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Abstract

We investigate analytic properties of the six point planar amplitude in N = 4 SUSY at
the multi-Regge kinematics for final state particles. For inelastic processes the Steinmann
relations play an important role because they give a possibility to fix the phase structure
of the Regge pole and Mandelstam cut contributions. The analyticity and factorization
constraints allow us to reproduce the two-loop correction to the 6-point BDS amplitude in
N = 4 SUSY obtained yearlier in the leading logarithmic approximation with the use of the
s-channel unitarity. The cut contribution has the Möbius invariant form in the transverse
momentum subspace. The exponentiation hypothesis for the amplitude in the multi-Regge
kinematics is also investigated in LLA.

1 Introduction

The elastic scattering amplitude in QCD at high energies
√
s and fixed momentum transfers

q =
√
−t for the transition AB → A′B′ with the definite particle helicities λi in the leading

logarithmic approximation (LLA) has the Regge form [1]

A2→2 = 2 gδλAλ
A′
T c

AA′

s1+ω(t)

t
g T c

BB′ δλBλ
B′
, t = −~q2. (1)

The gluon Regge trajectory j(t) = 1 + ω(t) in LLA is given below

ω(−~q2) = −αsNc

(2π)2
(2πµ)2ǫ

∫
d2−2ǫk

~q2

~k2(~q − k)2
≈ − a

(
ln
~q2

µ2
− 1

ǫ

)
, (2)

where we introduced the dimensional regularization (D = 4−2 ǫ) and the renormalization point
µ for the t’ Hooft coupling constant

a =
αsNc

2π

(
4πe−γ

)ǫ
. (3)

The gluon trajectory is also known in the next-to-leading approximation at QCD [2] and in
SUSY gauge models [3].

For finding the total cross-section in LLA it is enough to calculate the production amplitudes
in the multi-Regge kinematics for the final state gluons. They have the simple factorized form [1]

A2→2+n =

−2 s g δλAλ
A′
T c1

AA′

s
ω(−~q2

1)
1

~q21
gCµ(q2, q1)e

∗

µ(k1)T
d1

c2c1

s
ω(−~q2

2)
2

~q22
...
s
ω(−~q2

n+1
)

n+1

~q2n+1

g δλBλ
B′
T

cn+1

BB′ , (4)

where
s = (pA + pB)2 ≫ sr = (kr + kr−1)

2 ≫ ~q2r , kr = qr+1 − qr . (5)
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The matrices T a
bc are the generators of the SU(Nc) gauge group in the adjoint representation and

Cµ(qr, qr−1) are the effective Reggeon-Reggeon-gluon vertices. In the case when the polarization
vector eµ(k1) describes a produced gluon with a definite helicity one can obtain [4]

C ≡ Cµ(q2, q1) e
∗

µ(k1) =
√

2
q∗2q1
k∗1

, (6)

where the complex notation q = qx + iqy for the two-dimensional transverse vectors was used.
The elastic scattering amplitude with vacuum quantum numbers in the t-channel can be

calculated with the use of s-channel unitarity [1]. In this approach the Pomeron appears as a
composite state of two Reggeized gluons. It is convenient to present transverse gluon coordinates
in a complex form together with their canonically conjugated momenta

ρk = xk + iyk , ρ
∗

k = xk − iyk , pk = i
∂

∂ρk

, p∗k = i
∂

∂ρ∗k
. (7)

In the coordinate representation the Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation for the
Pomeron wave function can be written as follows [1]

EΨ(~ρ1, ~ρ2) = H12 Ψ(~ρ1, ~ρ2) , ∆ = −αsNc

2π
min E , (8)

where ∆ is the Pomeron intercept entering in the expression σt ∼ s∆ for the high energy asymp-
totics of the total cross section. The BFKL Hamiltonian has a simple operator representation [5]

