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Abstract

Problems in the available treatments of the ultraviolet behavior of scalar fields are
pointed out. A new approach is advertised. Results of its application to φ4-model are
presented. In particular, it is explained that the running scalar mass in units of the normal-
ization point has a minimum at a certain location of the normalization point. An energy
scale at which the new qualitative features in the behavior of scalar propagators may appear
is pointed out.

Since the late seventies it is widely accepted that scalar fields are in some sense unnatural.
The unnaturalness of scalar fields shows itself in the fact that quantum corrections to the in-
verse scalar propagator computed with momentum subtractions involve powers of momentum
squared, while for the rest of the fields these corrections involve only logarithms of the momen-
tum squared. (The appearance of the powers in the corrections is related to the presence of
the quadratic divergences in the quantum corrections to scalar mass [1].) Therefore, it is not
obvious how to apply conventional renormalization group treatment to scalar fields. This fact
was pointed out in [2]. Later on it was motivating technicolor models and supersymmetry [3],
[4].

Remarkably, this general observation is not showing up on the level of practical computations
employing minimal subtractions. Since the paper [5] it is well known that scalar fields can
be treated within dimensional regularization and minimal subtractions. As for the fields with
nonzero spin, the renormgroup summation of leading logarithms softens the ultraviolet behavior
of the free scalar propagator:

DMS(Q2) ≈
1

(Q2)1−γφµ2γφ
, (1)

where MS stands for minimal subtractions, γφ is the anomalous dimension of the scalar field,
and µ is the dimensional regularization mass unit. It may seem that dimensional regularization
and minimal subtractions allow us to ignore quadratic divergences and power-like corrections
to the scalar self energy appearing in other regularization and renormalization schemes. But
this is not exactly the case.

It was pointed out in [6] that the quadratic divergences show up within dimensional regu-
larization as poles in the self energy of the scalar fields at nonphysical dimensions 4−2/l, where
l is the number of loops:

Σreg(Q
2) =

∞
∑

l=1

2µ2(−1)l+1Zl

l!l2(D − 4 + 2/l)
+ . . . , (2)

where Σreg is the self energy (which is the sum of loop corrections to the inverse propagator)
regularized with dimensional regularization, dots denote terms without quadratic divergences,
Zl are dimensionless residues depending on couplings and masses (in units of µ) of the model.
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Notice that these residues do not depend on the momentum squared Q2. (The residues Zl have
been computed up to four loops within the standard model [7]; Condition Z1 = 0 has the form
M2

Z + 2M2
W + M2

H = 4M2
t and is known as “Veltman condition” [6].)Minimal subtractions do

not subtract these poles because they are finite at D = 4 and finite number of loops.
At the same time the terms from (2) can be summed up as follows:

Σreg(Q
2) = µ2Z(D)Γ(

2

D − 4
) + . . . , (3)

where the function of dimension Z(D) is related to the above residues in the poles: Z(4 −
2/l) = Zl. We see that the poles concentrating toward the physical dimension form an essential
singularity at D = 4.

Should we do anything with the singularity of Eq. (3)? Can we trust the result of Eq. (1)
despite the fact that it is obtained within a scheme ignoring this singularity? We do not have
clear answers to these questions.

Recently, an alternative approach to constructing finite perturbation theory in quantum
field theories has been suggested [1]. Differential equations for connected Green functions with
small number of external legs appear naturally within the new approach. These equations
describe the dependence of the Green functions on the momenta. For the fields with nonzero
spins these equations are similar to conventional renormalization group equations. A qualitative
difference appears in the evolution equation for scalar propagators. Namely, these equations
turn out to be equations of the second order in the derivatives (they involve second derivatives
over momentum squared). The presence of the second derivatives in the evolution equation for
the scalar propagator is related to the presence of quadratic divergences. Solving these new
evolution equations sums up powers and logarithms of momentum squared appearing in the
perturbative corrections to the scalar propagator. The ultraviolet asymptotics of the solution
disagrees with the minimal subtraction result (1).

In this contribution, we advertise the new approach to perturbative quantum field theory
of [1].

