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Abstract

A path integral formulation for the tunneling cosmological state is suggested, which
admits a consistent renormalization and renormalization group (RG) improvement in par-
ticle physics applications of quantum cosmology with heavy massive quantum fields. This
formulation is applied to the inflationary cosmology driven by the Standard Model (SM)
Higgs boson playing the role of an inflaton with a strong non-minimal coupling to gravity.
In this way a complete cosmological scenario is obtained, which embraces the formation of
initial conditions for the inflationary background in the form of a sharp probability peak in
the distribution of the inflaton field and the ongoing generation of the CMB spectrum on
this background. The status of the no-boundary and tunneling states is also discussed in
cosmology driven by massless fields conformally coupled to gravity.

1 Introduction

At the dawn of inflation theory two prescriptions for the quantum state of the Universe were
seriously considered as a source of initial conditions for inflation. These are the so-called no-
boundary [1] and tunneling [2, 3] cosmological wavefunctions (see also [5] for a general review),
whose semiclassical amplitudes are roughly inversely proportional to one another. In the model
of chaotic inflation driven in the slow-roll approximation by the inflaton field ϕ with the potential
V (ϕ) these amplitudes read as |Ψ±(ϕ)| ≃ exp(∓SE(ϕ)/2), where +/− label, respectively, the
no-boundary/tunneling wavefunctions. Qualitatively they both describe the nucleation of a
(quasi)deSitter spacetime from the the Euclidean half-instanton as depicted on Fig.1. Here,
SE(ϕ) is the Euclidean Einstein action of the full de Sitter instanton S4 with the effective
cosmological constant given by the value of the inflaton field Λeff = V (ϕ)/M2

P,

SE(ϕ) ≃ −24π2M4
P

V (ϕ)
, (1)

in units of the reduced Planck mass M2
P = 1/8πG (~ = 1 = c). The no-boundary state was orig-

inally formulated as a path integral over Euclidean four-geometries; the tunneling state in the
form of a path integral over Lorentzian metrics was presented in [3, 4], and both wavefunctions
were also obtained as solutions of the minisuperspace Wheeler–DeWitt equation.

The no-boundary and tunneling states lead to opposite physical conclusions. In particular,
in view of the negative value of the Euclidean de Sitter action the no-boundary state strongly
enhances the contribution of empty universes with V (ϕ) = 0 in the full quantum state and, thus,
leads to the very counterintuitive conclusion that infinitely large universes are infinitely more
probable than those of a finite size – a property which underlies the once very popular but now
nearly forgotten big-fix mechanism of S. Coleman [6]. On the other hand, the tunneling state
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Σ

Figure 1: Nucleation of the Lorentzian signature (quasi)deSitter spacetime denoted by dashed lines
from the hemisphere of the Euclidean gravitational instanton at the nucleation 3-surface Σ.

favors big values of V (ϕ) capable of generating inflationary scenarios. Thus, it would seem that
the tunneling prescription is physically more preferable than the no-boundary one. However,
the status of the tunneling prescription turns out to be not so simple and even controversial.

Naive attempts to go beyond the minisuperspace approximation lead to unnormalizable
states in the sector of spatially inhomogeneous degrees of freedom for matter and metric and
invalidate, in particular, the usual Wick rotation from the Lorentzian to the Euclidean space-
time. This problem was partly overcome by imposing the normalizability condition on the
matter part of the solution of the Wheeler–DeWitt equation [7], but the situation remained
controversial for the following reason.

Modulo the issue of quantum interference between the “contracting” and “expanding”
branches of the cosmological wavefunction discussed, for example, in [7, 5, 8, 9], the ampli-
tudes of the no-boundary and tunneling branches of such a semiclassical solution take the form

∣

∣Ψ±
(

ϕ,Φ(x)
)∣

∣ = exp

(

∓1

2
SE(ϕ)

)

∣

∣Ψmatter

(

ϕ,Φ(x)
)∣

∣ , (2)

where Φ(x) is a set of matter fields separate from the spatially homogeneous inflaton, and
Ψmatter

(

ϕ,Φ(x)
)

is their normalizable (quasi-Gaussian) part in the full wavefunction – in essence
representing the Euclidean de Sitter invariant vacuum of linearized fields Φ(x) on the quasi-
de Sitter background with Λeff = V (ϕ)/M2

P. Quantum averaging over Φ(x) then leads to the
following quantum distribution of the inflaton field

ρ1−loop
± (ϕ) =

∫

d
[

Φ(x)
] ∣

∣Ψ±
(

ϕ,Φ(x)
)∣

∣

2
= exp

(

∓SE(ϕ) − S1−loop
E (ϕ)

)

, (3)

where S1−loop
E (ϕ) = (1/2)Tr ln(δ2SE [ϕ,Φ ]/δΦ(x) δΦ(y)) is the contribution of the UV divergent

one-loop effective action [10, 11, 12].1 With the aid of this algorithm a sharp probability peak

was obtained in the tunneling distribution ρ1−loop
− (ϕ) for the model with a strong non-minimal

coupling of the inflaton to gravity [10, 13, 14]. This peak was interpreted as generating the
quantum scale of inflation – the initial condition for its inflationary scenario. Quite remarkably,
for accidental reasons this result was free from the usual UV renormalization ambiguity. It did
not require application of the renormalization scheme of absorbing the UV divergences into the
redefinition of the coupling constants in the tree-level action SE(ϕ).

However, beyond the one-loop approximation and for other physical correlators the situation
changes, and one has to implement a UV renormalization in full. But with the ∓SE(ϕ) ambi-
guity in (3) this renormalization would be different for the tunneling and no-boundary states.

1For the tunneling state this equation might be regarded as a result of fine-tuning, because in order to
guarantee this equation the basis functions of the operator δ2SE/δΦ δΦ in contrast to the no-boundary case
should not be regular at the pole of the hemisphere of Fig. 1 – a natural selection criterion for the Euclidean de
Sitter invariant vacuum within the no-boundary construction. I am grateful to V.A.Rubakov for the discussion
of this point.
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For instance, an asymptotically free theory in the no-boundary case (associated with the usual
Wick rotation to the Euclidean spacetime) will not be asymptotically free in the tunneling case.
The tunneling versus no-boundary gravitational modification of the theory will contradict basic
field-theoretical results in flat spacetime. This strongly invalidates a naive construction of the
tunneling state of the above type. In particular, it does not allow one to go beyond the one-loop
approximation in the model of non-minimally coupled inflaton and perform its renormalization
group (RG) improvement.

