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Abstract

The structure of quantum corrections in supersymmetric theories regularized by higher
covariant derivatives is investigated. We present the result of calculation of a two-loop
β-function for the most general renormalizable N = 1 supersymmetric theory. All inte-
grals, needed for obtaining this function, are integrals of total derivatives and can be easily
calculated. For N = 1 supersymmetric electrodynamics we prove that contributions of pla-
nar diagrams with a single matter loop to the β-function are given by integrals of a total
derivative in all orders.

1 Introduction

Quantum corrections in supersymmetric theories were studied for a long time. For a general
renormalizable N = 1 supersymmetric theory a β-function and an anomalous dimension were
calculated up to the four-loop approximation [1, 2]. Most calculations were made with a regu-
larization by the dimensional reduction [3], which is a special modification of the dimensional
regularization. The matter is that the dimensional regularization [4] breaks the supersymmetry
and is not convenient for calculations in supersymmetric theories. However, it is well known
that the dimensional reduction is not self-consistent [5]. Ways, allowing to avoid such problems,
are discussed in the literature [6]. Other regularizations are sometimes applied for calculations
in supersymmetric theories. For example, in Ref. [7] two-loop β-function of the N=1 super-
symmetric Yang–Mills theory was calculated with the differential renormalization [8].

A self-consistent regularization, which does not break the supersymmetry, is the higher
covariant derivative regularization [9], which was generalized to the supersymmetric case in
Ref. [10] (another variant was proposed in Ref. [11]). However, using this regularization
is rather technically complicated. The first calculation of quantum corrections for the (non-
supersymmetric) Yang–Mills theory, regularized by higher covariant derivatives, was made in
Ref. [12]. Taking into account corrections, made in subsequent papers [13], the result for the
β-function appeared to be the same as the well-known result, obtained with the dimensional
regularization [14]. In principle, it is possible to prove that in the one-loop approximation
calculations with the higher covariant derivative regularization always agree with the results
of calculations with the dimensional regularization [15]. Some calculations in the one-loop
and two-loop approximations were made for various theories [16, 17] with a variant of the
higher covariant derivative regularization, proposed in [18]. The structure of the corresponding
integrals was discussed in Ref. [17].

Application of the higher derivative regularization to calculation of quantum corrections
in the N=1 supersymmetric electrodynamics (SQED) in two and three loops [19] reveals an
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interesting feature of quantum corrections: loop integrals, defining a β-function, are integrals
of total derivatives. (In Ref. [19] three-loop integrals, defining a β-function, were reduced to
integrals of total derivatives using integration by parts.) This allows to calculate one of the loop
integrals analytically and obtain the NSVZ β-function, which relates a β-function in n-th loop
with a β-function and anomalous dimensions in the previous loops. Due to this, application of
the higher covariant regularization is sometimes very convenient in the supersymmetric case.
The fact that the integrals, appearing with the higher covariant derivative regularization, in the
limit of zero external momentum become integrals of total derivatives, seems to be a general
feature of all supersymmetric theories. This was verified in the two-loop approximation in [20]
for a general renormalizable N = 1 supersymmetric theory. A similar result, obtained with a
different (simpler) version of the higher derivative regularization, is presented in this paper.

Arguments in favour of the factorization of integrands into total derivatives for N = 1 SQED,
confirmed by an explicit two-loop calculation, were presented in [21]. A partial explanation of
this fact was made in [22] by substituting solution of the Ward identity into the Schwinger–
Dyson equation for N = 1 SQED, regularized by higher derivatives.1 In particular, using this
method it is possible to extract a contribution, giving the exact NSVZ β-function in all orders.
However, there is also another contribution. In N = 1 SQED this contribution is nontrivial
starting from the three-loop approximation. In the three-loop approximation it is given by an
integral of a total derivative and is equal to 0. It was conjectured in [22] that this occurs in all
loops. A partial four-loop verification of this statement was made in Ref. [24]. In this paper we
verify that in N = 1 SQED this statement is true for the planar diagrams with a single matter
loop.

