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Abstract

The inuence of the Maxwell eld on a static, asymptotically at and spherically-symmetric
Gauss-Bonnet black hole is considered. Numerical computations suggest that if the charge
increases beyond a critical value, the inner determinant singularity is replaced by an inner
singular horizon.

1 Introduction

The internal structure of black holes described by the action

S =
1

16π

∫

d4x
√
−g

[

m2

pl(−R + 2∂µφ∂µφ) − e−2φFµνFµν + λe−2φSGB

]

, (1)

where mpl is the Plank mass, φ is the dilaton field, R is the scalar curvature, SGB = RijklR
ijkl−

4RijR
ij +R2 is the Gauss-Bonnet term, FµνFµν is the Maxwell field and λ is the string coupling

constant. The influence of the magnetic charge of the black hole on the behavior of the metric
functions was considered and it was shown that there exists a “critical value” of the charge
beyond which the influence of the Maxwell term becomes more important than the Gauss-
Bonnet one. The inner determinant singularity at r = rs is then replaced by a smooth local
minimum. The focus was made on the behavior of the curvature invariant RijklR

ijkl near this
critical point and in the vicinity of the main singularity at r = rx.

2 Field equations, curvature invariant and calculation aspects

Considering a static, asymptotically flat and spherically symmetric black hole solution, we focus
on the following metric:

ds2 = ∆dt2 −
σ2

∆
dr2 − f2

(

dθ2 + sin2θdϕ2
)

, (2)

where ∆, σ and f are functions that depend on the radial coordinate r only. To simplify the
problem, only the magnetic charge was taken into account. Therefore, for the Maxwell tensor
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Fµν , one can use the ansatz F = q sin θ dθ ∧ dϕ. The corresponding field equations in the GHS
gauge (σ(r) = 1) are as follows:

m2

P l[ff ′′ + f2(φ′)2] + 4e−2φλ[φ′′ − 2(φ′)2]∆(f ′)2 − 1 + 4e−2φλφ′2∆f ′f ′′ = 0, (3)

m2

P l[1 + ∆f2(φ′)2 − ∆′ff ′ − ∆(f ′)2] + 4e−2φλ∆′φ′[1 − 3∆(f ′)2] − e−2φq2f−2 = 0, (4)

m2

P l[∆
′′f + 2∆′f ′ + 2∆f ′′ + 2∆f(φ′)2] + 4e−2φλ[φ′′ − 2(φ′)2]2∆∆′f ′ +

+ 4e−2φλφ′2[(∆′)2f ′ + ∆∆′′f ′ + ∆∆′f ′′] − 2e−2φq2f−3 = 0, (5)

− 2m2

P l[∆
′f2φ′ + 2∆ff ′φ′ + ∆f2φ′′] + 4e−2φλ[(∆′)2(f ′)2 + ∆∆′′(f ′)2 + 2∆∆′f ′f ′′ − ∆′′] −

− 2e−2φq2f−2 = 0. (6)

The behavior of the metric functions and of the dilatonic field near the horizon are described
by a simple Taylor expansion:

∆ = d1x + d2x
2 + O(x2),

f = f0 + f1x + f2x
2 + O(x2), (7)

e−2φ = e−2φ0 + φ1x + φ2x
2 + O(x2),

where (x = r − rh,≪ 1).

Without the Gauss-Bonnet term, the Gibbons-Maeda-Garfinkle-Horowitz-Strominger solu-
tion (GM-GHS) should be recovered as the basic solution of the Einstein equations with the
dilaton and Maxwell terms. This solution is given by:

ds2 =

(

1 −
2M

r

)

dt2 −
(

1 −
2M

r

)−1

dr2

− r

(

r −
q2 exp(2φ0)

M

)

dΩ, (8)

exp(−2φ) = exp(−2φ0) −
q2

Mr
,

where M stands for the black hole mass. In the limit λ → 0, the solution of equations (3)–(6)
at infinity should coincide with Eq. (8).

This establishes the boundary conditions near the horizon and at the infinity respectively.
The computation process was divided into two parts. First, the GM-GHS solution Eq. (8) was
taken as the initial condition at infinity. Solutions for the metric functions and the dilaton
outside the event horizon were found. Then, the results near the horizon were taken as new
initial conditions.

In order to determine the two metric functions and the dilatonic field, three equations are
required. Among the four equations (3)-(6), only equations (3), (5) and (6), which contain the
second derivatives of the metric functions and the dilaton, are used. In contrast, Eq. (4), which
contains the first derivative only, is considered as a constraint to check the solution.