Here we suggest a solution of this problem by formulating a new path integral prescription
for the tunneling state of the Universe. This formulation is based on a recently suggested
construction of the cosmological density matrix [15] which describes a microcanonical ensemble
of cosmological models [16]. The statistical sum of this ensemble was calculated in a spatially
closed model with a generic set of scalar, spinor, and vector fields conformally coupled to
gravity. It was obtained in the saddle-point approximation dominated by the contribution of
the thermal cosmological instantons of topology S3 × S1. These instantons also include the
vacuum S4 topology treated as a limiting case of the compactified time dimension S1 in S3×S1

being ripped in the transition from S3 × S1 to S4. This limiting case exactly recovers the
Hartle–Hawking state of [1], so that the whole construction of [15, 16] can be considered as a
generalization of the vacuum no-boundary state to the quasi-thermal no-boundary ensemble.
The basic physical conclusion for this ensemble was that it exists in a bounded range of values
of the effective cosmological constant, that it is capable of generating a big-boost scenario of
the cosmological acceleration [18] and that its vacuum Hartle–Hawking member does not really
contribute because it is suppressed by the infinite positive value of its action. This is a genuine
effect of the conformal anomaly of quantum fields [19, 20], which qualitatively changes the
tree-level action (1).

Below we shall show that the above path integral actually has another saddle point corre-
sponding to the negative value of the lapse function N < 0, which is gauge-inequivalent toN > 0
[21]. In the case of heavy massive quantum fields driving inflation, this leads to the inversion of
the sign of the action in the exponential of the statistical sum and, therefore, deserves the label
“tunneling”. In this tunneling state the thermal part vanishes and its instanton turns out to
be a purely vacuum one. Finally, this construction no longer suffers from the above mentioned
controversy with the renormalization. A full quantum effective action within the gradient and
curvature expansion is supposed to be calculated and renormalized by the usual set of countert-
erms on the background of a generic metric. Then the result should be analytically continued
to N < 0 and taken at the tunneling saddle point of the path integral over the lapse function
N . We will also show that for cosmology driven by conformal field theory, in contrast to the
one generated by massive fields, the tunneling state is forbidden at the dynamical level.

Below we shall apply this construction to a cosmological model for which the Lagrangian of
the graviton-inflaton sector reads

L(gµν , Φ) =
1

2

(

M2
P + ξ|Φ|2

)

R− 1

2
|∇Φ|2 − V (|Φ|), (4)

V (|Φ|) =
λ

4
(|Φ|2 − v2)2, |Φ|2 = Φ†Φ, (5)

where Φ is the Standard Model (SM) Higgs boson, whose expectation value plays the role of
an inflaton and which is assumed here to possess a strong non-minimal curvature coupling with
ξ ≫ 1. Here, as above, MP is a reduced Planck mass, λ is a quartic self-coupling of Φ, and v is
an electroweak (EW) symmetry breaking scale.

The early motivation for this model with a GUT type boson Φ [22, 23] was to avoid an
exceedingly small quartic coupling λ by invoking a non-minimal coupling with a large ξ. This
was later substantiated by the hope to generate the no-boundary/tunneling initial conditions
for inflation [13, 14]. This theory but with the SM Higgs boson Φ instead of the abstract GUT
setup of [13, 14] was suggested in [24], extended in [25] to the one-loop level and considered
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regarding its reheating mechanism in [26]. The RG improvement in this model has predicted
CMB parameters – the amplitude of the power spectrum and its spectral index – compatible
with WMAP observations in a finite range of values of the Higgs mass, which is close to the
widely accepted range dictated by the EW vacuum stability and perturbation theory bounds
[27, 28, 29, 30, 31, 32].

The purpose of our paper is to extend the results of [30, 31] by suggesting that this model
does not only have WMAP-compatible CMB perturbations, but can also generate the initial
conditions for the inflationary background upon which these perturbations propagate. These
initial conditions are realized in the form of a sharp probability peak in the tunneling distribution
function of the inflaton.

2 Tunneling cosmological wavefunction within the path integral

formulation

The microcanonical density matrix in quantum cosmology was suggested in [16] as a formal pro-
jector on the subspace of physical states satisfying the system of the Wheeler-DeWitt equations
Ĥµ(ϕ, ∂/i∂ϕ) ρ(ϕ,ϕ−) = 0,

ρ̂ ∼ “
(

∏

µ

δ(Ĥµ)
)

” (6)

where Ĥµ denotes the operator realization of the full set of the gravitational Hamiltonian and
momentum constraints, Hµ(q, p), the condensed index signifying a collection of discrete labels
along with continuous spatial coordinates, µ = (⊥, a,x), a = 1, 2, 3. The phase space variables
(q, p) include the collection of spatial metric coefficients and matter fields q = (gab

(

x), φ(x)
)

(denoted also by ϕ when used as arguments of the density matrix kernel) and their conjugated
momenta p.

The justification for (6) as the density matrix of a microcanonical ensemble in spatially
closed cosmology was put forward in [16] based on the analogy with an unconstrained system
having a conserved Hamiltonian Ĥ. The microcanonical state with a fixed energy E for such
a system is given by the density matrix ρ̂ ∼ δ(Ĥ − E). A major distinction of (6) from this
case is that spatially closed cosmology does not have freely specifiable constants of motion like
the energy or other global charges. Rather it has as constants of motion the Hamiltonian and
momentum constraints Hµ, all having a particular value — zero. Therefore, the expression (6)
can be considered as the analogue of equipartition – a natural candidate for the microcanonical
quantum state of the closed Universe.