We start with discussing two plots where the results yielded by the new approach are
compared to the results obtained with the minimal subtractions. The plots are drawn for
φ4-model, and show properties of the renormalized scalar propagators with perturbative cor-
rections summed by means of two versions of the evolution equations—the minimal subtraction
renormgroup evolution and the new second order evolution equation. The dependence on the
self coupling enters both evolution equations via the anomalous dimension, γφ. On both plots,
for the sake of the illustration, we take a large value γφ = 0.3. (In the leading approximation of
φ4, γφ = g2/(12(16π2)2), and this value of γφ is too large for perturbative considerations. We
had chosen this unrealistic value to sharpen our illustrative comparison of the two approaches.)

The first plot (Fig. 1) shows the ratio of the propagator to the free propagator as a function
of the euclidean momentum squared in units of the pole mass squared. Physically, it is a “K-
factor” for an amplitude dominated by an exchange of a scalar particle that self interacts with
the φ4 interaction.

For the minimal subtractions, the normalization of the field and the dimensional regular-
ization mass unit were tuned to make the inverse propagator equal to 2M2, and the derivative
of the inverse propagator in Q2 equal to unity at the point Q2 = M2. (This means that M is
the pole mass of the scalar particle.) The same initial conditions were imposed on the inverse
propagator when the new evolution equation was used. We see on Fig. 1 that the K-factor com-
puted with the minimal subtractions is larger than the one computed with the new approach.
So, minimal subtractions overestimate the corrections to the tree amplitude dominated by the
exchange of the scalar particle.

What may be more interesting is the qualitative difference in the momentum dependence
of the two curves. While the minimal subtraction K-factor slowly grows at large Q2 as (Q2)γφ ,
the new result grows almost linearly at large Q2.
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Figure 1: Dependence of scalar propagator on momentum

This qualitative difference between the results of the two approaches is more prominent on
the second plot, Fig. 2. Here we plotted the running mass squared in units of the euclidean
normalization point for three cases: the free theory, the minimal subtractions, and the new
approach. We have three different ultraviolet asymptotics for the running mass. For the free
theory, the mass in units of the normalization point goes to zero; for minimal subtractions it
goes to the constant γφ/(1 − γφ); and for the new approach it goes to infinity.

Let us comment on what is the running mass plotted on Fig. 2. Consider the inverse
propagator R(Q2) near some value Q2

0 of the momentum squared. Expand it in power series
around Q2

0 up to the term linear in (Q2 −Q2
0). Rescale the inverse propagator by the derivative

R′(Q2
0) to achieve the canonical normalization of the Q2-term. (The overall normalization of

the inverse propagator is defined by the normalization of the filed and is in our disposal.)
The inverse propagator becomes Q2 + M2(Q2

0), where M2(Q2
0) ≡ R(Q2

0)/R
′(Q2

0) − Q2
0 is the

running mass depending on the normalization point Q2
0. On Fig. 2, we plotted M2(Q2)/Q2 as

a function of Q2/M2, where M2 is the pole mass of the scalar particle. (For the free theory,
R(Q2) = Q2 + M2, and M2(Q2)/Q2 = M2/Q2, because the running mass coincides with the
pole mass in this case.)

The running mass is an observable. We conclude that the new approach may lead to
observable new predictions for the processes involving scalar particles.

Let us now characterize the new approach in more details. In most general terms, it is a
particular realization of the program discussed, for example, in [8]. It was pointed out in this
paper that the complications related to regularizing a quantum field theory are after all only
of a technical nature. The infinites disappear (for renormalizable theories) if one expresses the
predictions of a theory in terms of a finite set of observables. If so, it should be possible to
avoid infinites altogether. It was demonstrated in [8] that it is indeed possible, at least, within
perturbation theory.

Such “renormalization without infinities” has obvious advantages (there is no need in any
regularization, etc.). Its disadvantage is also obvious: it is technically inconvenient (at least,
in the version of [8]). The elegant methods involving dimensional regularization have been
developed to a high degree of sophistication, and real perturbative computations are performed
exclusively with dimensional regularization and minimal subtractions.

