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Abstract

The problem of ambiguity in quantization of nonabelian gauge theories is reviewed. A
method of unambigous quantization of nonabelian gauge theories is proposed.

1 Introduction

I this talk I am going to discuss the problem of ambiguity in quantization of gauge theories.
The standard formulation of the Yang-Mills theory does not allow a unique gauge fixing. It was
shown by V.N.Gribov [1] that the Coulomb gauge condition ∂iAi = 0 does not choose a unique
representative in the class of gauge equivalent configurations, as the condition

∂iA
Ω
i = 0 (1)

considered as the equation for the elements of the gauge group Ω at the surface ∂iA
i = 0 for

sufficiently large A has nontrivial solutions fast decreasing at the spatial infinity. This result
was generalised by I.Singer [2] to arbitrary covariant gauge conditions.

In the framework of perturbation theory, that is for sufficiently small A the equaton (1)
has only trivial solutions. Hence the Gribov umbiguity in this case is absent. However beyond
the perturbation theory this ambiguity exists, which makes problematic the standard way of
canonical quantization of nonabelian gauge theories.

One may try to avoid the ambiguity by using so called algebraic gauge conditions, for
example choosing the Hamiltonian gauge A0 = 0. However such gauge violates explicitly the
Lorentz invariance complicating the analysis enormously. It introduces also some other problems
which will not be discussed here.

According to the common lore in the quantization of nonabelian gauge theories one faces
the dilemma: differential gauge conditions like the Lorentz gauge ∂µAµ = 0 are plagued by the
Gribov ambiguity, and algebraic gauge conditions result in the absence of a manifest Lorentz
invariance and serious problems in renormalizabilty. A possible way out is given by a new for-
mulation of nonabelian gauge theories introducing a bigger number of auxilliary fields. Example
of such reformulation is given by the Higgs model, described by the Lagrangian

L = LY M + (Dµϕ)∗(Dµϕ) − λ2(ϕ∗ϕ− µ2)2 (2)

where LY M is the usual Yang-Mills Lagrangian. After the shift ϕ = ϕ′ + µ̂, µ̂ = {0, µ} ϕ′
a,

a = 1, 2, 3 becomes a gauge field:ϕ′
a → ϕ′

a + µηa(x) + . . .. Unitary gauge ϕ′
a = 0 is algebraic,

but Lorentz invariant. At the same time the Higgs scalar is described not by one field, but by
four component SU(2)-spinor, three unphysical components of which may be gauged away.The
unitary gauge is however nonrenormalizable.
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A similar idea may be used for an ambiguity free renormalizable formulation of the Yang-
Mills theory. Recently I proposed an explicitly Lorentz invariant formulation of the quantum
Yang-Mills theory in which the effective Lagrangian of ghost fields is gauge invariant [3]. In
the present talk I will show that in this approach the Yang-Mills theory allows a quantization
procedure which is free of the Gribov ambiguity and hence may serve as a starting point for
nonperturbative constructions [4]. In perturbation theory the model is renormalizable, although
renormalization includes a nonmultiplicative redefinition of the fields [5].

2 Unambiguos quantization of the Yang-Mills field.

We consider the model described by the classical Lagrangian

L = −1

4
F a

µνF
a
µν + (Dµϕ)∗(Dµϕ) − (Dµχ)∗(Dµχ) + i[(Dµb)

∗(Dµe) − (Dµe)
∗(Dµb)] (3)

To save the place we shall consider the model with the SU(2) gauge group. Generalization
to other groups makes no problem. Here F a

µν is the standard curvature tensor for the Yang-
Mills field. The scalar fields ϕ,χ, b, e form the complex SU(2) doublets parametrized by the
Hermitean components as follows:

c =

(

ic1 + c2√
2

,
c0 − ic3√

2

)

(4)

where c denotes any of doublets. The fields ϕ and χ are commuting, and the fields e and b are
anticommuting. In the eq.(3) Dµ denotes the usual covariant derivative, hence the Lagrangian
(3) is gauge invariant. Note that due to the negative sign of the χ field Lagrangian, this field
possesses negative energy.