Perturbatively (at least within the semiclassical loop expansion) the kernel of this projector
can be written down as a phase-space path integral of the canonically quantized gravity theory

ρ(ϕ+, ϕ−) = eΓ
∫

q(t±)= ϕ±

D[ q, p,N ] exp

[

i

∫ t+

t−

dt (p q̇ −NµHµ)

]

. (7)

Here Nµ are the Lagrange multipliers dual to the constraints – lapse and shift functions Nµ =
(N(x), Na(x)), and the functional integration runs over the histories interpolating between the
configurations ϕ± which are the arguments of the density matrix kernel. The range of integration
over Nµ is of course real because this integration over the Lagrange multipliers is designed in
order to generate delta functions of constraints. The Hamiltonian action in the exponential is
the integral over the coordinate time t which is just the ordering parameter ranging between
arbitrary initial and final values t±, the result being entirely independent of their choice. The
integration measure D[ q, p,N ], of course, includes the Faddeev-Popov gauge-fixing procedure
which renders the whole integral gauge and time-parametrization independent.
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After integration over canonical momenta the path integral above takes the Lagrangian form
of the integral over the configuration space coordinates q and the lapse and shift functions Nµ.
Taken together they comprise the full set of spacetime metric with the Lorentzian signature
gLorentzian
µν and matter fields φ ,

ds2 = −N2
Lorentziandt

2 + gab(dx
a +Nadt)(dxb +N bdt), (8)

in terms of which the Lagrangian form of the classical action reads as S[ gLorentzian
µν , φ ]. One

more notational step consists in the observation that this Lorentzian metric can be viewed as
the Euclidean one, gEuclidean

µν , with the imaginary value of the Euclidean lapse function

ds2 = N2
Euclideandt

2 + gab(dx
a +Nadt) (dxb +N bdt), (9)

NLorentzian = −iNEuclidean, (10)

so that the Euclidean theory action is related to the original Lorentzian action S[ gLorentzian
µν , φ ]

by a typical equation

iS[ gLorentzian
µν , φ ] = −SE[ gEuclidean

µν , φ ]. (11)

Here the imaginary factor arises from the square root of the metric determinant in the La-
grangian, which in the ADM form reads of course as g1/2 = N(det gab)

1/2. Note that the ana-
lytic continuation from the Lorentzian to the Euclidean picture takes place in the complex plane
of the lapse function rather than in the complex plane of time (time variable is the same in both
pictures), though of course it is equivalent to the usual Wick rotation tEuclidean = itLorentzian.

With these notations the density matrix (7) takes the form of the Euclidean quantum gravity
path integral

ρ(ϕ+, ϕ− ) = e
Γ

∫

q(t±)= ϕ±

D[ gµν , φ ] e−SE [ gµν ,φ ]. (12)

However, in view of (10) the range of integration over the Euclidean lapse N ≡ NEuclidean (in
what follows we will omit the Euclidean label for brevity) belongs to the imaginary axis

−i∞ < N < i∞, (13)

and in the Lagrangian density of the Euclidean action the choice of the branch for the square
root of the metric determinant is specified as g1/2 = N(det gab)

1/2. These conventions will be
important in what follows.

The topology of spacetime configurations which are integrated over in (12) is R1 × S3 as
depicted on the upper part of Fig.2. This topology of the spacetime bulk interpolating between
the hypersurfaces Σ and Σ′ reflects the mixed nature of the density matrix and establishes
entanglement correlations between ϕ and ϕ′. These configurations however include as a limiting
case the disconnected bulk obtained by pinching and ripping the spacetime bridge between Σ
and Σ′ (see lower part of Fig.2). This is associated with the contribution which factorizes into
the direct product of pure states of the Hartle-Hawking type shown on Fig.1.

The normalization factor expΓ in (12) follows from the density matrix normalization trρ̂ = 1
and determines the main object of interest – the statistical sum of the model. The trace
operation implies integration over the diagonal elements of the density matrix, so that the
statistical sum takes the form of the path integral

e−Γ =

∫

periodic

D[ gµν , φ ] e−SE [ gµν ,φ ] (14)
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Figure 2: The topology of spacetime configurations underlying mixed states and pure states (of the
Hartle-Hawking type) in the density matrix.

over the periodic configurations whose spacetime topology R1×S3 follows from the identification
of the boundary surfaces Σ and Σ′. For contributions of the entangled states this leads to to
the topology S1 × S3 depicted on the upper part of Fig.3, whereas the pure state contribution
yields the topology of S4.

The further calculation of the statistical sum can be based on disentangling the minisuper-
space sector from the full configuration space.

gµν , φ→ a(τ), N(τ), Φ(x), Φ(x) = (φ(x), ψ(x), Aµ(x), hµν(x), ...), (15)

ds2 = N2(τ) dτ2 + a2(τ) d2Ω(3), (16)

Then the path integral can be cast into the form of an integral over a minisuperspace lapse
function N(τ) and scale factor a(τ) of a spatially closed Euclidean FRW metric,

e−Γ =

∫

D[ a,N ] e−Seff [ a, N ], (17)

e−Seff [ a, N ] =

∫

DΦ(x) e−SE [ a, N ;Φ(x) ] . (18)

Here, Seff [ a, N ] is the Euclidean effective action of all inhomogeneous “matter” fields Φ(x) =
Φ(τ,x) (which include also metric perturbations hµν) on the minisuperspace background of the
FRW metric and SE[a,N ;Φ(x)] ≡ SE[ gµν , φ ] is the original Euclidean action rewritten in terms
of this minisuperspace decomposition.

The convenience of writing the path integral (17) in the Euclidean form follows from the
needs of the semiclassical approximation. In this approximation, it is dominated by the con-
tribution of a saddle point, Γ0 = Seff [ a0, N0 ], where a0 = a0(τ) and N0 = N0(τ) solve the
equation of motion for Seff [ a,N ]

δSeff [ a0, N0 ]

δN0(τ)
= 0 (19)
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Figure 3: Transition from the density matrix to its statistical sum for entangled and pure states.

and satisfy periodicity conditions dictated by the definition of the statistical sum. Such periodic
solutions exist with a real Euclidean N rather than in the Lorentzian domain with the imaginary
lapse. This means that the contour of integration over N along the imaginary axis (13) should
be deformed into the complex plane to traverse the real axis at some N0 6= 0 corresponding to
the Euclidean solution of the equations of motion for the minisuperspace action as it is depicted
in Fig.4.

