
Asymptotic safety of gravity and the Higgs boson

mass

Mikhail Shaposhnikova∗
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Abstract

If gravity is asymptotically safe, the ultimate theory may happen to be just the Standard
Model (minimally supplemented by few light particles, to accommodate neutrino masses
and oscillations, dark matter and baryon asymmetry of the Universe) plus gravity. If this is
indeed the case, the mass of the Higgs boson can be predicted (mH = mmin ≃ 126 GeV, with
only a few GeV uncertainty) or constrained to be in the interval mmin < mH < mmax ≃ 174
GeV.

1 Introduction

The most minimalistic approach to quantum gravity is associated with asymptotic safety [1].
Though General Relativity is non-renormalizable by perturbative methods, it may exist as a
field theory non-perturbatively, exhibiting a non-trivial ultraviolet fixed point (FP) (for a review
see [2]). Within this setting a very economical description of all interactions in Nature may
be possible. One can assume that there is no new physics associated with any intermediate
energy scale (such as Grand Unified scale or low energy supersymmetry) between the Fermi
scale and the Planck scale MP = 2.44×1018 GeV. All confirmed observational signals in favour
of physics beyond the Standard Model (SM) such as neutrino masses and oscillations, dark
matter and dark energy, baryon asymmetry of the Universe and inflation can be associated
with new physics below the electroweak scale, for reviews see [3, 4] and references therein. The
minimal model – νMSM, contains, in addition to the SM particles, 3 relatively light singlet
Majorana fermions and the dilaton. These fermions could be responsible for neutrino masses,
dark matter and baryon asymmetry of the Universe. The dilaton may lead to dynamical dark
energy [5, 6] and realizes spontaneously broken scale invariance which either emerges from the
cosmological approach to a fixed point [5, 7] or is an exact quantum symmetry [8, 9]. Inflation
can take place either due to the SM Higgs [10] or due to the asymptotically safe character of
gravity [11]. Yet another part of new physics, related, for example, to the strong CP problem
or to the flavor problem, may be associated with the Planck scale.

There is, however, an obstacle against this point of view, which is related to Landau-pole
problem for a number of the SM (or the νMSM) couplings. Namely, the U(1) gauge coupling
g′ ≡ g1, the Higgs self-interaction λ, and Yukawa couplings (most notably, that of the top-quark,
yt) are not asymptotically free. This fact makes it impossible to formulate the fundamental SM,
leaving it the role of the effective field theory, valid only below some energy scale.

In this talk, based on the paper we written together with Christof Wetterich [12], I will
discuss a scenario which can overcome this difficulty. Our proposal leads to a prediction of
the Higgs mass, which can be tested at the LHC. The paper is organised as follows. Section 2
provides a short overview of asymptotic safety, in Section 3 we discuss how the asymptotically
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safe SM may emerge due to its combination with asymptotically safe gravity and present the
Higgs mass predictions, in Section 4 we conclude.

2 Asymptotic safety

A search for “good” quantum field theory can proceed along the following lines:

• Take some specified set of quantum fields and write the most general Lagrangian respecting
chosen symmetries, including operators of arbitrary dimension.

• Compute all scattering amplitudes in all orders of perturbation theory.

• Require that the theory is unitary, Lorentz - invariant, and causal. This will lead to an
infinite number of conditions for infinite number of coupling constants defining the theory.

• Solve these consistency equations. Hopefully, the theory will be characterised by a finite
number of essential parameters - coupling constants, making the predictions possible.

Of course, it is very difficult, if not impossible, to realise this program. Some approach to it
is based on renormalisation group (RG) [1]. Let us introduce dimensionless coupling constants
gi for all terms in the action:

gi = µDiGi , (1)

where Di is the canonical dimension of coupling constant Gi, and µ is an arbitrary param-
eter with dimension of mass. The RG equations are derived from requirement that physical
amplitudes are µ-independent. This leads to the running of couplings g = {gi} as

µ
∂gi

∂µ
= βi(g) , (2)

and fixes the β-functions.
The renormalizable asymptotically free theories correspond to Gaussian ultra-violet (UV)

fixed points: essential couplings gi(µ) → 0 at µ → ∞. The number of these couplings is
finite - only operators with dimension ≤ 4 are allowed. The well known examples of asymp-
totically free theories include Quantum Chromodynamics, certain Grand Unified Theories, and
renormalizable theories in 2 and 3 dimensional space-time.

