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Abstract

We calculate a back reaction of the accreted matter near the event horizon of the
Reissner-Nordström black hole. It is shown that a test fluid approximation for the accreted
matter is violated near the extremely charged black hole.

1 Einstein equations

A spherically symmetric gravitational field may be written in the general form with two arbitrary
functions [1]):

ds2 = eνdt2 − eλdr2 − r2(dθ2 + sin2 θ dφ2). (1)

We will find the small corrections to the Reissner-Nordström metric due to a back reaction of
the stationary spherically symmetric accreted fluid. For application to the Reissner-Nordström
metric of the charged black hole, we define two new metric functions, f0 and f1, and also two
“mass functions” m0(r, t) and m1(r, t):
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where e — is an electric charge of the black hole. In the case of the pure Reissner-Nordström
metric (i. e., in the absence of accreting fluid), both mass functions equal to the black hole
mass, m0 = m1 = m = const, and, respectively, f0 = f1. A spherically symmetric gravitational
field in the general case is defined by the four Einstein equations. Three of the them are the
differential equations of a first order and the fourth one is of a second order. These equations
for metric (1) have the following form [1]:
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The energy-momentum tensor components in these equations for a spherically symmetric dis-
tribution of perfect fluid around the black hole are

T 1
0 = (ρ + p)u

√
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f1

(f1 + u2), (8)
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where u = dr/ds — is a radial component of the fluid 4-velocity, and respectively, ρ and ρ is an
energy density and pressure of fluid in the comoving frame. Below it is supposed an arbitrary
equation of state p = p(ρ), relating the fluid pressure and energy density. The Bianci identity
holds true for the Einstein equations, and so only three equations from four in (8)–(11) are
independent. For these independent equations we choose (4), (5) and (6).

2 Self-consistency of accretion solution

There is a small parameter in the considered problem: the fluid energy density far from the
black hole (at the infinity), ρ∞m2 ≪ 1, or the accretion rate ṁ = 4πm2A(ρ∞ + p∞), which is
proportional to the small parameter ρ∞m2. The second supposed small parameter is a slowness
of the black hole mass changing, ṁ/m ≪ cs/m (the stationary limit). This second small
parameter come to the first one if a fluid sound velocity cs is not extremely small. With a
small parameter ρ∞m2 ≪ 1, the test fluid approximation in the background metric is valid in
the region x ≪ Xmax = (ρ∞m2)−1/3. The back reaction of fluid may be found by perturbation
method due to existence of this small parameter.

Zero approximation corresponds to the electro-vacuum background Reissner-Nordström
metric. The first approximation is a stationary spherically symmetric inflow of the test fluid
in the background Reissner-Nordström metric. The corresponding solution [2, 3, 6] defines
the conserved radial flux of energy ṁ and the radial dependance for the 4-velocity component
u = dr/ds = u(r), for energy density ρ = ρ(r) and for pressure p = p(ρ) = p(r). Respectively,
this solution fixes all components of the energy-momentum tensor T ik. For self-consistency of
the accretion problem in the background metric, the radial flux of energy must be smallṁ ≪ 1.
In the second approximation we will take into account the linear contributions with respect
to ṁ ≪ 1 to the energy momentum-tensor in the Einstein equations. As a result we find the
deviation of metric from the background one, i. e. the back reaction with a linear accuracy with
respect to ṁ.

The requested solution in the full space-time depends on specific form of the fluid equation
of state. However, it will be shown that in the vicinity of the black hole event horizon the
solution is independent on the equation of state in the linear approximation with respect on ṁ.
This universal behavior of the back reaction near the event horizon allow to calculate the radius
of modified horizon, i. e. the shift of black hole horizon radius under influence of the accreting
matter. Additionally, we find a consistency condition for the test fluid approximation in the
accretion problem. Formally, to find a perturbative modification of the black hole horizon, it is
needed consider the region, where both f0 ≪ 1 and f1 ≪ 1.
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3 Back reaction in the Schwarzschild metric

As a first step we find the back reaction of accretion near the event horizon of the Schwarzschild
black hole. Remind, that in the considered approximation, the value of the energy flux is a
small parameter, ṁ ≪ 1. The first Einstein equation (4) defines the conserved radial flux of
anergy, i. e. the matter accretion rate,

ṁ = −4πr2(ρ+p)u

√

f0

f1

(f1+u2) = const. (12)