The residual one-dimensional diffeomorphism invariance of this action (which is gauged out
by the gauge-fixing procedure implicit in the integration measure D[ a,N ]) allows one to fix
the ambiguity in the choice of N0. There remains only a double-fold freedom in this choice.
This freedom is of either positive, N0 > 0, or negative, N0 < 0, values of the lapse, because, on
the one hand, all values in each of these equivalence classes are gauge equivalent and, on the
other hand, no continuous family of nondegenerate diffeomorphisms exists relating these classes
to one another. Without loss of generality one can choose as representatives of these classes
N0 = ±1 and label the relevant solutions and on-shell actions, respectively, as a±(τ) and

Γ± = Seff [ a±(τ),±1 ] . (20)

Gauge inequivalence of these two cases, Γ− 6= Γ+, is obvious because, for example, all local con-
tributions to the effective action are odd functionals of N , Slocal[ a,N ] = −Slocal[ a,−N ]. Thus
we can heuristically identify the statistical sums Γ± correspondingly with the “no-boundary”
and “tunneling” prescriptions for the quantum state of the Universe,

exp(−Γno−boundary/tunnel) = e−Γ± . (21)

This result shows that for both prescriptions a full quantum effective action as a whole sits
in the exponential of the partition function without any splitting into the minisuperspace and
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Figure 4: Integration contours in the complex lapse plane, passing through the “no-boundary”
and “tunneling” saddle points of the integral.

matter contributions weighted by different sign factors like in (3). This means that the usual
renormalization scheme is applicable to the calculation of (20) – generally covariant UV coun-
terterms should be calculated on the background of a generic metric and afterwards evaluated at
the FRW metric with N = ±1, depending on the choice of either the no-boundary or tunneling
prescription.

The success in applications of these algorithms depends on the extent of our calculational
skills in obtaining the effective action Seff [ a, N ]. The latter can be efficiently calculated in
two different cases – for massless quantum fields conformally coupled to gravity and in the
opposite case of very heavy massive fields. In the first case the presence of local conformal
symmetry and its violation by exactly calculable anomaly allows one to find Seff [ a, N ] as a
functional of a generic FRW metric (a(τ), N(τ)), whereas in the second case Seff [ a, N ] is known
as a restriction to the minisuperspace background of a universal inverse mass (or gradient and
curvature) expansion.

3 CFT driven cosmology: new status of the no-boundary state

Here we present the application of (19)-(21) to the no-boundary state in the gravitational theory
with a matter sector dominated by a large number of free (linear) fields conformally coupled to
gravity – conformal field theory (CFT)

SE[ gµν , φ ] = − 1

16πG

∫

d4x g1/2
(

R− 2Λ
)

+ SCFT [ gµν , φ ]. (22)

The effective action in such a system is dominated by the quantum action of these conformal
fields which simply outnumber the non-conformal fields (including the graviton). This quantum
effective action, in its turn, is exactly calculable by the conformal transformation converting (16)
into the static Einstein metric with a = const. In units of the Planck mass mP = (3π/4G)1/2
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the action reads [15]

Seff [ a,N ] = m2
P

∮

dτ N

{

−aa′2 − a+
Λ

3
a3 + B

(

a′2

a
− a′4

6a

)

+
B

2a

}

+ F (η), (23)

F (η) = ±
∑

ω

ln
(

1 ∓ e−ωη
)

, η =

∮

dτN

a
, (24)

where a′ ≡ da/Ndτ . The first three terms in curly brackets of (23) represent the Einstein action
with a primordial (but renormalized by quantum corrections) cosmological constant Λ ≡ 3H2

(H is the corresponding Hubble constant), the B-terms correspond to the contribution of the
conformal anomaly and the contribution of the vacuum (Casimir) energy (B/2a) of conformal
fields on a static Einstein spacetime. F (η) is the free energy of these fields – a typical boson
or fermion sum over field oscillators with energies ω on a unit 3-sphere, η playing the role of
the inverse temperature — an overall circumference of the toroidal instanton measured in units
of the conformal time. The constant B = 3β/4m2

P is determined by the coefficient β of the
topological Gauss-Bonnet invariant E = R2

µναγ − 4R2
µν + R2 in the overall conformal anomaly

of quantum fields

gµν
δSCFT

eff

δgµν
=

1

4(4π)2
g1/2

(

α�R+ βE + γC2
µναβ

)

(25)

e
−SCF T

eff
[ gµν ] =

∫

D[φ ] e−SCF T [ gµν ,φ ]. (26)

Here SCFT
eff [ gµν ] is the effective action of quantum conformal fields in the external gravitational

field and C2
µναβ is the Weyl tensor squared term.

Figure 5: Garland-type periodic instantons with an oscillating scale factor (it is assumed that left and
right boundaries of each k-folded garland are identified) and the Hartle-Hawking instanton S4.

As shown in [15, 16, 17] the solutions of the effective equation (19) in this model give rise to
the set of periodic garland-type instantons with oscillating scale factor of the topology S1 × S3

(that can be regarded as the thermal version of the Hartle-Hawking instantons) and the vacuum
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Hartle-Hawking instantons with the S4-topology (see Fig.5). The effective Friedmann equation
(19)

−a
′2

a2
+

1

a2
−B

(

a′4

2a4
− a′2

a4

)

=
Λ

3
+
C

a4
, (27)

C =
B

2
+

1

m2
P

dF (η)

dη
=
B

2
+

1

m2
P

∑

ω

ω

eωη ∓ 1
, η =

∮

dτ

a
. (28)

is modified by the anomalous B-term and the radiation term C/a4 with the constant C charac-
terizing the sum of the Casimir energy and the energy of the gas of thermally excited particles
with the inverse temperature η – the instanton period in units of the conformal time. The
latter is given in (28) by the integral over the full period of τ or the 2k-multiple of the integral
between the two neighboring turning points of the scale factor history a(τ), ȧ(τ±) = 0. This
k-fold nature implies that in the periodic solution the scale factor oscillates k times between its
maximum and minimum values a± = a(τ±), a− ≤ a(τ) ≤ a+,

a2
± =

1

2H2

(

1 ±
√

1 − 4H2C
)

. (29)

Thus, the period of the solutions is determined as a function of G and Λ from the second of
Eqs.(28) and is not freely specifiable. This is the artifact of a microcanonical ensemble (see
[16]) with only two freely specifiable dimensional parameters — the renormalized gravitational
and renormalized cosmological constants.

Figure 6: Band structure of cosmological constant spectrum for the thermal no-boundary state in the
CFT driven cosmology.

As shown in [15], the S3 × S1 garland-type instantons exist only in the limited range of the
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cosmological constant Λ = 3H2

0 < Λmin < Λ < Λmax =
3

2B
. (30)

In this range they form an infinite k = 0, 1, 2, ... sequence of one-parameter families depicted in
Fig.6 in the two-dimensional plane of the cosmological constant Λ and the amount of radiation
constant C (including together with the energy of the radiation gas, see (28), also the Casimir
energy constant B/2.) These families interpolate between the two boundaries of a curvilinear
triangle of the instanton domain in the (Λ, C)-plane – the lower straight line boundary C =
B−B2Λ/3 and the upper hyperbolic boundaryC = 3/4Λ. Therefore the spectrum of admissible
values of Λ inside (30) has a band structure – the bands ∆k being formed by projections of
these families onto the Λ-axes. Their sequence at k → ∞ accumulates at the corner of this
triangle — the upper bound of the range (30).