The asymptotically safe theories are associated with non-Gaussian UV fixed points g∗ 6= 0:
βi(g

∗) = 0. Though they are non-renormalisable, they are predictive, if the dimensionality of
the critical surface in the space of coupling constants (which points are attracted to g∗ when
µ → ∞) is finite. The known examples include the scalar field theory in 3d at the Wilson-
Fischer fixed point (critical surface is 2-dimensional), non-linear σ model [13], and gravity in
2 + ǫ dimensions [14, 15, 1, 16].

To determine whether some theory is asymptotically safe is very complicated since the
standard perturbative expansion fail. The common methods include ǫ - expansion [17], lattice
simulations [18, 19], and functional renormalisation group [20, 21]. An original conjecture by
Weinberg that gravity may happen to be asymptotically safe was based on ǫ expansion. The
extensive studies of functional RG for gravity initiated by Reuter [22] provided yet further
evidence in favour of it. A number of recent references include [23, 24]. In what follows we will
assume that gravity is indeed asymptotically safe.

3 Asymptotically safe SM and Higgs boson mass

The stand alone Standard Model is neither asymptotically free nor asymptotically safe. It suffers
from Landau-pole behaviour of the U(1) gauge constant, the Yukawa terms, and the Higgs self-
coupling. However, it is not excluded that a combination of the SM with asymptotically safe
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gravity may change the situation and lead to a consistent theory. Let us discuss how this may
happen.

We will concentrate on the evolution of the SM gauge coupling constants g1, g ≡ g2 and g3,
corresponding to the U(1), SU(2) and SU(3) groups respectively, and on Higgs and top Yukawa
couplings, λ and yt. As for the gauge couplings, we will fix their values at small energies to the
experimental ones, but will leave λ and yt undetermined for the time being.

The renormalisation group equations for the matter self-interactions receive contribution
from gravity sector [1, 25, 27]. Generically, the RG equations for these couplings with gravity
corrections incorporated, have the form

dh

dt
= βSM

h + βgrav
h , (3)

where t = log µ, h is any of the couplings gi, λ or yt, βSM
h is the SM contribution, and βgrav

h are
the gravity corrections. In one-loop approximation

βSM
1 =

1

16π2

41

6
g3
1 , βSM

2 = −
1

16π2

19

6
g3
2 , βSM

3 = −
1

16π2
7g3

3 , (4)

βSM
y =

1

16π2

[

9

2
y3

t − 8g2
3yt −

9

4
g2
2yt −

17

12
g2
1yt

]

, (5)

βSM
λ =

1

16π2

[

24λ2 + 12λy2
t − 9λ(g2

2 +
1

3
g2
1) − 6y4

t +
9

8
g4
2 +

3

8
g4
1 +

3

4
g2
2g

2
1

]

. (6)

The structure of gravity corrections can be deduced from dimensional analysis:

βgrav
h =

ah

8π

µ2

M2
P (µ)

h , (7)

where a1, a2, a3, ay and aλ are some constants (anomalous dimensions) corresponding to
g1, g2, g3, yt and λ and M2

P (µ) is the running Planck mass. From the studies of the functional
renormalization group one infers a characteristic scale dependence of the gravitational constant
or Planck mass,

M2
P (µ) = M2

P + 2ξ0µ
2 , (8)

where ξ0 is a pure number, the exact value of which is not essential for our considerations.
From investigations of simple truncations of pure gravity one finds ξ0 ≈ 0.024 from a numerical
solution of functional RG equations [22, 25, 26]. Thus for large momentum transfer q2 ≫ M2

P

the effective gravitational constant GN (q2) scales as 1
16πξ0q2 , ensuring the regular behaviour of

high energy scattering amplitudes. The explicit computations of different anomalous dimensions
has been carried out in [25]-[32]. Note, however, that there is no agreement between different
authors on the magnitude and even signs of the coefficients ai. Moreover, the definitions of
the matter couplings used in different papers are not the same. The coefficients ai, found
in different works, are dependent on the gauge used and on the form of truncation of the
functional RG equations. We will assume that some gauge-invariant definition of these couplings
will eventually be possible. Most probably, it could be based on gauge-invariant high energy
scattering amplitudes, as was suggested in [1]. We stress that this definition of couplings does
not coincide with that based on a minimal subtraction scheme, cf. [33].