The paper is organized as follows:
In Sec. 2 we recall basic information about N = 1 supersymmetric theories and their

regularization by higher covariant derivatives. In Sec. 3 we describe two-loop calculation of a
β-function for a general renormalizable N = 1 supersymmetric Yang–Mills theory, regularized
by higher covariant derivatives. The result of a similar calculation for the N = 1 SQED in
the three-loop approximation is presented in Sec. 4. In both cases the integrals, defining the
β-functions, are integrals of total derivatives. A partial explanation of this feature is given in
Sec. 5, where for N = 1 SQED we prove that such a factorization takes place for a sum of all
planar diagrams with a single matter loop. The results are briefly discussed in the Conclusion.

2 N=1 supersymmetric Yang–Mills theory and the higher co-

variant derivative regularization

N=1 supersymmetric Yang-Mills theory with matter in the massless case is described by
the action

S =
1

2e2
Re tr

∫

d4x d2θ WaC
abWb+

1

4

∫

d4x d4θ (φ∗)i(e2V )i
jφj+

(1

6

∫

d4x d2θ λijkφiφjφk+h.c.
)

,

(1)
where φi are chiral scalar matter superfields, V is a real scalar gauge superfield, and the super-
symmetric gauge field stress tensor is given by Wa = D̄2(e−2V Dae

2V )/8. The action is invariant
under the gauge transformations

φ→ eiΛφ; e2V → eiΛ+

e2V e−iΛ, (2)

if

1In both these papers the total derivatives were written in a more beautiful form than in [19]. Certainly,
results of [19] can be also reformulated in this form. The corresponding expressions can be found in [23].
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(TA)m
iλmjk + (TA)m

jλimk + (TA)m
kλijm = 0, (3)

where Λ is an arbitrary chiral superfield.
For calculation of quantum corrections it is convenient to use the background field method.

In the supersymmetric case it can be formulated as follows [25, 26]: Let us make the substitution

e2V → e2V ′

≡ eΩ
+

e2V eΩ, (4)

in action (1), where Ω is a background superfield. Then the theory is invariant under the
background gauge transformations

φ→ eiΛφ; V → eiKV e−iK ; eΩ → eiKeΩe−iΛ; eΩ
+

→ eiΛ+

eΩ
+

e−iK , (5)

where K is an arbitrary real superfield. This invariance allows to set Ω = Ω
+ = V. It is

convenient to choose a regularization and a gauge fixing term so that invariance (5) is unbroken.
First, we fix a gauge by adding

Sgf = −
1

32e2
tr

∫

d4x d4θ
(

V D
2
D̄

2
V + V D̄

2
D

2V
)

(6)

to the action. The corresponding Faddeev–Popov and Nielsen–Kallosh ghost Lagrangians are
constructed by the standard way. For regularization we add the terms

SΛ =
1

2e2
tr Re

∫

d4x d4θ V
(D2

µ)n+1

Λ2n
V +

1

4

∫

d4x d4θ (φ∗)i
[

eΩ
+ (D2

α)m

Λ2m
eΩ

]

i
jφj , (7)

where Dα is the background covariant derivative.2 (Because the considered theory contains a
nontrivial superpotential, it is also necessary to introduce the higher covariant derivative term
for the matter superfields.)

The regularized theory is evidently invariant under the background gauge transformations.
The regularization, described above, is rather simple, but breaks the BRST-invariance of the
action. That is why it is necessary to use a special subtraction scheme, which restore the
Slavnov–Taylor identities in each order of the perturbation theory [27]. For the supersymmetric
case such a scheme was constructed in Ref. [28].

It is well-known [29] that the higher covariant derivative term does not remove divergences
in the one-loop approximation. In order to regularize the remaining one-loop divergences, it is
necessary to introduce Pauli-Villars determinants into the generating functional

Z[J,V] =

∫

Dµ
∏

I

(

detPV (V,V,MI)
)cI

exp
{

i(S + SΛ + Sgf + Sgh + Sources)
}

, (8)

where
∑

cI = 1 and
∑

I
cIM

2
I = 0. It is useful to present the Pauli–Villars determinants in the

following form:

∏

I

(

∫

Dφ∗

IDφIe
iSI

)

−cI

, (9)

where SI is the action for the Pauli–Villars fields,3

2Other choices of higher derivative terms are also possible. For example, a different variant of the higher
covariant derivative regularization was considered in Ref. [20].