This bound represents a new quantum gravity scale which tends to infinity when one switches
the quantum effects off, β → 0. The lower bound Λmin — the lowest point of k = 1 family —
can be obtained numerically for any field content of the model. For a large number of conformal
fields N , and therefore a large β ∼ N , the lower bound is of the order Λmin ∼ 1/βG. Thus the
restriction (30) suggests a kind of 1/N solution of the cosmological constant problem, because
specifying a sufficiently high number of conformal fields one can achieve a primordial value of
Λ well below the Planck scale where the effective theory applies, but high enough to generate
a sufficiently long inflationary stage. Also this restriction can be potentially considered as a
selection criterion for the landscape of string vacua [15, 16].

The solutions of the system (27)-(28) include also the vacuum Hartle-Hawking instantons
with no radiation dF/dη = 0. They represent the Euclidean de Sitter spacetime with the
effective Hubble factor

H2
eff =

1 −
√

1 − 2BH2

B
, (31)

corresponding to the degenerate case when a torus S3×S1 gets ripped at the vanishing value of
the scale factor a− = 0 and topologically becomes a 4-sphere S4 — a purely vacuum contribution
to the statistical sum. The vacuum nature of these instantons follows from the fact that their
conformal time period in (28) is divergent at τ− in view of a− = 0 and generates zero effective
temperature ∼ 1/η with F (η) = 0. Such solutions exist for all Λ ≤ 3/2B (the horizontal
segment at C = B/2 in Fig.6), but they are ruled out in the statistical sum by their infinite
positive effective action. This property is due to the contribution of the conformal anomaly
(cf. 1/a-dependence in the kinetic B-terms of the effective action (23))2. Hence the tree-level
predictions of the theory with a negative Euclidean action are drastically changed by the effect
of the conformal anomaly.

3.1 Tunneling state

The situation with the tunneling state for CFT cosmology is more complicated. To begin with,
the attempt to calculate the effective action for N > 0 and then analytically continue to negative
N with η < 0 is not straightforward, because these two domains are separated by the imaginary
axes densely filled by branch points of the logarithm in F (η) at ωη = (2n+ 1)iπ for all integer
n and all discrete spectrum values of field oscillator frequencies ω.3

2Note that on the vacuum solution of (27) a′2(τ−) = 1, and the integrand of (23) tends to +∞ at τ− with
a → 0.

3The UV regularization by the cutoff on the maximum value of ω opens a small bridge in the vicinity of zero
between the two half-planes of the complex N , but the result of analytic continuation through this bridge is far
from obvious.
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The alternative approach could consist of a direct calculation and renormalization of the
effective action with N and η negative, that is the transition η → −η in (23) before the renor-
malization. Note that the origin of the conformal anomaly part of the action (23)

Sanomaly[ a,N ] = m2
PB

∮

dτ N

(

a′2

a
− a′4

6a

)

(32)

and its finite Casimir energy term η m2
PB/2 is due to the covariant regularization and renor-

malization of quartic, quadratic and logarithmic divergences in the formal vacuum energy part
of the action η

∑

ω(ω/2). This can be written down as the relation

[

η
∑

ω

ω

2

]renorm

=
m2

PB

2
η + Sanomaly[ a,N ], (33)

signifying that the anomalous part of the action arises as a tail to the counterterm subtraction
of UV divergences in η

∑

ω(ω/2) and therefore is strongly correlated in sign with the latter.
Naively it would seem that the inversion of η → −η in (27) would reverse the sign of the
anomalous part and therefore infinitely enhance the contribution of the S4-instanton in the
tunneling case (opposite to the no-boundary situation above). The jump to this conclusion is
however misleading, because after the inversion η → −η the free energy F (−η) with η > 0
also becomes UV divergent, F (−η) |div = η

∑

ω ω |div, and therefore it requires the additional
counterterm which actually restores the same no-boundary sign of the anomalous term. To see
this we have a chain of simple transformations (valid modulo imaginary field-independent part)
for the quantum part of the tunneling effective action

[

−η
∑

ω

ω

2
+ F (−η)

]renorm

=

[

η
∑

ω

ω

2
+ F (η)

]renorm

= Sanomaly[ a,N ] +
m2

PB

2
η + F (η), η,N > 0. (34)

This means that only the classical Einstein part of the full action has an opposite sign,
whereas the quantum part is the same as in the no-boundary case. Effectively, this means
that in the equation of motion (27)-(28) only the constant C changes its sign C → −C. This
change implies due to (29) that a2

− < 0, so that the scale factor of the Euclidean solution
runs between a = 0 and a+ and corresponds to the S4 case of the vacuum Hartle-Hawking
instanton4. However, in view of (34) above the total effective action diverges to +∞, as in
the vacuum no-boundary case, and rules out the tunneling contribution. Thus we come to a
conclusion that in the CFT driven cosmology the tunneling state is dynamically forbidden.

4 Heavy massive fields: no-boundary and tunneling states

For heavy massive quantum fields the situation is more favorable for the tunneling state. Here
we consider both no-boundary and tunneling case simultaneously because their formalisms are
very close to one another. Now the Euclidean effective action universally has a gradient and
curvature expansion in inverse powers of the mass parameters. It takes the form

Seff [gµν ] =

∫

d4x g1/2

(

M2
PΛ − M2

P

2
R(gµν) + ...

)

, (35)

where we disregard the terms of higher orders in the curvature and derivatives of the mean
values of matter fields. Here the cosmological term and the (reduced) Planck mass squared

4Its conformal time period η diverges, so that F (η) = 0 and C = 0, and the equation of motion yields exact
de Sitter space solution with the effective Hubble constant (31).
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M2
P = 1/8πG can be considered as functions of these mean values and treated as constants in

the approximation of slowly varying fields. This effective action does not contain the thermal
part characteristic of the statistical ensemble [15] because for heavy quanta the radiation bath
is not excited. This is justified by the fact that the effective temperature of this bath turns out
to be vanishing.