Let us make the following shifts in the Lagrangian (3):

ϕ→ ϕ+ g−1m̂; χ→ χ− g−1m̂; m̂ = (0,m) (5)

where m is a constant parameter. Due to the negative sign of the Lagrangian of the field χ the
terms quadratic in m arising due to the shifts of the fields ϕ and χ mutualy compensate and
the Lagrangian acquires a form

L = −1

4
F a

µνF
a
µν + (Dµϕ)∗(Dµϕ) − (Dµχ)∗(Dµχ)

+g−1[(Dµϕ)∗ + (Dµχ)∗](Dµm̂) + g−1(Dµm̂)∗[Dµϕ+Dµχ]

+i[(Dµb)
∗(Dµe) − (Dµe)

∗(Dµb)] (6)

As before this Lagrangian describes massless vector particles.
The Lagrangian (6) is obviously invariant with respect to the ”‘shifted”’ gauge transforma-

tions. In particular the transformation of the field ϕa
− = ϕ−χ√

2
is

δϕa
− = mηa +

g

2
εabcϕb

−η
c +

g

2
ϕ0
−η

a (7)

The Lagrangian (6) except for gauge invariance possesses also the invariance with respect to
the supersymmetry transformations

δϕ(x) = iǫb(x)

δχ(x) = −iǫb(x)
δe(x) = ǫ[ϕ(x) + χ(x)]

δb(x) = 0 (8)
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where ǫ is a constant anticommuting parameter.
In the future we shall see that invariance with respect to the supersymmetry transformations

provides unitarity of the theory in the space which includes only physical exitations of the fields.
An explicit form of interaction is not essential. Only the symmetry properties are important.
In principle any counterterms which preserve gauge invariance and supersymmetry are allowed.

The field ϕa
− is shifted under the gauge transformation by an arbitrary function mηa. It

allows to impose Lorentz invariant algebraic gauge condition ϕa
− = 0.

However imposing the Lorentz invariant gauge condition ϕa
− = 0 does not solve the problem

of ambiguity completely. The field ϕa
− satisfying the condition ϕa

− = 0 is transformed by the
gauge transformation to ϕ′a

− = (m+ g
2
ϕ0
−)ηa. For some x the factor (m+ g

2
ϕ0
−(x)) may vanish,

leading to nonuniqueness of the gauge fixing. To avoid the problem of ambiguity completely we
redefine the fields as follows

ϕ0
− =

2m

g
(exp{ gh

2m
} − 1); ϕa

− = M̃ϕ̃a
−

ϕa
+ = M̃−1ϕ̃a

+; ϕ0
+ = M̃−1ϕ̃0

+

e = M̃−1ẽ; b = M̃ b̃ (9)

where

M̃ = 1 +
g

2m
ϕ0
− = exp{ gh

2m
} (10)

The new Lagrangian has the form

L̃ = −1

4
F a

µνF
a
µν + ∂µh∂µϕ̃

0
+ − g

2m
∂µh∂µhϕ̃

0
+

+mϕ̃a
+∂µA

a
µ − [((Dµb̃)

∗ +
g

2m
b̃∗∂µh)(Dµẽ−

g

2m
ẽ∂µh) + h.c.]

+
mg

2
A2

µϕ̃
0
+ + g∂µhA

a
µϕ̃

a
+ . . . (11)

Here . . . denote the terms ∼ ϕ̃a
−. By construction this Lagrangian is invariant with respect to

the gauge transformations written in terms of the new variables. In particular δϕ̃a
− = ηa, and

the ambiguity is absent.
Obviously the lagrangian is also invariant with respect to the supersymmetry transforma-

tions written in terms of the transformed variables. However imposing the gauge condition
ϕ̃a
− = 0 we break the invariance of the effective action with respect to the supersymmetry

transformation (8). The transition from one gauge to the other one may be achieved by a gauge
transformation, and in the gauge ∂iAi = 0 the effective action is invariant with respect to the
supertransformation (8). Therefore in the gauge ϕ̃a

− = 0 it also must be invariant with respect
to some supertransformation. The corresponding gauge function is a solution of the equation.

∫

d4xλa(x)∂i(A
Ω)ai (x) =

∫

d4xλa(x)ϕ̃a
−(x) (12)

The solution of this equation may be found explicitly.
The effective Lagrangian (11) is invariant with respect to the supertransformations men-

tioned above and global SU(2) transformations, which do not change the fields ϕ̃0
± and ϕ̃a

−.
The spectrum of the theory looks as follows: Ghost exitations:
ϕ±, b, e, longitudinal and temporal components of Aa

µ.
Physical excitations: three dimensionally transversal components of the Yang-Mills field.
The supersymmetry of the effective action generates a conserved nilpotent charge Q. Phys-

ical states are separated by the condition:

Q|ψ >ph= 0 (13)

The states separated by this condition describe only three dimensionally transversal components
of the Yang-Mills field. The ghost excitations decouple.
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3 Renormalization

The field h enters interaction only with derivative ∂µh. Hence the divergency index of a diagram
with n external h(ϕ0

−) lines decreases by n.
The index of divergency of an arbitrary diagram is

n = 4 − 2Lϕ0
+
− 2Lϕ0

+
− LA − Le − Lb − Lh (14)

The theory is manifestly renormalizable.
In terms of the old (nontransformed) variables the theory is not manifestly renormalizable.