3Note that this action differs from the one, used in [19], because here the quotient of the coefficients in the
kinetic term and in the mass term does not contain the factor Z. Using terminology of Ref. [30], one can say
that here we calculate the canonical coupling αc, while in Ref. [19] we calculated the holomorphic coupling
αh. Certainly, after the renormalization the effective action does not depend on the definitions. However, the
definitions used here are much more convenient.
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SI =
1

4

∫

d4x d4θ (Φ∗

I)
i
[

eΩ
+
(

1 +
(D2

α)m

Λ2m

)

eΩ

]

i
j(ΦI)j +

(1

4

∫

d4x d2θ M ij
I (ΦI)i(ΦI)j + h.c.

)

.

(A regularized one-loop diagram with cubic matter vertex is finite. Therefore, it is not necessary
to include cubic terms into the Pauli–Villars Lagrangian.) The mass term should satisfy

(TA)k
iMkj + (TA)k

jMki = 0. (10)

Also we assume that M ijM∗

jk = M2δi
k and M ij = aijΛ, where aij are constants. (Thus, there

is the only dimensionful parameter Λ.)
The generating functional for connected Green functions and the effective action are defined

by the standard way. Terms in the effective action, corresponding to the renormalized two-point
Green function of the gauge superfield, have the form

Γ
(2)
V = −

1

8π
tr

∫

d4p

(2π)4
d4θ V(−p) ∂2Π1/2V(p) d−1(α, λ, µ/p). (11)

where α is a renormalized coupling constant, and

∂2Π1/2 = −
1

16
DaD̄2Da (12)

is a supersymmetric transversal projector. We calculate

d

d ln Λ

(

d−1(α0, λ0,Λ/p)− α−1
0

)
∣

∣

∣

p=0
= −

dα−1
0

d ln Λ
=

β(α0)

α2
0

. (13)

The anomalous dimension is defined similarly. First we consider the two-point Green function
for the matter superfield in the massless limit:

Γ
(2)
φ =

1

4

∫

d4p

(2π)4
d4θ (φ∗)i(−p, θ)φj(p, θ) (ZG)i

j(α, λ, µ/p), (14)

where Z denotes the renormalization constant for the matter superfield. Then anomalous
dimensions is defined by

γi
j
(

α0(α, λ,Λ/µ)
)

= −
∂

∂ ln Λ

(

ln Z(α, λ,Λ/µ)
)

i
j . (15)

3 Two-loop β-function for N = 1 supersymmetric Yang-Mills

theory

The calculation of two-loop diagrams gives the following result for the β-function

β(α) = −
3α2

2π
C2 + α2T (R)I0 + α3C2

2I1 +
α3

r
C(R)i

jC(R)j
iI2

+α3T (R)C2I3 + α2C(R)i
j
λ∗

jklλ
ikl

4πr
I4 + . . . , (16)

where the following notation is used:

tr (TATB) ≡ T (R) δAB ; (TA)i
k(TA)k

j ≡ C(R)i
j; fACDfBCD ≡ C2δ

AB ; r ≡ δAA. (17)
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Here we do not write the integral for the one-loop ghost contribution, and the integrals I0–I4

are presented below. With Pauli–Villars contributions

Ii = Ii(0)−
∑

I

Ii(MI), i = 0, 2, 3 (18)

where

I0(M) = 8π

∫

d4q

(2π)4
d

d ln Λ

1

q2

d

dq2

{1

2
ln

(

q2(1 + q2m/Λ2m)2 + M2
)

+
M2

2(q2(1 + q2m/Λ2m)2 + M2)
−

mq2m/Λ2mq2(1 + q2m/Λ2m)

q2(1 + q2m/Λ2m)2 + M2

}

; (19)

I1 = 96π2

∫

d4q

(2π)4
d4k

(2π)4
d

d ln Λ

1

k2

d

dk2

{ 1

q2(1 + q2n/Λ2n)(q + k)2(1 + (q + k)2n/Λ2n)
×

×
( n + 1

(1 + k2n/Λ2n)
−

n

(1 + k2n/Λ2n)2

)}

; (20)