To solve the system (3), (5), (6) the equations are rewritten using E = e−2φ instead of
the dilaton itself. Furthermore, the case λ = 1 is considered. In the chosen metric gauge the
squared Riemann tensor is given by:

RijklR
ijkl = ∆′′2 + 4∆′2 f ′2

f2
+ 8∆2

f ′′2

f2
+ 8∆∆′ f

′f ′′

f2

+
4

f4
− 8∆

f ′2

f4
+ 4∆2

f ′4

f4
. (9)

It behavior of the squared Riemann tensor was the main question of this work because it is
needed to determine if the singularity is the coordinate one or the real scalar one. Thus it
describes the inner structure of the black hole.
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3 Results

Metric function ∆ has a particular point that causes the inner singularity rs when the charge
is small. However if the charge is larger than some critical value qcr the inner singularity
disappears and function ∆ displays the local minimum in a point not far from the function’s
f zero, as it can be seen on Fig. 1. This is the difference between the given soluton and the
GM-GHS.

Figure 1: Metric function ∆ as a function of the radial coordinate r for q = 21.50 < qcr (left
curve) and q = 24.81 > qcr (right curve) when rh = 200.0 Planck units.

Functions’ f (Fig. 2) and e−2φ (Fig. 3) behavior is analogous to the GM-GHS case. If q < qcr

they decrease monotonously till r = rs. Metric function f can be approximately described as
f = r, but it reaches it’s zero before r does even if q < qcr. Function e−2φ also approaches it’s
zero near the function’s f zero. This leads to a fact that near the function’s f zero influence
of the Maxwell and Gauss-Bonnet terms become negligible and ordinary Einstein gravitation is
realised.

It was confirmed that the behavior of the curvature invariant RijklR
ijkl under the black

hole’s event horizon is about zero almost everywhere and near the rs RijklR
ijkl → ∞. When

black hole charge q reaches it’s critical value and metric function’s ∆ local minimum replaces
singularity in rs. In this case the value of curvature invariant RijklR

ijkl does not increase
(Fig. 4). So it is obvious that metric function’s ∆ local minimum is not singular.

Function f plays the role of the radial coordinate in our solution. When rs vanishes, the
new point rx in which f reaches it’s zero, appears. In this case curvature invariant increases
near the rx. So we can consider rx to be the singular horizon. When q < qcr this horizon
belongs to a second branch of the system’s (3)–(6) solution. This branch is nonphysical.

Near the singular horizon rx curvature invariant increases much more rapidly than near the

3



Figure 2: Metric function f as a function of the radial coordinate r for q = 21.50 < qcr (left
plot) and q = 24.81 > qcr (right plot) when rh = 200.0 Planck units.

Figure 3: Dilatonic exponent E = e−2φ as a function of the radial coordinate r for q = 21.50 <

qcr (left plot) and q = 24.81 > qcr (right plot) when rh = 200.0 Planck units.
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Figure 4: Curvature invariant RijklR
ijkl as a function of the metric function f for q = 21.50 < qcr

(left curve) and q = 24.81 > qcr (right curve), with rh = 200.0 Planck units.

Figure 5: Three dimentional dependence of curvature invariant RijklR
ijkl on charge q and radial

coordinate r in case rh = 200 (black hole mass is M = 100).
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singularity rs.

f(r → rs) = fs + fs2(
√

r − rs)
2 + fs3(

√
r − rs)

3 + . . .

f(r → rx) = fx + fx1

√
r − rx + fx2(

√
r − rs)

2 + . . .

for f → fs RijklR
ijkl ∼ const1 × (f − fs)

−1

for f → fx RijklR
ijkl ∼ const2 × (f − fx)

−5

So we can conclude that if singularity rs is replaced by the function’s ∆ local minimum the
singularity in rx is much stronger than the one in rs.

4 Conclusions

When the black hole charge becomes larger than the critical value the singularity rs is replaced
by a local minimum of the fuction ∆(r) and the solution exists till the singular horizon rx.

Function f(r) is the radius of S2, so it plays the role of the radial coordinate. If q < qcr it
decreases monotonously till r = rs like in GHS. When rs disappears the function f(r) reaches
its zero in the new point rx.

Curvature invariant increases much more rapidly (as (r − rx)−5) near the singular horizon
rx than near the singularity rs (as (r − rs)

−1), so the singularity in rx is much stronger than
the one in rs.

New kind of singularity inside black hole was found. Unfortunately Maxwell-Gauss-Bonnet
black hole cannot help wormholes’ or multiverse theories because this singularity is very strong.
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