In fact, the minisuperspace action functional for (35) reads in units ofm2
P = 3π/4G = 6π2M2

P

as

Seff [ a,N ] = m2
P

∫

dτ N(−aa′2 − a+H2a3), (36)

where a′ ≡ da/Ndτ , and we use the notation for the cosmological constant Λ = 3H2 in terms of
the effective Hubble factor H. Then the saddle point for the path integral (17) – the stationary
configuration with respect to variations of the lapse function, δSeff [ a,N ]/δN = 0, – satisfies
the Euclidean Friedmann equation

a′2 = 1 −H2a2. (37)

It has one turning point at a+ = 1/H below which the real solution interpolates between
a− ≡ a(0) = 0 and a+. In the gauge N = ±1 for both no-boundary/tunneling cases this
solution describes the Euclidean de Sitter metric, that is, one hemisphere of S4 (depicted on
Fig.1),

a±(τ) =
1

H
sin(Hτ). (38)

After the bounce from the equatorial section of the maximal scale factor a+, this solution spans
at the contraction phase the rest of the full four-sphere. Thus, this solution is not periodic
and according to the discussion above describes a purely vacuum contribution to the statistical
sum (17). Similarly to the case of conformal fields the effective temperature of this state is
determined by the inverse of the full period of the instanton solution measured in units of the
conformal time η. Therefore, for (38) it vanishes because this period between the poles of this
spherical instanton is divergent. This justifies the absence of the thermal part in (35).

Thus, with N = ±1 the no-boundary and tunneling on-shell actions (20) read

Γ± = ∓8π2M2
P

H2
(39)

and the object of major interest here – the tunneling partition function in the space of positive
values of H2 = Λ/3 – is given by

ρtunnel(Λ) = exp

(

−24π2M2
P

Λ

)

, Λ > 0. (40)

It coincides with the semiclassical tunneling wavefunction of the Universe [2], |Ψtunnel|2 ≃
exp(−8π2M2

P/H
2), derived from the Wheeler–DeWitt equation in the tree-level approximation.

At the turning point a+, the solution (38) can be analytically continued to the Lorentzian
regime, aL(t) = a(π/2H + it). The scale factor then expands as

aL(t) =
1

H
cosh(Ht) , (41)

which can be interpreted as representing the distributions of scale factors in the quantum
ensemble (after decoherence) of de Sitter models distributed according to (40), see Fig. 1. Note
that the attempt to extend this ensemble to negative Λ fails, because the equation (37) with
H2 < 0 does not have turning points with nucleating real Lorentzian geometries. Moreover,
virtual cosmological models with Euclidean signature are also forbidden in the tunneling state
because their positive Euclidean action diverges to infinity, so that ρtunnel(Λ) = 0 for Λ < 0.
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5 Quantum origin of the Universe with the SM Higgs-inflaton

non-minimally coupled to curvature

The partition function of the above type can serve as a source of initial conditions for inflation
only when the cosmological constant Λ = 3H2 becomes a composite field capable of a decay
at the exit from inflation. Usually this is a scalar inflaton field whose quantum mean value ϕ
is nearly constant in the slow roll regime, and its effective potential V (ϕ) plays the role of the
cosmological constant driving the inflation. When the contribution of the inflaton gradients
is small, the above formalism remains applicable also with the inclusion of this field whose
ultimate effect reduces to the generation of the effective cosmological constant Λ = V (ϕ)/M2

P

and the effective Planck mass.
These constants are the coefficients of the zeroth and first order terms of the effective

action expanded in powers of the curvature, and they incorporate radiative corrections due
to all quantum fields in the path integral (18). Now there is no mismatch between the signs
of the tree-level and loop parts of the partition function. Therefore, one can apply the usual
renormalization and, if necessary, the renormalization group (RG) improvement to obtain the
full effective action Seff [gµν , ϕ] and then repeat the procedure of the previous section. In the
slow roll approximation the effective action has the general form

Seff [gµν , ϕ] =

∫

d4x g1/2

(

V (ϕ) − U(ϕ)R(gµν ) +
1

2
G(ϕ) (∇ϕ)2 + ...

)

, (42)

where V (ϕ), U(ϕ) and G(ϕ) are the coefficients of the derivative expansion, and we disregard
the contribution of higher-derivative operators. With the slowly varying inflaton the coeffi-
cients V (ϕ) and U(ϕ) play the role of the effective cosmological and Planck mass constants, so
that one can identify in (35) and (36) the effective M2

P = m2
P/6π

2 and H2, respectively, with
2U(ϕ) and V (ϕ)/6U(ϕ). Therefore, the tunneling partition function (40) becomes the following
distribution of the field ϕ

ρtunnel(ϕ) = exp

(

−24π2M4
P

V̂ (ϕ)

)

, (43)

V̂ (ϕ) =

(

M2
P

2

)2
V (ϕ)

U2(ϕ)
, (44)

where V̂ (ϕ) in fact coincides with the potential in the Einstein frame of the action (42) [30, 31].
Now we apply this formalism to the model (4) of inflation driven by the SM Higgs inflaton

ϕ = (Φ†Φ)1/2. As shown in [30, 31], the one-loop RG improved action in this model has for
large ϕ the form (42) with the coefficient functions

V (ϕ) =
λ(t)

4
Z4(t)ϕ4, (45)

U(ϕ) =
1

2

(

M2
P + ξ(t)Z2(t)ϕ2

)

, (46)

G(ϕ) = Z2(t), (47)

determined in terms of the running couplings λ(t) and ξ(t), and the field renormalization Z(t).
They incorporate a summation of powers of logarithms and belong to the solution of the RG
equations which at the inflationary stage with a large ϕ ∼MP/

√
ξ and large ξ ≫ 1 read as (see

[30, 31] for details)

dλ

dt
=

A

16π2
λ− 4γλ, (48)

dξ

dt
=

6λ

16π2
ξ − 2γξ (49)
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and dZ/dt = γZ. Here, γ is the anomalous dimension of the Higgs field, the running scale
t = ln(ϕ/Mt) is normalized at the top quark mass µ = Mt, and A = A(t) is the running
parameter of the anomalous scaling. This quantity was introduced in [10] as the pre-logarithm
coefficient of the overall effective potential of all SM physical particles and Goldstone modes.
Due to their quartic, gauge and Yukawa couplings with ϕ, they acquire masses m(ϕ) ∼ ϕ and
for large ϕ give rise to the asymptotic behavior of the Coleman-Weinberg potential,

V 1−loop(ϕ) =
∑

particles

(±1)
m4(ϕ)

64π2
ln
m2(ϕ)