The running of different couplings in the SM can be divided to two regimes. Up to the
scales µ2 ∼ M2

P the gravitational corrections to beta functions of the SM are suppressed by the
factor µ2/M2

P and are therefore small. The couplings run logarithmically up to µ2 ∼ M2
P . For

µ2>∼M2
P the corrections coming from gravity become important. If the gravitational part of the

β-functions dominates and µ2>∼
M2

P

2ξ0
, the running is a power low,

h ∝ µ
ah

16πξ0 . (9)
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Clearly, the signs of anomalous dimensions ah play a crucial role for validity of the SM at any
energy scale.

First, let us look at the gauge sector. Assume for simplicity that a1 = a2 = a3 = a, which is
true for one-loop computations, performed up to now, due to the universality of the gravitational
interactions. Then all gauge constants are asymptotically free if a < acrit, acrit ≃ −0.0131. If this
is the case, the Landau-pole problem for the U(1) coupling is solved by the gravity contribution
to the RG running. And, indeed, the computations of [28, 27] give a negative sign for a, with
|a| ∼ 1. In what follows we will assume that

a < acrit. (10)

In this case the gauge coupling constants cannot be predicted. If a = acrit, the value of the
U(1) coupling is predictable (provided acrit is reliably computed).

Consider now the top Yukawa coupling. Taking, for example, a = −1, and the (central)
experimental value of the top quark mass, mt = 171.3 GeV [34], one finds that at ay < acrit

y ,

where acrit
y ≃ −0.005, the behaviour of yt is asymptotically free, at ay = acrit

y it corresponds to a

non-Gaussian fixed point with y∗t ≃ 0.38, and if ay > acrit
y one gets the Landau-pole behaviour.

The critical value of ay is only weakly sensitive to a. For example, for a = −0.02 one gets
acrit

y ≃ −0.002 and y∗t ≃ 0.25. For smaller values of the top quark mass the corresponding

values of acrit
y are even closer to zero, while larger mt move acrit

y further from zero.

Suppose that ay > acrit
y . Then, in order to have a consistent theory for all energy scales,

one has to put yt = 0. This corresponds to the massless top quark and is therefore rejected by
experiments. In other words, if this happens to be the case, one should give up the assumption
on the absence of new physics between the Fermi and Planck scales, to modify the pattern of
yt RG running. Therefore, the hypothesis of the fundamental character of the SM or νMSM
can only be true if ay ≤ acrit

y . Unfortunately, we were not able to extract the reliable value
and the sign of ay from existing literature. For example, in [35] it was shown that gravity
contributions make Yukawa coupling asymptotically free in quantum R2 gravity with matter.
Ref. [32] studied the gravitational running of Yukawa couplings f in functional RG approach
for the Einstein-Hilbert type of truncation and found different signs for ay in different gauges.
Also, in this paper the wave function renormalisation for the fermions and scalars was not
included and the sensitivity to the truncation type was not investigated. So, in what follows
we will simply assume that ay < acrit

y . As in the case of the U(1) coupling, the special case

ay = acrit
y would lead to a prediction of mt.

Let us turn now to the behaviour of the scalar self-coupling λ. The gravitational corrections
can only promote the SM to the rank of fundamental theory if the running of λ does not lead
to any pathologies up to the Planck scale. In other words, the Landau pole must be absent for
k<∼MP [36, 37, 38, 39], and λ must be positive for all momenta up to MP [40, 41, 42], ensuring
the stability of the electroweak vacuum. There is a large parameter space available on the plane
mH ,mt, where both conditions are satisfied. Close to the experimental value of the top mass,
it is described by

mmin < mH < mmax . (11)

