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Abstract

Generalized Haag’s theorem is proved in S O (1, k) invariant quantum field theory in any
n-dimensional space with n > k + 1. These additional dimensions can be noncommutative.

1 Introduction

In this report we consider one of the most important result of axiomatic approach in quantum
field theory (QFT) - the generalized Haag’s theorem [1], [2].

Let us recall that in the usual Hamiltonian formalism it is assumed that asymptotic fields
at any time are related with interacting fields by unitary transformation. The Haag’s theorem
shows that in accordance with Lorentz invariance of the theory in this case the interacting
fields are also trivial which means that corresponding S-matrix is equal to unity. So the usual
interaction representation can not exist in the Lorentz invariant theory. In four dimensional
case in accordance with the generalized Haag’s theorem four first Wightman functions coincide
in two related by the unitary transformation theories.

It is known that n-point Wightman functions W (x4, ...,z,) are (Wo, p(z1) ... () Yo ),
where Wy is a vacuum vector. Actually in accordance with translation invariance Wightman
functions are functions of variables & = x; — x;41, i =1,...,n — 1. At first Haag’s theorem is
proved in S O (1, 3) invariant theory in four dimensional case.

Now the theories in spaces of arbitrary dimensions are widely considered. In last years
noncommutative generalization of QFT - NC QFT - attracts great interest of physicists as in
some cases NC QFT is a low-energy limit of string theory [3].

NC QFT is defined by the Heisenberg-like commutation relations between coordinates

[zH "] = 10", (1)

where 0" is a constant antisymmetric matrix.
It is very important that NC QFT can be formulated in commutative space if the usual
product between operators (precisely between corresponding test functions) is substituted by
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the x (Moyal-type) product [4], [5]. Let us recall that the x-product between two functions ¢(z)
and ¥(y) is defined as follows:
i g 0

() *(y) = exp (5 O o oy

) (@)D (). @)

Thus it is interesting to consider Haag’s theorem in the general case of k 4+ 1 commutative
variables (time and k spatial coordinates) and arbitrary number of other coordinates, which
can include noncommutative coordinates as well. This extension of the Haag’s theorem is a
goal of our work.

2 Generalized Haag’s theorem in four dimensional case

Note that in axiomatic QFT there is no field operator defined in a point [2]. Only the smoothed
operators written symbolically as

or= [ e@1 @ (3)

where f (z) are test functions, can be rigorously defined.

In the derivation of Haag’s theorem it is necessary to assume that fields smeared on the
spatial coordinates are also well defined operators.

Let us recall Haag’s theorem in four dimensional case [1], [2].
Generalized Haag’s Theorem  Let ¢1(f,t) and p2(f,t) belong to two sets of irreducible
operators in Hilbert spaces Hi and Hs correspondingly. We assume that both theories are
Poincare invariant, that s

Uj(a,A) p;(2)U; " (a,A) = @j(Az + a), (4)
Uj(a, A)‘I’oj = \Ifoj, j = 1,2 (5)

Assume that there exists the unitary transformation V, which relates fields in question as well
as vacuum states in two theories at any t:

pa(f,t) = Ver(f, )V (6)
cVop = V¥Wo, (7)

where ¢ is a complexr number with module one.

It is also supposed that vacuum states in two theories are invariant under this unitary trans-
formation.
If in two theories there are not states with negative energies, then four first Wightman functions
coincide in two theories.

Let us give the idea of the proof.

The invariance of the vacuum states implies that Wightman functions coincide at equal
time:

(Yor, p1(t 1), - o1(t 20) Wor) = (Woz, p2(t, 1), - - -, p2(t, 71) Yo2) (8)

Let us recall that in accordance with spectral properties of Wightman functions, which imply
non-existence of tachyon states, they are analytical functions in tubes [1], [2]. Then from
SO (1,3) symmetry it follows (Bargman-Hall-Wightman theorem) that, actually, Wightman
functions are analytical functions in the dilated domain - so called extended tubes [1], [2], [6].
It is very important, that extended tubes contain real points - Jost points. The most important
property of these points is the following one: the interval between two arbitrary Jost points 7y
and 7 is space-like:

(r —m1)* < 0. (9)



Thus any Jost point belongs to the set of Jost points with its vicinity. So Jost points fully
determine Wightman functions, i.e. two Wightman functions, which coincide at Jost points,
precisely, in the open subset of these points, coincide identically.

Let us notice that at equal time all points z; belong to the set of Jost points. It can be shown
that the equality of Wightman functions at equal time and their analyticity lead to equality of
four first Wightman functions in two theories related by unitary transformation at equal time.

Let us stress that noncommutative coordinates belong to the boundary of analyticity of
Wightman functions. Thus the same derivation of Haag’s theorem can be done in the presence
of arbitrary number of these coordinates.

3 Derivation of Haag’s theorem in the S O (1, k) invariant theory

As in the derivation of Haag’s theorem only transformations of coordinates, which belong to
the domain of analyticity, are essential, we omit the dependence of vectors under consideration
on noncommutative variables.

First let us notice that as at n > k vectors §; = (O,{:-) are linear dependent, then vectors
related by them with Lorentz transformation are linear dependent too and thus they can not
form the open subset of Jost points. Thus they can not determine Wightman functions.

Let us show that if n < k, then corresponding Jost points fully determine Wightman func-
tions. o

Indeed, if n < k, one can choose n linear-independent vectors éj = (0,&) 0 =1,...,n.

Actually, as 51 is an arbitrary vector, we can choose & in such a way that 51 1&. In a similar
manner we can construct vector &3 such that £31&;, £31&. Continuing this procedure, which
is similar to the well-known Gram-Shmidt orthogonalization procedure, we obtain the set of

orthogonal vectors {éj} D& L éj, 1 # j. Let us recall that Whigtman functions in two theories

coincide on the set of vectors {éj} and thus they coincide on the vectors, which are obtained

from them by Lorentz transformation.

Evidently aifi 1 ajéj and the vectors, which are obtained from them by Lorentz transfor-
mation, will be orthogonal: £, = A (aﬁ}) ,(7=1,...,n;a € R). Set of orthogonal nonzero
vectors is linear-independent, thus vectors §;, form open subset of Jost points.

As in two theories related by an unitary transformation at equal time first £ + 1 Wightman
functions coincide on the open set of Jost points, then these functions coincide in all points.
So we have proved the coincidence of all Wightman functions till k-point one (in difference
variables). Passing from difference variables to usual ones (xi,...,x,), we obtain, that in
case of SO (1,k)-invariance for and any number of noncommutative variables the first k + 1
Wightman functions coincide in two theories.

4 Conclusion

The generalized Haag’s theorem has been proved in SO (1,k) invariant theory, where k is
arbitrary. Let us stress that this result is valid in the space, which includes also arbitrary
number of noncommutative coordinates.
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