µ2
≃ λA

128π2
ϕ4 ln

ϕ2

µ2
, (50)

which can serve as a definition of A.
The importance of this quantity and its modification due to the RG running of the non-

minimal coupling ξ(t),

AI = A − 12λ (51)

(AI gives the running of the ratio λ/ξ2, 16π2(d/dt)(λ/ξ2) = AI(λ/ξ2)), is that for ξ ≫ 1
mainly these parameters determine the quantum inflationary dynamics [14, 33] and yield the
parameters of the CMB generated during inflation [25]. In particular, the value of ϕ at the
beginning of the inflationary stage of duration N in units of the e-folding number turns out to
be [25]

ϕ2 = − 64π2M2
P

ξAI(tend)
(1 − ex), (52)

x ≡ NAI(tend)

48π2
, (53)

where a parameter x has been introduced which directly involves AI(tend) taken at the end of
inflation, tend = ln(ϕend/Mt), ϕend ≃ 2MP/

√
3ξ. This parameter also enters simple algorithms

for the CMB power spectrum ∆2
ζ(k) and its spectral index ns(k). As shown in [30, 31], the

application of these algorithms under the observational constraints ∆2
ζ(k0) ≃ 2.5 × 10−9 and

0.94 < ns(k0) < 0.99 (the combined WMAP+BAO+SN data at the pivot point k0 = 0.002
Mpc−1 corresponding to N ≃ 60 [34]) gives the CMB-compatible range of the Higgs mass
135.6 GeV . MH . 184.5 GeV, both bounds being determined by the lower bound on the
CMB spectral index.

Now we want to show that, in addition to the good agreement of the spectrum of cosmological
perturbations with the CMB data, this model can also describe the mechanism of generating the
cosmological background itself upon which these perturbations exist. This mechanism consists
in the formation of the initial conditions for inflation in the form of a sharp probability peak
in the distribution function (43) at some appropriate value of the inflaton field ϕ0 with which
the Universe as a whole starts its evolution [21]. The shape and the magnitude of the potential
(44) depicted in Fig.1 for several values of the Higgs mass clearly indicates the existence of such
a peak.

Indeed, the negative of the inverse potential damps to zero after exponentiation the proba-
bility of those values of ϕ at which V̂ (ϕ) = 0 and, vice versa, enhances the probability at the
positive maxima of the potential. The pattern of this behavior with growing Higgs mass MH is
as follows. As is known, for low MH the SM has a domain of unstable EW vacuum, character-
ized by negative values of running λ(t) at certain energy scales. Thus we begin with the EW
vacuum instability threshold [35, 36] which exists in this gravitating SM at M inst

H ≈ 134.27 GeV
[30, 31] and which is slightly lower than the CMB compatible range of the Higgs mass (M inst

H

is chosen in Fig. 8 and for the lowest curve in Fig. 7). The potential V̂ (ϕ) drops to zero at
tinst ≃ 41.6, ϕinst ∼ 80MP, and forms a false vacuum [30, 31] separated from the EW vacuum
by a large peak at t ≃ 34. Correspondingly, the probability of creation of the Universe with
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Figure 7: The succession of effective potential graphs above the EW vacuum instability threshold
M inst

H
= 134.27 GeV up to MH = 184.3 GeV showing the occurrence of a metastable vacuum followed

for high MH by the formation of a negative slope branch. Local peaks of V̂ situated at t = 34÷ 35 grow
with MH for MH . 160 GeV and start decreasing for larger MH [30].

the initial value of the inflaton field at the EW scale ϕ = v and at the instability scale ϕinst

is damped to zero, while the most probable value belongs to this peak. The inflationary stage
of the formation of the pivotal N = 60 CMB perturbation (from the moment tin of the first
horizon crossing until the end of inflation tend), which is marked by dashed lines in Fig.8, lies
to the left of this peak. This conforms to the requirement of the chronological succession of the
initial conditions for inflation and the formation of the CMB spectra.

The above case is, however, below the CMB-compatible range of MH and was presented
here only for illustrative purposes5. An important situation occurs at higher Higgs masses from
the lower CMB bound on MH ≃ 135.6 GeV until about 160 GeV. Here we get a family of a
metastable vacua with V̂ > 0. An example is the plot for the lower CMB bound MH = 135.62
GeV depicted in Fig. 9. Despite the shallowness of this vacuum its small maximum generates
via (43) a sharp probability peak for the initial inflaton field. This follows from an extremely
small value of V̂ /M4

P ∼ 10−11, the reciprocal of which generates a rapidly changing exponential
of (43). The location of the peak again precedes the inflationary stage for a pivotal N = 60
CMB perturbation (also marked by dashed lines in Fig. 9).

For even larger MH these metastable vacua get replaced by a negative slope of the potential
which interminably decreases to zero at large t (at least within the perturbation theory range
of the model), see Fig. 1. Therefore, for large MH close to the upper CMB bound 185 GeV,
the probability peak of (43) gets separated from the non-perturbative domain of large over-
Planckian scales due to a fast drop of V̂ ∼ λ/ξ2 to zero. This, in turn, follows from the fact
that ξ(t) grows much faster than λ(t) when they both start approaching their Landau pole [30].

The location ϕ0 of the probability peak and its quantum width can be found in analytical
form, and their derivation shows the crucial role of the running AI(t) for the formation of
initial conditions for inflation. Indeed, the exponential of the tunneling distribution (43) for

5Another interesting range of MH is below the instability threshold M inst
H where V̂ becomes negative in the

“true” high energy vacuum. As mentioned in the previous section, the tunneling state rules out aperiodic solutions
of effective equations with H2 < 0, which cannot contribute to the quantum ensemble of expanding Lorentzian
signature models. Therefore, this range is semiclassically ruled out not only by the instability arguments, but
also contradicts the tunneling prescription.
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Figure 8: The effective potential for the instability threshold M inst

H
= 134.27 GeV. A false vacuum

occurs at the instability scale tinst ≃ 41.6, ϕ ∼ 80MP. An inflationary domain for a N = 60 CMB
perturbation (ruled out by the WMAP bounds) is marked by dashed lines [30].