Here

mmin = [126.3 +
mt − 171.2

2.1
× 4.1 −

αs − 0.1176

0.002
× 1.5] GeV , (12)

and

mmax = [173.5 +
mt − 171.2

2.1
× 0.6 −

αs − 0.118

0.002
× 0.1] GeV , (13)

where αs is the strong coupling at the Z-mass, with theoretical uncertainty in mmin equal to
±2.2 GeV. These numbers are taken from the recent two-loop analysis of [43] (see also [44, 45]

1The value a
crit corresponds to the fixed point g

∗

1 ≃ 0.5 in the U(1) one-loop coupling running, if it starts
from the experimental value at low energies.
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Figure 1: Evolution of the Higgs self-coupling λ in the SM and asymptotically safe gravity for
the case of negative anomalous dimension aλ.

and earlier computations in [46, 47, 48, 49]). The value of mmax corresponds to the (somewhat
arbitrary) criterion λ(MP ) < 6. The admitted region contains also very small top and Higgs
masses, excluded experimentally.

Suppose first that aλ is negative and has sufficiently large magnitude,

aλ < acrit
λ ≃ −

24ξ0λ(MP )

π
, (14)

(acrit
λ ≃ −1 if λ(MP ) ≃ 6). Then the Higgs coupling is asymptotically free in all the region of

the parameter space, constrained by (11). The gravity contribution removes the Landau-pole
behaviour at energies exceeding the Planck mass, as shown in Fig. 1. For mt = 171.3 GeV
(remember that the top mass cannot be predicted, if ay < acrit

y ), and neglecting uncertainties
in theoretical computations and in αs, one gets that the Higgs mass must lie in the interval
[126.3, 173.5] GeV. The upper limit on the Higgs mass goes down, if the actual value of acrit

λ is
smaller, than one.

The most interesting situation is realised if aλ is positive, leading to a specific prediction of
the Higgs boson and top quark masses. In fact, an evidence that this is indeed the case comes
from computations of [25, 26], giving

aλ ≃ +3.1 . (15)

The contribution with the same sign and similar magnitude was found previously in [50].
Let us elucidate the structure of the solution to the RG equation for λ in this case. Due to

the positive sign of aλ, the generic solution to (3) diverges at µ → ∞, leading to inconsistent
theory. However, there may exist a particular solution, leading to λ → 0 (or, in a special
case, λ → const 6= 0) in the ultraviolet. It is easy to see the the required behaviour is only
possible if the t-quark contribution, coming with negative sign to βSM

λ , dominates over the gauge
contribution at t → ∞, leading to the constraint

a ≤ ay ≤ acrit
y . (16)

If a < ay < acrit
y , then the ultraviolet asymptotic for λ reads

λ(µ) ≈
6y4

t (µ)ξ0

πaλ

. (17)
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Figure 2: Evolution of the Higgs self-coupling λ in the SM with the boundary condition λ(MP ) =
0.

For ay = a one has λ(µ) ∝ µ
a

2πξ0 , whereas for ay = acrit
y there is a non-Gaussian fixed point for

λ, which obeys the equation

24λ∗2 + 12λ∗y∗t
2 − 6y∗t

4 +
πaλλ∗

ξ0

= 0 . (18)

For aλ ≥ 0 the amplitude of scalar self-coupling does not exceed λ∗ < 0.3y∗t
2.

To summarise: for any given set of ah, satisfying (10,16), and aλ ≥ 0, there is a unique value
of the low-energy scalar-self coupling, which leads to a consistent theory. This means that the
Higgs boson mass can be predicted. To find mH , one should solve the RG equations fixing the
initial values (say, at Z-mass) for the gauge and Yukawa couplings and adjust λ in a way that
it goes to zero at µ → ∞ or approaches the fixed point λ∗. Moreover, only RG trajectories with
positive λ can be accepted.

The following consideration allows to locate the values of the Higgs boson masses, leading
to consistent theory. The RG equation for λ, satisfying the asymptotic safety requirement, can
be rewritten as an integral equation

λ(µ) = −

∫

∞

µ

dµ′

µ′

(

1 + 2ξ0µ
2/M2

P

1 + 2ξ0µ′2/M2
P

)

aλ
32πξ0

× βSM
λ (h(µ′)) .