I2(M) = −64π2

∫

d4q

(2π)4
d4k

(2π)4
d

d ln Λ

1

q2

d

dq2

{ q2(1 + (q + k)2m/Λ2m)

((q + k)2(1 + (q + k)2m/Λ2m)2 + M2)
×

×
1

k2(1 + k2n/Λ2n)

[ q2(1 + q2m/Λ2m)3

(q2(1 + q2m/Λ2m)2 + M2)2
+

mq2m/Λ2m

q2(1 + q2m/Λ2m)2 + M2

−
2mq2m/Λ2mM2

(q2(1 + q2m/Λ2m)2 + M2)2

]}

; (21)

I3(M) = 16π2

∫

d4q

(2π)4
d4k

(2π)4
d

d ln Λ

{ ∂

∂qα

[ kα(1 + q2m/Λ2m)

(q2(1 + q2m/Λ2m)2 + M2)
×

×
1

(k + q)2(1 + (q + k)2n/Λ2n)

(

−
(1 + k2m/Λ2m)3

(k2(1 + k2m/Λ2m)2 + M2)2
−

mk2m−2/Λ2m

k2(1 + k2m/Λ2m)2 + M2

+
2mk2m−2/Λ2mM2

(k2(1 + k2m/Λ2m)2 + M2)2

)]

−

−
1

k2

d

dk2

[ 2(1 + q2m/Λ2m)(1 + (q + k)2m/Λ2m)

(q2(1 + q2m/Λ2m)2 + M2) ((q + k)2(1 + (q + k)2m/Λ2m)2 + M2)

×
( 1

(1 + k2n/Λ2n)
+

nk2n/Λ2n

(1 + k2n/Λ2n)2

)]}

; (22)

I4 = 64π2

∫

d4q

(2π)4
d4k

(2π)4
d

d ln Λ

1

q2

d

dq2

[ 1

k2(1 + k2m/Λ2m)(q + k)2(1 + (q + k)2m/Λ2m)
×

×
( 1

(1 + q2m/Λ2m)
+

mq2m/Λ2m

(1 + q2m/Λ2m)2

)]

. (23)

It is easy to see that all these integrals are integrals of total derivatives, due to the identity

∫

d4q

(2π)4
1

q2

d

dq2
f(q2) =

1

16π2

(

f(q2 =∞)− f(q2 = 0)
)

. (24)

(This expression is reduced to a total derivative in the four-dimensional spherical coordinates.)
Calculating the integrals we obtain the result for a two-loop β-function:

β(α) = −
α2

2π

(

3C2−T (R)
)

+
α3

(2π)2

(

−3C2
2 +T (R)C2+

2

r
C(R)i

jC(R)j
i
)

−
α2C(R)i

jλ∗

jklλ
ikl

8π3r
+. . . .

(25)
Comparing this with the one-loop anomalous dimension
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γi
j(α) = −

αC(R)i
j

π
+

λ∗

iklλ
jkl

4π2
+ . . . , (26)

we find the agreement with the exact NSVZ β-function [31]

β(α) = −
α2

[

3C2 − T (R) + C(R)i
jγj

i(α)/r
)]

2π(1− C2α/2π)
. (27)

in the considered approximation. Result (25) also agrees with the DRED calculations up to
notation.4

4 Three-loop calculation for SQED

From the results, describe above, it is possible to suggest that a β-function in supersym-
metric theories is given by integrals of total derivatives. In order to confirm this conjecture
we also present the result for the three-loop β-function in N = 1 SQED, regularized by higher
derivatives. This theory is described by the action

S =
1

4e2
Re

∫

d4x d2θ WaC
abf(∂2/Λ2)Wb +

1

4

∫

d4x d4θ
(

φ∗e2V φ + φ̃∗e−2V φ̃
)

, (28)

where f(∂2/Λ2) is a regulator, for example f = 1 + ∂2n/Λ2n. In this case

Γ(2) =

∫

d4p

(2π)4
d4θ

(

−
1

16π
V (−p) ∂2Π1/2V (p) d−1(α, µ/p) +

+
1

4
(φ∗)i(−p, θ)φj(p, θ) (ZG)i

j(α, µ/p)
)

