spectrum. For a bino, the mass Md

is only 34 times greater than the particle mass mχ ∼ 1011 GeV= 1.78 × 10−13 g. In the case
of bino the free streaming mass defines the 2nd cutoff. Formally, all clump masses are possible
beginning from Mfs ≃ 260mχ. In the case of a higgsino, the free-streaming mass is negligibly
small, and free-streaming plays no role for the evolutions of perturbations.

3 Non-standard spiky density perturbation spectrum

The mean fluctuation of the CMB normalized power-law spectrum at the horizon scale during
the RD stage was expressed as

σH(M) ≃ 9.5 × 10−5

(

M

1056 g

)

1−np

4

. (3)

The simplest inflation models give approximately scale-invariant spectrum. The 7-year WMAP
data, np = 0.963 ± 0.014, favour clearly ns < 1. In view of these observations the variance
σH(M) is too small for the formation of clumps at the RD stage. Such clumps can be produced
effectively only from non-standard spectra containing spikes.

A sharp peak emerges in the fluctuation spectrum if an inflationary potential V (φ) has a
flat segment because the derivative V ′ = dV (φ)/dφ → 0. A peak emerges in the perturbation
spectrum on the corresponding scale. A similar effect can arise in inflationary models with
several scalar fields [9], [10]. In both types of models, the spectrum outside the peak can have
an ordinary shape. In particular, it can be approximately Harrison–Zel’dovich spectrum, and
can give rise to galaxies, clusters and superclusters according to the standard scenario.

Dark matter clumps are formed in a wide range of masses, if the spectrum of primordial
density perturbations has a power-law form. If on the contrary the spectrum has a peak on
some scale, then clumps are formed mostly in a narrow range of masses, near the peak.

4 Formation of superdense DM clumps at the RD epoch

Let us consider the formation of superdense clumps. In spherical model, the evolution of
perturbations after the horizon crossing is described by the Equation [7]

y(y + 1)
d2b

dy2
+

[

1 +
3

2
y

]

db

dy
+

1

2

[

1 + Φ

b2
− b

]

= 0 , (4)

This equation is applicable for the evolution of both entropy and adiabatic perturbations, but
has to be used with different initial conditions.
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Figure 1: The mean density ρ (in g cm−3) of DM clumps as function of the perturbation δH

in the radiation density on the horizon scale; solid lines from top to bottom are for for clump
masses M = 10−10, 10−5, ..., 1035 g. The dashed line is the bound on the clump density
from primordial black holes overproduction with threshold δc = 0.7. The time of two-body
gravitational relaxation inside the clump cores is less then the age of the Universe for clumps
above the dotted lines for DM particles masses mχ = 1011 GeV. The star marks favourable
parameters for annihilations, and the cross marks a typical example considered for comparison.

The formation of clumps from entropy perturbations was considered in [7]. In this case, the
initial velocity of spherical shells in co-moving space is zero. The object formed has the density

ρ ≃ 140Φ3(Φ + 1)ρeq, (5)

which depends on the value of perturbations Φ. Axion miniclusters are the possible example of
such clumps.

Now we consider the method for the evolution of adiabatic perturbations during the radiation
dominated epoch. For adiabatic perturbations Φ = 0, but the initial velocity db/dt is non-zero
and is defined by the known analytic solution for linear stage [11]

δ =
3Ain

2

[

ln

(

x√
3

)

+ γE − 1

2

]

. (6)

where the variable x is related to the co-moving wave-vector k. It is suitable to connect the
analytic solution of the linear theory with the numerical solution of the nonlinear Eqation at
the moment corresponding to the “transition” value δ = 0.2.

After decoupling from the cosmological expansion, the object contracts by a factor two and
virializes. Within the above formalism, we found the density of the clump ρ = ρ(M, δH) as
function of its mass M and the radiation perturbation value on the horizon scale δH. Clump’s
density is displayed in the Fig. 1 for several masses of the clumps. One observes the convergence
of curves to ρ ∼ ρeq ∼ 10−19 g cm−3, i.e. for clumps formed near matter-radiation equality, as
it must be.
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Note that superdense clumps from a spike in the spectrum are not destroyed by tidal forces
and their mass function peaks near a definite mass. Therefore the fraction of DM in the form of
such clumps is of the order of unity. Half of the volume is in the form of over-densities (clumps),
and the remaining mass is in the voids.

Restriction on the spectrum of the adiabatic perturbations comes from limits on primordial
black holes, which can form from the same spectrum of perturbation. In the case of entropy
perturbations PBHs do not form. The corresponding restrictions are shown in Fig. 1 by the
dashed curve. The local minimum on the curve corresponds to the Hawking evaporation of
PBHs. The allowed region of parameters is under the dashed curve.

5 Relaxation in clumps, “gravithermal catastrophe”

The first stage of clumps evolution is the ordinary gravitational contraction. Other processes
can become important at the second stage: (i) two-body gravitational scattering and (ii) some
limiting effect like Fermi degeneracy or the intensive annihilation of particles. How can it be that
the gravitational two-body scattering becomes the dominant process for elementary particles?
It occurs for the superheavy particles because the gravitational scattering is proportional to
m2, while EW scattering of these particles is inversely proportional to m2.