M2
P/ξϕ

2 ≪ 1 reads as Γ−(ϕ) = 24π2M4
P/V̂ (ϕ) and in view of the RG equations (48)–(49) has

an extremum satisfying the equation

ϕ
dΓ

dϕ
=
dΓ

dt
= −6ξ2

λ

(

AI +
64π2M2

P

ξZ2ϕ2

)

= 0, (54)

where we again neglect higher order terms in M2
P/ξZ

2ϕ2 and AI/64π
2 (extending beyond the

one-loop order). Here, AI is the anomalous scaling introduced in (50) and (51) – the quantity
that should be negative for the existence of the solution for the probability peak,

ϕ2
0 = −64π2M2

P

ξAIZ2

∣

∣

∣

∣

t=t0

. (55)

As shown in [30, 31], this quantity is indeed negative. In the CMB-compatible range of MH its
running starts from the range −36 . AI(0) . −23 at the EW scale and reaches small but still
negative values in the range −11 . AI(tend) . −2 at the inflation scale. Also, the running of
AI(t) and Z(t) is very slow – the quantities belonging to the two-loop order – and the duration
of inflation is very short t0 ∼ tin ≃ tend + 2 [30, 31]. Therefore, AI(t0) ≃ AI(tend), and these
estimates apply also to AI(t0). As a result, the second derivative of the tunneling on-shell
action is positive and very large, d2Γ−/dt

2 ≃ −(12ξ2/λ)AI ≫ 1, which gives an extremely
small value of the quantum width of the probability peak,

∆ϕ2

ϕ2
0

= − λ

12ξ2
1

AI

∣

∣

∣

∣

t=t0

∼ 10−10. (56)

This width is about (24π2/|AI |)1/2 times – one order of magnitude – higher than the CMB
perturbation at the pivotal wavelength k−1 = 500 Mpc (which we choose to correspond to
N = 60). The point ϕin of the horizon crossing of this perturbation (and other CMB waves
with different N ’s) easily follows from equation (52) which in view of AI(t0) ≃ AI(tend) takes
the form

ϕ2
in

ϕ2
0

= 1 − exp

(

−N |AI(tend)|
48π2

)

. (57)
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Figure 9: Inflaton potential at the lowest CMB compatible value of MH with a metastable vacuum at
t ≃ 42 [30].

It indicates that for wavelengths longer than the pivotal one the instant of horizon crossing ap-
proaches the moment of “creation” of the Universe, but always stays chronologically succeeding
it, as it must.

6 Conclusions and discussion

In this paper we have constructed the tunneling quantum state of the Universe based on the path
integral for the microcanonical ensemble in cosmology. For heavy massive quantum fields this
state exists in the unbounded positive range of the effective cosmological constant, unlike the
no-boundary state for massless conformally coupled fields (CFT driven cosmology), discussed
in [15, 16] whose ensemble is bounded by the reciprocated coefficient of the topological term in
the overall conformal anomaly. Also, in contrast to the no-boundary case, the tunneling state
turns out to be a radiation-free vacuum one.

The status of the tunneling versus no-boundary states is rather involved. In fact, the formal
Euclidean path integral (17) is a transformed version of the microcanonical path integral over
Lorentzian metrics, so that its lapse function integration runs along the imaginary axis from
−i∞ to +i∞ [16]. The absence of periodic solutions for stationary points of (17) with the
Lorentzian signature makes one to distort the contour of integration over N into a complex
plane, so that it traverses the real axis at the points N = +1 or N = −1 which give rise to no-
boundary or tunneling states. One can show that the no-boundary thermal part of the statistical
sum of [15] is not analytic in the full complex plane of N . The N ≷ 0 domains are separated by
the infinite sequence of its poles densely filling the imaginary axes of N . Therefore, the contour
of integration passing through both points N = ±1 is impossible, and the no-boundary and
tunneling states cannot be directly obtained by analytic continuation from one another6. They
represent alternative solutions (quantum states) of the Wheeler-DeWitt equation.

According to the discussion of Sect.3.1 the tunneling state for a CFT driven cosmology
can be alternatively defined without the analytic continuation from the domain of the positive

6In the case of the vacuum no-boundary state when the vanishing thermal part of the effective action cannot
present an obstacle to analytic continuation in the complex plane of N the situation stays the same. Indeed, any
integration contour from −i∞ to +i∞ crosses the real axes an odd number of times, so that the contribution of
only one such crossing survives, because any two (gauge-equivalent) saddle points traversed in opposite directions
give contributions canceling one another.
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lapse, but turns out to be suppressed by an infinite positive action of the relevant vacuum
S4-instanton. This dynamical suppression casts certain doubt on the existence of a tunneling
state in quantum cosmology at all, because in realistic cosmology the inclusion of any single
massless conformal particle (like photon) might destroy it. However, we prefer to be not so
categorical with this statement, because the cutoff regularization, mentioned in Sect.3.1, still
opens the bridge for analytic continuation between the domains of positive and negative lapse,
the result of this continuation still remaining an open issue.

For heavy quantum fields the path-integral formulation of the tunneling state admits a
consistent renormalization scheme and a RG resummation which is very efficient in cosmology
according to a series of recent papers [27, 28, 29, 30, 31, 32]. For this reason we have applied
the obtained tunneling distribution to a recently considered model of inflation driven by the
SM Higgs boson non-minimally coupled to curvature – the case of the model whose dynamics
is dominated by heavy massive particles. In this way a complete cosmological scenario was
obtained, embracing the formation of initial conditions for the inflationary background (in the
form of a sharp probability peak in the inflaton field distribution) and the ongoing generation
of the CMB perturbations on this background. As was shown in [30, 31], the comparison of
the CMB amplitude and the spectral index with the WMAP observations impose bounds on
the allowed range of the Higgs mass. These bounds turn out to be remarkably consistent with
the widely accepted EW vacuum stability and perturbation theory restrictions. Interestingly,
the behavior of the running anomalous scaling AI(t) < 0, being crucially important for these
bounds, also guarantees the existence of the obtained probability peak [21]. The quantum width
of this peak is one order of magnitude higher than the amplitude of the CMB spectrum at the
pivotal wavelength, which could entail interesting observational consequences. Unfortunately,
this quantum width is hardly measurable directly because it corresponds to an infinite wave-
length perturbation (a formal limit of N → ∞ in (57)), but indirect effects of this quantum
trembling of the cosmological background deserve further study.

To summarize, the obtained results bring to life a convincing unification of quantum cos-
mology with the particle phenomenology of the SM, inflation theory, and CMB observations.
They support the hypothesis that an appropriately extended Standard Model [37, 38] can be
a consistent quantum field theory all the way up to quantum gravity and perhaps explain the
fundamentals of all major phenomena in early and late cosmology.
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