Assuming that all couplings fall as in (9), we arrive to the boundary condition at µ = MP

λ(MP ) = −CβSM
λ (h(MP )) , (19)

where C is positive and is of the order of 1. Since βSM
λ ≪ λ at point k = MP , this can be

replaced by
λ(MP ) ≈ 0 . (20)

So, the SM running of λ must bring it close to zero at the Planck scale.
This is not all the story. To have a consistent theory, λ(µ) must be positive at all energy

scales. To find the consequences from this requirement, let us consider the SM evolution of
λ for µ < MP with boundary condition (20). Three different possibilities are shown in Fig.
2. The case (a), when λ hits zero before the Planck scale, is excluded – the SM here breaks
down below MP . The case (c) is potentially dangerous: the negative value of βSM

λ at k = MP ,
by continuity, will push λ to negative values above the Planck scale. In other words, not only
the scalar self-coupling must be close to zero, but also its SM β-function should be small at
k = MP :

βSM
λ (MP ) ≈ 0 . (21)

How accurately the equations (20,21) should be satisfied, depends on the specific values of the
anomalous dimensions ah and requires a numerical solution of the RG equations. It is important
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that there are two conditions instead of one, allowing to fix (or, at least constraint) the Higgs
and top masses simultaneously.

For better accuracy, in the numerical computations we used the two-loop RG equations and
one-loop pole matching of the physical parameters, see [51, 44] and also [43]. We describe below
the most essential features of our findings.

The requirement of positivity of λ at all energy scales leads to strong bounds on the top
mass. The lower bound is mt>∼170 GeV, which practically does not depend on anomalous
dimensions ah. Basically, if mt < 170 GeV, one gets the behaviour shown in Fig. 2(a), leading
to unstable vacuum. Larger mt correspond to the pattern shown in Fig. 2(c). If the magnitudes
of a and ay are sufficiently large, the constants gi and yt go to zero quickly at k > MP , leading
to a small value of βSM

λ above the Planck scale, and thus to the healthy behaviour of λ. If the
magnitudes of a and ay are smaller, the absolute value of βSM

λ right above the Planck scale
increases, knocking λ to the negative region. Thus, the upper limit on the mass of the top,
derived from the positivity considerations, depends substantially on a and ay. For example, for
a = ay = −1, and aλ = 3 the admitted RG trajectories exist for a large variety of top masses:
mt = 171.3 GeV leads to mH ≃ 126 GeV, whereas mt = 230 GeV requires mH ≃ 227 GeV. The
choice of a = ay = −0.25, aλ = 3 leads to an upper bound mt<∼174 GeV, which is very close to
the lower limit. The fact that the experimental value of the top mass is amazingly close to the
lower limit (and to the upper limit for small enough ay) can be considered as a support of the
ideas presented in this paper.

Let us now choose the experimental value for the top quark mass and determine the Higgs
boson mass. The prediction is quite insensitive to the specific values of a, ay and aλ and reads

mH = mmin , (22)

where mmin is given in (12). It is not difficult to understand why this is the case. The SM
behaviour of λ, corresponding to mH = mmin and mt = 171.3 GeV is exactly what is shown
in Fig. 2 (b). Decreasing mH moves us to Fig. 2 (a), what is excluded. Increasing mH makes
λ(MP ) positive, and drives it to infinity above the Planck scale for aλ > 0, which is excluded as
well. The latter behaviour can only be modified if the top Yukawa coupling has a non-Gaussian
fixed point, ay = acrit

y , which leads to the existence of the non-trivial fixed point in λ. Taking,
as an example, a = −1, ay ≃ −0.005, one gets, that λ∗ < 0.043, what shifts up the prediction of
the Higgs mass by not more than 8 GeV. Taking smaller a decreases this shift. This situation,
however, requires some fine tuning and therefore looks improbable.

Our prediction (22) (or (11), if aλ is in fact negative) can be verified at the LHC. Given the
fact that the accuracy in the Higgs mass measurements at the LHC can reach 200 MeV, the
reduction of theoretical uncertainty and of experimental errors in the determination of the top
quark mass and of the strong coupling constant are highly desirable. As was discussed in [43],
the theoretical error can go down from 2.2 GeV to 0.4 GeV if one upgrades the one-loop pole
matching at the electroweak scale and two loop running up to the Planck scale to the two-loop
matching and 3-loop running. Note that 3-loop beta-functions for the SM are not known by
now, and that the two-loop pole matching has never been carried out.