Transition to the new variables simultaneously eliminates the residual ambiguity and makes the
theory manifestly renormalizable.

Renormalization preserves all the symmetries of the theory. The possible counterterms may
be classified on the basis of ST-Identities, associated with the symmetry, which combines the
gauge invariance of the effective action and supersymmetry.

S(Γ) =

∫

d4x
∑

Φ

{ δΓ

δΦ∗(x)

δΓ

δΦ(x)
} = 0 (15)

Φ are the fields:Aµ, ϕ
α
+, e

α, bα;
Φ∗ are the antifields introducing the variations of the fields Φ, e.g.

∫

dx{− 2i
m
A∗a

µ (Dµb)
a}

The most general solution of S-T identities compatible with the power counting and the
residual SU(2) symmetry is:In the classical action one should renormalize the parameters g′ =
Zgg; m′ = Zmm, and redefine the fields

ẽ′ = Z1ẽ; b̃′ = Zmb̃; Aa′

µ = Z2A
a
µ; h′ = ZmZ3h

ϕ̃a′

+ = Z4ϕ̃
a
+ + Z5∂µA

a
µ +

Z6

m
∂µhA

a
µ + Z7(ẽ

0b̃a − ẽab̃0 − εabcẽbb̃c)

ϕ̃0′

+ = Z8ϕ̃
0
+ + Z9

∂2

m
h+ Z10

1

m2
∂µh∂µh+ Z11A

2 + Z12(ẽ
0b̃0 + ẽab̃a) (16)

To satisfy the ST-identity (15)one has to redefine also the antifields. Corresponding equations
also can be solved.

The renormalized action differs of the unrenormalized one only by the renormalization of the
parameters which enter the unrenormalized effective action and redefinition (16) of the fields.

ΓR(g′,m′Φ′) = Γcl(Zgg, Zmm,Φ(Φ′)) (17)

All the ultraviolet divergencies can be recursively removed by a suitable choice of the parameters
Zg, Zm, Zj .

4 Gauge independence of observables

All the redefinitions of the fields were local and did not include the field ϕ̃a
−. Therefore assuming

the invariant
regularization like dimensional one and making the inverse redefinitions we arrive to the path
integral representation for the scattering matrix

S =

∫

exp{i
∫

[Lgi + λaϕa
−}det(Mab)dµ (18)

where Lgi is the gauge invariant classical Lagrangian with renormalized parameters.

(det(Mab))
−1
ϕa

−
=0 =

∫

δ((ϕΩ)a−)dΩ (19)
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Multiplying the integral (18) by ”1”, 1 = ∆L

∫

δ(∂µA
Ω
µ )dΩ and changing the variables

ΦΩ = Φ′,we arrive to the expression for the scattering matrix in the Lorentz gauge

S =

∫

exp{i
∫

[Lgi(x) + λa(x)∂µAµ(x) + ∂µc̄
a[Dµc]

adx}dµ (20)

This expression can be easily transformed to the standard expression for the Yang-Mills scat-
tering matrix.

5 Conclusion.

In this talk I showed that a renormalizable manifestly Lorentz invariant formulation of the
Yang-Mills theory which allows a canonical quantization without Gribov ambiguity is possible.
In perturbation theory the scattering matrix (infrared regularized) and the gauge invariant
correlators of the Yang-Mills fields coincide with the standard ones. Analogous formalism
may be developped for the Higgs-Kibble model, which describes the massive Yang-Mills field
and the massive Higgs scalar. In this case infrared singularities are absent and the scattering
matrix is well defined. As in the case of the massless Yang-Mills field, this model allows a
modified formulation, in which one can impose the ambiguity free gauge preserving a manifest
Lorentz invariance and renormalizability. It would be interesting to carry out semi-analytic
and numerical calculations in this formalism beyond the perturbation theory and compare the
results with the existing calculations.
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