. (29)

The calculation of a three-loop β-function was made in Ref. [19]. The result of this paper
in a more beautiful form was written in Ref. [23]. Here we will not write explicit expressions
for the renormgroup functions, which in this case are also given by integrals of total derivatives.
The main result has the following form:

d

d ln Λ

(

d−1(α0,Λ/p) − α−1
0

)
∣

∣

∣

p=0
= −

d

d ln Λ
α−1

0 (α, µ/Λ) =

=
1

π

(

1−
d

d ln Λ
ln G(α0,Λ/q)

∣

∣

∣

q=0

)

=
1

π
+

1

π

d

d ln Λ

(

ln ZG(α, µ/q) − ln Z(α,Λ/µ)
)
∣

∣

∣

q=0
=

=
1

π

(

1− γ
(

α0(α,Λ/µ)
))

. (30)

It should be noted that the left hand side and the right hand side here are well defined integrals.
In the three-loop approximation the integrals, obtained with the higher covariant derivative
regularization, can not be calculated analytically. However, it is possible to find relation (30)
between them. It is easy to see that the origin of this relation is the factorization of integrands
into total derivatives.

4For example, in order to obtain notation of Ref. [2] it is necessary to make the following substitutions:
λijk → 2Yijk, α → g2/4π, γ(α) → 2γ(g), β(α) → gβ(g)/2π.

6



5 Factorization into total derivatives in N = 1 SUSY QED for

some classes of diagrams

Now let us try to partially explain the factorization of integrands into total derivatives. For
this purpose we consider N = 1 SQED, described by action (28), and calculate the two-point
Green function of the gauge superfield. Due to the Ward identity this function is transversal
and, therefore, we will obtain has the following structure:

∫

d4θV ∂2Π1/2V ×
d

d ln Λ
(Momentum integral)

∣

∣

∣

p=0
. (31)

Therefore, in order to find a β-function it is possible to make the substitution

V → θ̄aθ̄aθ
bθb ≡ θ4, (32)

so that

∫

d4θV ∂2Π1/2V → −4. (33)

This is possible, because we make calculations in the limit p → 0, where p is an external
momentum. (In this limit the gauge superfield V does not depend on the coordinates xµ.)

We will try to reduce a sum of Feynman diagrams for the considered theory to integrals of
total derivatives. In the coordinate representation such an integral can be written as

Tr
(

[xµ,Something]
)

= 0. (34)

In order to extract such commutators first we consider diagrams, containing the vertex to which
only one external line (and no internal lines) is attached. We can sum such a diagram with the
diagram, in which the external line is shifted to the nearest vertex [32]. This corresponds to a
sum of the subdiagrams, presented below. Making the substitution V → θ4 we obtain

+ =

= −θaθaθ̄
b D̄bD

2

4∂2
+ θaθa

D2

4∂2
+ iθ̄b(γµ)b

aθa
D̄2D2∂µ

∂4
− iθa(γµ)a

b D̄bD
2∂µ

4∂4
+

D̄2D2

16∂4
(35)

Only the first and the third terms give nontrivial contributions to the two-point function of
the gauge superfield, because they contain θ̄. Really, finally it is necessary to obtain

∫

d4θ θaθaθ̄
bθ̄b,

while calculating the θ-part of the graph can not increase powers of θ or θ̄. Therefore we should
have θ̄aθ̄a from the beginning.

Now let us proceed to calculation of Feynman diagrams. In the one-loop approximations
all calculations have been already done, so that we can ignore this case. (In the one-loop
approximation contributions of the Pauli–Villars field are very essential, but here we do not
consider them. For investigation of the Pauli–Villars contribution it is necessary to consider the
massive case. In principle, this is made similarly, but all expressions become more complicated.)
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First we consider a case, in which external V -lines are attached to different loops of matter
superfields. Let us denote a chain of propagators, connecting vertexes with quantum gauge
field, by ∗.5 Then each loop will be proportional to

Tr
(

− iθ̄c(γν)c
dθd

D̄2D2∂ν

8∂4
∗ −θcθcθ̄

d D̄dD
2

4∂2
∗

)