The value of this flux ṁ = 4πAm2(ρ∞+p∞) is defined (in the first approximation) from the
solution of the test fluid accretion in the background metric [2, 3], where ρ∞ and p∞ are,
respectively, an energy density and pressure of the accreting fluid far from the black hole, at
r ≫ m and the numerical constant A depends on the fluid equation of state p = p(ρ) (see, e. g.
[4, 5, 6]). Under the used linear approximation with respect to ṁ ≪ 1, on the modified event
horizon r = r+ the following conditions are satisfied: f0(r+, t) = f1(r+, t) = 0, or, equivalently,
m0(r+, t) = m1(r+, t), and f0(r+, t)/f1(r+, t) = 1. The Einstein equation (4) in the linear
approximation with respect to ṁ ≪ 1 takes the simple form

∂m1

∂t
= ṁ. (13)

As a result, in the considered approximation it is possible to search the solution of equation (13)
in the factorized form m1(r, t) = m(t)µ1(r), where the dimensionless function µ1(r) is defined
so, that µ1(r) = 1 at ṁ = 0. After substitution of the factorized ansatz in (13) we obtain

dm1(t)

dt
µ1(r) = ṁ. (14)

The r.h.s. of this equation is already linear with respect to ṁ ≪ 1. So, for the dimensionless
function µ1(r) in this equation it is needed to use a zero approximation on ṁ, i. e. it is needed to
put µ1(r) = 1. In result, the partial differential equation (13) for the function m1(r, t) reduces
to the ordinary differential equation for m(t) in the linear with respect to ṁ approximation.
The corresponding solution of this reduced equation is

m(t) = m(0) +

∫ t

0

ṁ(t′)dt′. (15)

Here m(0) — is a black hole mass at the initial moment t = 0, m(t) — is a current value of
black hole mass at time t (a black hole mass is slowly changing due to accretion).

At this step we may find a radial dependance of the function µ1(r) with a linear accuracy
with respect to ṁ with the help of the second Einstein equation (5). In the linear approximation
with respect to ṁ, the functional dependencies of m0(r, t) and m1(r, t) on radius r and time t are
factorized. For this reason it is useful in the following to use the dimensionless radial variable
x = r/m(t) and dimensionless mass functions µ0(r) = m0(r, t)/m(t) and µ1(r) = m1(r, t)/m(t).

The second Einstein equation (5) may be written in the form

dµ1

dx
= 4πx2

[

ρ + (ρ + p)
u2

f1

]

. (16)

A combined solution of equations (12) and (16) with the using of accretion solution for fluid
with equation of state p = p(ρ), defines the requested function µ1. From (12) and (16) near the
event horizon, where f0 ≪ 1 and f1 ≪ 1, we obtain

dµ1

dx
≃

4πx2(ρ + p)u2

f1

≃
2ṁ

x − 2µ1(x)
. (17)
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We transform the nonlinear equation (17) to the linear one, by introducing the new variable
δ(x) ≡ x − 2µ1(x) ≪ 1. After the transformation of derivative

dµ1(x)

dx
=

dµ1(x)

dδ(x)

dδ(x)

dx
=

dµ1(x)

dδ

[

1 − 2
dµ1(x)

dx

]

, (18)

we rewrite the differential equation (17) with respect to the variable δ(x):

dµ1

dδ
=

dµ1

dx

1 − 2dµ1

dx

=
2ṁ

δ − 4ṁ
, (19)

where |δ| ≪ 1. Solution of the resulting linear equation (19) at |δ| ≪ 1 (i. e. near the modified
horizon) is:

µ1(δ) = µ+ + 2ṁ log |1 −
δ

4ṁ
|, (20)

Here µ+ = µ(x+) is an integration constant, which in general depends on ṁ. Solution (20) for
the inverse function x = x(µ1) is written in the explicit form:

x(µ1) = x+ + 4ṁ

(

1 +
µ1 − µ+

2ṁ
− exp

µ1 − µ+

2ṁ

)

, (21)

where x+ = 2µ+. It is important to note that this solution describes the perturbed metric in
the narrow radial region |x − 2µ1(x)| ≪ 1 around the modified event horizon.

4 Boundary conditions

To find the integration constant µ+ = x+/2 in (20)we need to use the boundary conditions.
Formally, we may suppose that distribution of fluid around the black hole is a sphere of some
finite radius X0, satisfying the condition 1 ≪ X0 ≪ Xmax = (ρ∞m2)−1/3. It can be always
satisfied, if ṁ ≪ 1. On the boundary of the fluid sphere with the external empty space at
x = X0 it is needed to make a smooth connection with an external Schwarzschild solution.

After integration of the r.h.s. of equation (16) in the limits from x+ to X0 we obtain:

∫ X0

x+

[

4πρx2+
4πu2x2(ρ+p)

f

]

dx ≃ −2ṁ log |4ṁ|. (22)

The main contribution to this integral ṁ ≪ 1 comes from lower limit at x = x+, where the
subintegral function reduces to (19). Actually, the multiplier 4 in the term with logarithm in
(22) is in excess of accuracy of the used linear approximation with respect to ṁ ≪ 1, and we
will omit in in the following.