The prediction mH ≈ mmin does not only hold for the hypothesis that the SM plus gravity
describes all the physics relevant for the running of couplings. It generalizes to many extensions
of the SM and gravity, including possibly even higher dimensional theories. Of course, the pre-
cision of the prediction gets weaker if a much larger class of models is considered. Nevertheless,
only two crucial ingredients are necessary for predicting mH ≈ mmin: (i) Above a transition
scale ktr the running should drive the quartic scalar coupling rapidly to an approximate fixed
point at λ = 0, only perturbed by small contributions to βλ from Yukawa and gauge couplings.
This is generically the case for a large enough anomalous dimension aλ > 0. (ii) Around ktr

there should be a transition to the SM-running in the low energy regime. This transition may
actually involve a certain splitting of scales as “threshold effects”, for example by extending
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the SM to a Grand Unified theory at a scale near ktr. It is sufficient that these threshold
effects do not lead to a rapid increase of λ in the threshold region. This will be the case if the
λ-independent contributions to βλ only involve perturbatively small couplings in a threshold
region extending over only a few orders of magnitude.

Some comments are now in order.
(i) The amazing fact that the SM scalar self-coupling is equal to zero together with its β-

function at the Planck scale for the particular values of the top-quark and Higgs masses was
first (to the best of our knowledge) noticed in [52]. These authors put forward the hypothesis
of a “multiple point principle”, stating that the effective potential for the Higgs field must have
two minima, the one corresponding to our vacuum, whereas another one must occur at the
Planck scale. Our reasoning is completely different. Though the sense of the “multiple point
principle” remains unclear to us, we would like to note that the prediction of the Higgs mass
from it coincides with ours (the specific numbers in [52] are different, as they were based on
one-loop computation).

(ii) The values of the Higgs mass we found are consistent with a possibility of inflation due
to the SM Higgs boson [10]. The Higgs-inflation requires the consistency of the SM up to the
lower, than MP energy scale k ∼ MP

ξ
, where ξ = 700 − 105 is the value of the non-minimal

coupling of the Higgs field to the curvature Ricci scalar [53, 43] (see also [54, 55]), the smaller
ξ correspond to smaller Higgs masses.

(iii) We implicitly assumed in this paper that the Fermi scale is fixed to its experimental
value. Refs. [25, 26] found that in a scalar-gravity system the anomalous dimension of the scalar
mass is negative, making it the relevant (and thus unpredictable) coupling. If this is indeed
the case for the SM, then the smallness of the Fermi scale in comparison with the Planck scale
remains the puzzle. If, on the contrary, this anomalous dimension happens to be positive for the
SM, the consistency of the theory will require to put the Fermi scale to zero in the asymptotic
region. If true, this may eventually shed light on the huge difference between the electroweak
and Planck scales.

4 Conclusions

In conclusion, we discussed the possibility that the SM, supplemented by the asymptotically safe
gravity plays the role of a fundamental, rather than effective field theory. We found that this
may be the case if the gravity contributions to the running of the Yukawa and Higgs coupling
have appropriate signs. The mass of the Higgs scalar is predicted mH = mmin ≃ 126 GeV with
a few GeV uncertainty if all the couplings of the Standard Model, with the exception of the
Higgs self-interaction λ, are asymptotically free, while λ is strongly attracted to an approximate
fixed point λ = 0 (in the limit of vanishing Yukawa and gauge couplings) by the flow in the high
energy regime. This can be achieved by a positive gravity induced anomalous dimension for
the running of λ. A similar prediction remains valid for extensions of the SM as grand unified
theories, provided the split between the unification and Planck-scales remains moderate and all
relevant couplings are perturbatively small in the transition region. Detecting the Higgs scalar
with mass around 126 GeV at the LHC could give a strong hint for the absence of new physics
influencing the running of the SM couplings between the Fermi and Planck/unification scales.

This work was supported in part by the Swiss National Science Foundation and by Alexander
von Humboldt Foundation.
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