= Tr
(

− θcθcθ̄
d ∗

D̄dD
2

4∂2
∗

−θ̄dθc ∗
D̄2Dc

4∂2
∗

D̄dD
2

4∂2
∗ −iθ̄c(γν)c

dθd ∗
D̄2D2∂ν

8∂4
∗+θ2,θ̄1,θ1,θ0 terms

)

. (36)

After some simple algebra the first three terms can be written as

Tr
(

− 2θcθcθ̄
d[θ̄d, ∗]− iθ̄c(γν)c

dθd[y
∗

ν , ∗] + . . .
)

= 0 + . . .

where y∗ν = xν− iθ̄a(γν)a
bθb/2+ iθa(γν)a

bθ̄b/2, and dots denote θ2, θ̄1, θ1, θ0 terms. Calculating
the two-point function we should multiply two such expressions. Then the terms, denoted by
dots, vanish due to the integration over d4θ. Therefore, the sum of all such diagrams is given
by an integral of a total derivative and is equal to 0.

Next, it is necessary to consider a case, in which external V-lines are attached to a single
loop of the matter superfields.

We shift θ-s to an arbitrary point of the loop, commuting them with matter propagators.
This gives

θaθ̄b θcθ̄d
∼ −

1

128
Tr

(

θ4 D̄2D2∂µ

∂4
∗

D̄2D2∂µ

∂4
∗

)

θaθ̄b θcθcθ̄
d
∼ i(γµ)d

cTr
(

θ4
(D̄2Dc∂µ

16∂4
∗

D̄dD2

∂2
∗+

D̄2D2∂µ

16∂4
∗

D̄2Dc

16∂2
∗

D̄dD2

∂2
∗

))

θaθaθ̄
b θcθcθ̄

d
∼ Tr

(

θ4
(

−
D̄dD

2

4∂2
∗

D̄2

8∂2
∗

D̄dD2

4∂2
∗ −

D̄d

2∂2
∗

D̄dD2

4∂2
∗+

D̄dD
c

2∂2
∗

×
D̄2Dc

8∂2
∗

D̄dD2

4∂2
∗+

D̄dD
2

4∂2
∗

D̄2Dc

8∂2
∗

D̄2Dc

8∂2
∗

D̄dD2

4∂2
∗

))

In order to write the sum of these diagrams as an integral of a total derivative, we will start
with the calculation of the following sum of diagrams:

θaθ̄b θcθ̄d
+

1

2 θaθ̄b θcθcθ̄
d

Using the identity

[xµ,
∂µ

∂4
] = [−i

∂

∂pµ
,−

ipµ

p4
] = −2π2δ4(p) (37)

after some algebra we obtain

∼ Tr
(

θ4
(

−
π2

8
∗ D̄2D2δ4(∂α)−

[

y∗µ,
D̄2D2∂µ

16∂4
∗

]))

= −Tr
(π2

8
θ4 ∗ D̄2D2δ4(∂α)

)

.(38)

5It is possible to give a rigorous definition of ∗. This will be done in [33]. Below for simplicity we omit some
details, needed in the rigorous approach.
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δ-function allows to perform integration over the momentum of the considered matter loop.
This corresponds to cutting the diagram, that gives diagrams for the two-point Green function
of the matter superfield [21]. For example,

- + + . . .

For diagrams, which can not be made disconnected by two cuts of the matter loop, this gives
the corresponding contribution to the anomalous dimension.

In a method, based on substituting solution of the Ward identity into the Schwinger–Dyson
equation, a sum of the considered diagrams is included into the effective diagram, which can be
expressed in terms of the two-point function of the matter superfield. This effective diagram
gives

β(α)← −
α2

π
γ(α). (39)

(A part of this contribution, corresponding to higher terms in the expansion of ln Z, comes from
diagrams, considered below.)