We neglect in (22) the contribution from the integral

µf =

∫ X0

x+

4πρx2dx ≃ (4π/3)ρ∞m2X3
0 ∼ ṁX3

0 , (23)

which is a mass of accreting fluid inside the sphere of radius X0, and also the other contribution
from the second integral in (22) near the upper limit, which is of the order ṁ/X0, and which is
the gravitational “mass defect”. The condition X3

0 ≪ log |ṁ|, if the parameter ṁ is sufficiently
small. Under this condition, the dominating contribution to (22) comes from the term with
logarithm.

Accordingly, after integration in the l.h.s. of equation (16) we obtain:

∫ X0

x+

dµ1(x)

dx
dx ≃

∫

1

µ+

dµ = 1 − µ+. (24)
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Figure 1: Modification of the Schwarzschild metric by the back reaction from accreted matter.
The mass function µ1(x) from equation (20) near the event horizon of black hole x+ in the linear
approximation with respect to ṁ ≪ 1. Inside the filled box the used linear approximation is
insufficient for the determination of mass function µ1(x).
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Here we also neglected the contribution from fluid to the integral near the upper limit with
respect to µ+. By combining (24) and (22), we find

µ+ = µ1(x+) ≃ 1 + 2ṁ log |ṁ|. (25)

The third Einstein Equation (6) has the form

f1

f0

µ′

0+
1

x

(

µ1 − µ0

f1

f0

)

= −4πx2

[

(ρ + p)
u2

f1

+ p

]

. (26)

Near the event horizon this equation may be written as

µ′

0 ≃ −4πx2(ρ + p)
u2

f1

≃ −µ′

1. (27)

Here it is taken into account that ratio f0/f1 near the horizon equals to its background value,
(f0/f1)+ = 1, at the linear approximation with respect to ṁ ≪ 1. Solution of equation (27)
near the event horizon, where δ = x − 2µ1(x) ≪ 1), with the help of (20) is

µ0(δ) ≃ µ+ − 2ṁ log |1 −
δ

4ṁ
|, (28)

By comparing (20) and (28), we see that near the horizon it is satisfied the condition

µ0(δ) + µ1(δ) = x+. (29)

As a result, in the linear approximation with respect to ṁ in the Einstein equations, the correc-
tions to the Schwarzschild metric due to the back reaction of accreted matter are everywhere
small, even on the modified horizon, ṁ log |ṁ| → 0 at ṁ → 0.

5 Back reaction in the Reissner-Nordström metric

Quite similar to the Schwarzschild case, we find in the implicit form the mass function µ1(x)
near the event horizon of the modified Reissner-Nordström metric (1) — (3) due to the back
reaction of the stationary accreted fluid:

µ1(x) ≃ 1 +
(1 + ǫ)2

2ǫ
ṁ log

∣

∣

∣

∣

(1 + ǫ)3

2ǫ2
ṁ − δ

∣

∣

∣

∣

, (30)

where it is used the black extreme parameter ǫ =
√

1 − e2/m2 and is introduced a new variable
δ(x) ≡ x − [µ1(x) +

√

µ1(x)2 − 1 + ǫ2] ≪ 1. The value of the mass function on the modified
horizon µ1(x+) corresponds to δ = 0:

µ1(x+) ≃ 1 +
(1 + ǫ)2

2ǫ
ṁ log

∣

∣

∣

∣

(1 + ǫ)3

2ǫ2
ṁ

∣

∣

∣

∣

, (31)

where x0
+ = 1 + ǫ. The resulting radius of the modified horizon is

x+ = µ1(x+) +
√

µ1(x+)2 −1 + ǫ2 ≃(1 + ǫ)

[

1 +
1

2

(

1 + ǫ

ǫ

)2

ṁ log

∣

∣

∣

∣

ṁ

ǫ2

∣

∣

∣

∣

]

. (32)

From equations (31) and (32) it follows, that a test fluid approximation is violated due to the
back reaction of the accreted fluid in the limit ǫ → 0, when a black hole is approaching to the
extreme state. Namely, the correction to the radius of the black hole event horizon diverges for
an arbitrarily small accretion inflow ṁ, if ǫ → 0. This behavior is in agreement with the cosmic
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censorship conjecture [7] and with the third law of black hole thermodynamics [8]: the extreme
state is unattainable in the finite processes or, in other words, it is impossible to transform the
black hole into the naked singularity. To resolve the problem with the back reaction of accreting
matter on the extreme black hole it is requested solution of the Einstein equations beyond the
perturbation level.
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