It is not clear at the moment if the approach of [1] that we advertise here overcomes the
technical inconvenience of the previous attempts of renormalizing without infinities. But we
stress that the new approach has yielded the new results about propagators of scalar fields, as
discussed above. These results disagree qualitatively with the results yielded by the minimal
subtractions. And, because the minimal subtractions ignore the singularity of Eq. (3), they
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Figure 2: Dependence of running mass on normalization point

cannot be used to disprove the new results.
What singles the new approach out from the previous attempts of renormalizing without

infinities is the particular choice of the finite set of observables parameterizing the theory.
They are quantities contained in the connected amplitudes of the theory, while in the previous
attempts the parameters of the theory were related to the one-particle irreducible diagrams.

Specifically, let W (J) be the generating functional of connected Green functions of the
theory, and let W̄ (J) be W (J) with the part quadratic in the sources omitted (it is assumed
that the fields are counted from their vacuum values, which implies that the expansion of W̄
in powers of the sources starts from cubic terms). So, W (J) = JDJ/2 + W̄ (J), where D is
the propagator. The key object for the new approach is the generating functional of connected
amplitudes defined as follows: V (φ) ≡ W̄ (Rφ), where R is the inverse propagator, R ≡ D−1.
The parameters used in the new approach to parameterize the theory are contained in the
inverse propagator, R, and in the vertex functional V (φ).

These parameters are extracted from R and V (φ) with an operation Pµ. This operation
acts on any functional of the fields and yields a local functional with couplings of nonnegative
dimensions. The projector Pµ plays in the new approach the role played by the bare action
IB(φ) in the conventional approach. Namely, Pµ defines the model in the new approach. The
connection between the new approach and the conventional one is established by the condition
PµIB(φ) = IB(φ). There is a considerable arbitrariness in the choice of Pµ. This arbitrariness
is parameterized with the normalization point µ. (It is a point in a multidimensional space).

The finite parameters that are used by the new approach to parameterize the theory are the
couplings involved in the so called normalized action defined as follows: Iµ(φ) ≡ Pµ(−φRφ/2 +
V (φ)). Like bare action, the normalized action Iµ is a local functional whose couplings have
nonnegative dimensions. So, it is similar to the bare action of the theory with an important
distinction: the normalized action is a finite functional.

The purpose of the theory is to determine the propagator (or, equivalently, the inverse
propagator R) and the vertex functional V (φ). It turns out that it is possible to derive a new
equation for these objects that does not involve the bare action. The new equation reads

(1 − Pµ)(−φ
R

2
φ + Tc eV ) = 0, (4)

where Tc is an operation similar to T -product. (The subscript “c” stands for “connected”; it
recalls that Tc suppresses the disconnected diagrams. Definition of Tc involves the propagator
D; for more details see [1].) Because this equation does not involve the bare action, we call it
the inaction equation, and the new approach based on (4), the inaction approach.
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It turns out that if the normalized action Iµ is given, the inaction equation (4) suffices to
determine both R and V as a power series in powers of Vµ ≡ PµV (φ). This perturbation theory
expands the finite amplitudes in powers of the finite couplings involved in Vµ. No infinites
appear in the process.

The inaction approach to perturbative quantum field theory is based on the inaction equation
(4) and the requirement that the inverse propagator R and the vertex functional V (φ) do not
depend on the normalization point. This requirement is expressed as follows:

∂Pµ

∂µ
(−φ

R

2
φ + Tc eV ) = 0. (5)

To derive this equation from the inaction equation (4), take the derivative of the inaction
equation in µ, and keep in mind that R and V (φ) do not depend on the normalization point.

The equation (5) determines the dependence of the normalized action Iµ(φ) on the normal-
ization point µ. This dependence, if determined by (5), guarantees that the inverse propagator
R and vertex functional V (φ) determined with the inaction equation (4) by a given Iµ(φ) do not
depend on µ. In this respect, the equation (5) is similar to the renormalization group equations
of the conventional approach.