Now let us calculate the remaining diagrams (which can not be expressed in terms of the
two-point function by substituting solution of the Ward identity into the Schwinger–Dyson
equation, if a diagram can not be made disconnected by two cuts of the matter line)

θaθaθ̄
b θcθcθ̄

d
+

1

2 θaθ̄b θcθcθ̄
d

The considered sum is given by

Trθ4
(

−
i

32
(γµ)d

c
(D̄2D2∂µ

∂4
∗

D̄2Dc

16∂2
∗

D̄dD2

∂2
∗+

D̄2Dc∂µ

∂4
∗

D̄dD2

∂2
∗

)

−
D̄d

2∂2
∗

D̄dD2

4∂2
∗

−
D̄dD

2

4∂2
∗

D̄2

4∂2
∗

D̄dD2

4∂2
∗+

D̄dD
c

2∂2
∗

D̄2Dc

8∂2
∗

D̄dD2

4∂2
∗+

D̄dD
2

4∂2
∗

D̄2Dc

8∂2
∗

D̄2Dc

8∂2
∗

D̄dD2

4∂2
∗

)

.

(40)

This expression was not yet completely factorized into a total derivative. However, for
planar diagrams with a single loop of the matter superfield the factorization can be proven in
all orders:

Let us assume that a diagram contain a line, which cut it:

Then there are the following possibilities:
1. There is

∗
D̄aD2

8∂2
∗ = [∗, θ̄a] = 0 or ∗

D2Da

8∂2
∗ = [∗, θa] = 0 (41)

on the left (right) side. The equality to 0 arises, because θ can be carried along the wavy line
due to the identity θ1δ

4(θ1 − θ2) = θ2δ
4(θ1 − θ2).

2. There is ∗
D̄aD2

16∂2
∗

D̄aD
2

16∂2
∗ on the left (right) side. Then on the other side we obtain
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∼ {θb[θb, ∗]} = 0. (42)

3. There is ∗
D̄aD2

16∂2
∗

D̄2Db

16∂2
∗ on the left (right) side. Then on the other side we obtain

∼ (γµ)a
b[y∗µ, ∗]θ4.

Carrying y∗µ along the wavy line evidently gives a derivative of the photon propagator with
respect to the loop momentum.

4. All modified propagators are on the same side of the diagram.
The considered (planar, with a single matter loop) diagrams can be cut into parts with no

more than two matter propagators. Therefore, an expression for a diagram is split into the
parts, proportional to

Tr
(

−
i

32
(γµ)d

c D̄2Dc∂µ

∂4
·
D̄dD2

∂2
−

D̄d

2∂2
·
D̄dD2

4∂2

)

θ4 ∼ (γµ)c
dTr

([

y∗µ,
D̄2Dd

∂2
·
D̄cD2

∂2

]

θ4
)

+terms, proportional to the δ-function. (43)

In this expression we also take into account possible terms, coming from item 3. These terms
allows to commute y∗µ with the wavy lines. (Terms with δ-functions arise from the product

D̄2Dd

∂2
·
D̄cD2

∂2
(44)

if at least two momenta in the matter loop coincide, that occurs for diagrams, which can be
made disconnected by two cuts of the matter loop. These contributions are certainly taken into
account in Eq. (39).)

Thus, planar diagrams with a single loop of matter superfields are given by integrals of total
derivatives and are equal to 0, if there are no coinciding momenta in the matter loop. Using
this method it is also possible to prove factorization for some non-planar diagrams, for example,
for

In particular this explains the result of the three-loop calculation in N = 1 SQED.

6 Conclusion

In this paper we investigate the conjecture that in supersymmetric theories, regularized
by higher covariant derivatives, all integrals, defining the β-fucntion, are integrals of total
derivatives. This fact allows to calculate at least one of the integrals analytically, so that
the factorization of integrands into total derivatives is in the close connection with the NSVZ
exact β-function. We have verified this explicitly for the most general N = 1 supersymmetric
Yang–Mills theory in the two-loop approximation and for the N = 1 SQED in the three-loop
approximation.

For N = 1 SQED, regularized by higher derivatives, it is also possible to prove factorization
of integrals into total derivative for some classes of diagrams, for example, for planar diagrams
with a single matter loop. (Here we present the proof formally, without PV contributions.) The

10



sketch of a prove for a general case, generalizing the arguments, presented here, is given in [34].
The complete rigorous proof (for N = 1 SQED), which, in particular, includes calculation of
Pauli–Villars fields contributions) will be described in a future paper [33].
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