The large particles masses and very high clump density provides the relaxation time

trel,gr ≃
1

4π

v3

G2m2
χn ln(0.4N)

, (7)

to be shorter than the age of the universe t0. This leads to the “gravithermal catastrophe”,
which results in an isothermal density profile ρ(r) ∝ r−2. These parameters are shown by
dotted line in the Figure 1. In this regime the evaporation of particles from the core becomes
the main process, which responsible for the evolution of the clumps. .

Do any physical processes exist that prevent the extremely large densities in the clump
center? The first candidate for such process is given by the Electroweak elastic scattering of
particles or self-interaction. The calculations show that the self-interactions cannot stop the
gravitational collapse, because the core remains transparent for superheavy neutralinos down
to extremely small radii. Another effect is the particle annihilation. This effect was studied in
[12], [13]. The core radius is found from the balance of annihilation and hydrodynamical flow.
The corresponding dimensionless core radius xc ≡ Rc/R is given by the equation

x2
c ≃ 〈σannv〉ρ1/2

G1/2m
. (8)

If superheavy DM particles are fermions like in the case of neutralinos, there is quite different
effect which stops the core contraction at much larger radius. This effect is the pressure of Fermi
degenerated gas. The maximum density of the core can be derived from equality of the Fermi
momentum and the virial momentum of particles:

pF = (3π2)1/3(ρc/mχ)1/3 = mχVc. (9)

We obtain the corresponding relative core radius

x2
c = π2 ρ̄

m4
χ

(

GM

R

)

−3/2

. (10)

Therefore the gravithermal instability is limited by the Fermi degeneracy in the central core.
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Figure 2: The maximal fluxes Ii(E) of photons, nucleons and neutrinos from neutralino an-
nihilations in Galactic halo together with experimental data for a neutralino with 1011 GeV.

6 Annihiation signals

Superdense clumps cannot be composed of standard 100 GeV neutralinos, since their anni-
hilations would overproduce the diffuse gamma radiation. Let us consider the superheavy
neutralino. We calculate the rate of annihilation in a single clump and the resulting flux of
different particles:

Ii(E) =
1

2
ṄannF

1

mχ

dNi

dx
, (11)

where F is the astrophysical factor, it contains the information about DM distribution in the
Galactic halo. As the distributions we use the Navarro-Frenk-White density profile. We take
spectra and fragmentation functions from [14]. In the case of a higgsino, the annihilation signal
is additionally enhanced by the Sommerfeld effect.

The maximal fluxes of photons, nucleons and neutrinos allowed by cosmic ray data are shown
in Fig. 2 together with upper limits from different experiments. At present, annihilations of
superheavy particles are mainly restricted by experimental limits on the photon fraction, but
in the future neutrino searches at lower energies by the km3 neutrino telescope IceCube may
become competitive. For the optimistic parameters of clumps and for a superheavy bino as
DM particle, the flux must be rescaled and it is several orders higher in comparison with the
upper limits. For the pessimistic choice of parameters the flux is several orders lower. Therefore
the annihilation rate of stable superheavy neutralinos may be large enough to be detectable, if
primordial density perturbations are spiky.
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7 Search for clumps by gravitational waves’ detectors

It has been already suggested that interferometric detectors for gravitational waves like LISA
have the capability to detect the tiny variation of the gravitational field, when a compact object
passes near the detector. It has been suggested for primordial black holes [15], asteroids [16], or
compact DM objects of unknown nature [17]. Superdense clumps may be included into this list.
The observable signal is caused by the gravitational tidal force which changes the interferometer
arm length and produces correspondingly a phase shift.

LISA will have the capability to search for compact objects in the mass interval 1016 g≤
M ≤ 1020 g according to [15] and 1014 g≤ M ≤ 1020 g according to [17]. The signal will be in
the form of single pulses with characteristic frequency at the lower end of the expected LISA
sensitivity curve and a rate ∼ a few per decade, if the objects constitute the major part of DM.

Clumps formed from the standard power-law spectrum have a rather small density, and the
radii of the clumps generally exceed LISA’s arm length L ≃ 5 ·1011 cm. So, the detection of the
ordinary clumps by LISA seems unlikely. Superdense clumps can easy satisfy the condition of
compactness for the mass intervals and therefore they are observable in principle by the LISA
detector.

8 Conclusions

Superdense clumps can be produced from isothermal perturbations in the model of E.W. Kolb
and I.I. Tkachev [7] or from spikes in the spectrum of adiabatic perturbations. Clumps are pro-
duced in the very early universe during the RD epoch. In principle, the perturbation spectrum
may include both a scale-invariant power-law component and spikes. The superdense clumps
are limited by primordial black holes which originated from the same spectrum of perturba-
tions. For supermassive constituent particles a “gravithermal catastrophe” may develop in the
superdense clumps. The large initial core can transform into the very dense new core restricted
by Fermi degeneracy. Gamma radiation from the superdense clumps can be detectable even in
the case of superheavy DM particles. These clumps can be observed by the future gravitational
wave detectors, like LISA space interferometer. The details of this work can be found in [18].

This work was supported by the grant of the Leading scientific school 3517.2010.2.
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