At a particular choice of Pµ, the renormalization group equation (5) determines the depen-
dence on the momentum squared of the inverse propagator R(Q2). If we apply this consideration
to φ4-theory, we obtain the following equation:

R′′ = −
8γφ

(R′)3Q2

∫

∞

0

J3(x)[mK1(mx)]3x dx + . . . , (6)

where γφ ≡ g2/(12(16π2)2), m2 ≡ R/(R′Q2) − 1, the primes denote the derivatives in Q2, the
dots denote higher order corrections, J3 is the Bessel function of the third order, and K1 is the
modified Bessel function of the first order. (Here g is the coupling defined as the four-particle
connected amplitude taken at some external momenta; for details see [1].)

To study the solution of (6), let us rewrite the second order differential equation (6) as a
pair of coupled first order equations. As discussed in [1], convenient variables are m2(Q2) ≡
(

R/(Q2R′) − 1
)

and n(Q2) ≡ (R′)4. Also it is convenient to use as evolution parameter a log
of Q2, t = log(Q2/M2). It is easy to check that (6) is equivalent to the following pair of the
first order equations:

d

dt
m2 = −m2 +

γφ

n
(1 + m2) Φ(m), (7)

d

dt
n = −4γφ Φ(m), (8)

where

Φ(m) ≡ 8

∫

∞

0

J3(x) [mK1(mx)]3 x dx (9)

This evolution system should be given the initial conditions. We take that m2(0) = 1 and
n(0) = 1, which implies that M in the definition of the evolution parameter is the physical
(pole) mass.

Next step is to study properties of function Φ(m) involved in (7) and (8). For our purposes,
we use the approximation

Φ(m) ≈
0.3609

6 m2 + 0.3609
. (10)

(See [1] for details.)
Now we are ready to study the dynamical system (7), (8).
First, we notice that nothing interesting happens at momenta smaller than M . The terms

in the right-hand-sides of (7), (8) involving γφ can be safely neglected. This is the case because
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m2 is growing at decreasing negative t and the derivative of n is decreasing in absolute value,
while n itself is slightly growing with momentum decreasing. Numerical experiments confirm
this observation. At low momenta inverse propagator R(Q2) is very close to the free inverse
propagator Q2 + M2.

The situation at momentum growing larger than M is much more interesting. The key point
is that there are two competing terms in the right-hand-side of (7). The first term is negative
and decreasing, the second term is positive and increasing. They will inevitably cancel each
other at a certain value of Q2. At this Q2 the derivative of mass squared in t vanishes and
mass stays approximately constant. This happens around the point M2/Q2 = γφ. Here the
minimal value of the running mass is reached, m2

min ≈ γφ. At larger momentum the derivative
of mass becomes positive. The running mass in units of normalization point starts to grow in
contradiction with the dimensional analysis! The normalization factor n is slowly decreasing
around this point: n = 1 − 4γφ log(Q2/M2). This decrease causes extra growth in m2. At this
stage, m2 ≈ γφ/n. We conclude that at this stage the running mass can be expressed in terms
of the anomalous dimension of the field:

M2(Q2) ≈
γφ Q2

1 − 4γφ log(Q2/M2)
, (11)

which describes the growth of the running mass squared in units of the normalization momentum
squared (see Fig. 2). The range of validity of this equation is M2/γφ < Q2 ≪ M2 exp (1/(4γφ)).
When Q2 grows beyond this range, perturbation theory becomes unreliable.

To summarize, applying the inaction approach to φ4 theory we discovered a new phe-
nomenon: For scalar field the running mass in units of the normalization point is not a
monotonous function of the normalization point. It has a minimum at a certain value of the
normalization point.

May this new phenomenon be of importance for the LHC era? Within φ4 the discussed
phenomenon is a two-loop effect. The momentum needed to reach the minimum of the running
mass is

(

1/
√

γφ

)

times larger than the physical mass of the scalar particle. If we take that the
self-coupling of the scalar field is close to unit, we obtain that we need to reach the momentum
which is 16π2

√
12 ≈ 174 times larger than the physical mass, which is not very promising.

Within the standard model, there is a contribution to the anomalous dimension of the scalar
field already in the one-loop approximation. Optimistically, the momentum needed to observe
the unnaturalness of the scalar field may be only 4π ≈ 12.6 times larger than the scalar mass. We
conclude that an application of the considered formalism to the standard model is a necessary
objective.
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