H12 = ln |p1p2|2 +
1

p1p∗2
(ln |ρ12|2) p1p

∗

2 +
1

p∗1p2
(ln |ρ12|2) p∗1p2 − 4ψ(1) (9)

with ρ12 = ρ1−ρ2 and ψ(x) = γ′(x)/Γ(x). The kinetic energy is proportional to the sum of two
gluon Regge trajectories ω(−|p|2i ) (i = 1, 2). The potential energy ∼ ln |ρ12|2 is related to the
product of two gluon production vertices Cµ. The Hamiltonian is invariant under the Möbius
transformation [6]

ρk → aρk + b

cρk + d
, (10)

where a, b, c and d are complex parameters. The eigenvalues of two Casimir operators are
expressed in terms of the corresponding conformal weights

m =
1

2
+ iν +

n

2
, m̃ =

1

2
+ iν − n

2
(11)

and for the principal series of unitary representations of SL(2, C) the parameter ν is real and
n is integer.

It turns out, that the BFKL pomeron has the positive intercept ∆ = g2Nc ln 2 /π2 in LLA,
which is not compatible with the s-channel unitarity. To restore the unitarity one should take
into account the diagrams with an arbitrary number of Reggeized gluons in the t-channel.
The composite states of these gluons are described by the Bartels-Kwiecinski-Praszalowicz
(BKP) equation [7]. In the Nc → ∞ limit the corresponding Hamiltonian has the property
of holomorphic separability [8]

H =
1

2

∑

k

Hk,k+1 =
1

2
(h+ h∗) , [h, h∗] = 0 . (12)

The holomorphic Hamiltonian is a sum of the BFKL hamiltonians hk,k+1

h =
∑

k

hk,k+1 , h12 = ln(p1p2) +
1

p1
(ln ρ12) p1 +

1

p2
(ln ρ12) p2 − 2ψ(1) . (13)
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Consequently, the wave function Ψ has properties of holomorphic factorization [8] and duality
symmetry under the transformation [9]

pi → ρi,i+1 → pi+1 . (14)

Moreover, in the holomorphic and anti-holomorphic sectors, there are integrals of motion com-
muting among themselves and with h [5, 10].

The integrability of BFKL dynamics was firstly demonstrated in [10]. It is related to the
fact that h in LLA coincides with a local Hamiltonian of the Heisenberg spin model [11].

In the next-to-leading logarithmic approximation the integral kernel for the BFKL equation
was constructed in Refs. [3, 12]. Due to its Möbius invariance, solutions of the BFKL and BKP
equations can be classified by the anomalous dimension γ = 1

2 + iν of twist-2 operators and the
conformal spin |n|.

The eigenvalue of the BFKL kernel in the next-to-leading approximation was calculated
initially in QCD (see ref. [12]). It contains the contributions proportional to the Kronecker
symbols δn,0 and δn,2. But in N = 4 SUSY these nonanalytic terms are cancelled and a simple
expression having the property of the hermitian separability was obtained [3, 13]. Futhermore,
the final result in two loops is a sum of special functions having the property of maximal
transcendentality [13]. In a different context, one-loop anomalous dimension matrix for twist-2
operators in this model was calculated and its eigenvalues turned out to be proportional to
ψ(1) − ψ(j − 1), which is related to the integrability of the evolution equation for the quasi-
partonic operators in N = 4 SUSY [14]. The integrability in this model has also been established
for other operators and in higher loops [15, 16].

The maximal transcendentality principle suggested in Ref. [13] allowed to extract the univer-
sal anomalous dimension up to three loops in N = 4 SUSY [17, 18] from the QCD results [19].
This principle was also helpful for finding a closed integral equation for the cusp anomalous
dimension in this model [20, 21] satisfying the AdS/CFT correspondence [22, 23, 24]. In the
framework of the asymptotic Bethe ansatz with wrapping corrections the maximal transcen-
dentality principle gave a possibility to calculate the anomalous dimension up to five loops [25]
in an agreement with the BFKL predictions. Moreover, the intercept of the BFKL Pomeron at
a large ’t Hooft coupling constant in N = 4 SUSY was found in Refs. [18, 26]. Next-to-leading
corrections to the BFKL equation can be obtained with the use of the effective action for the
reggeized gluon interactions [27, 28].

A simple ansatz for gluon production amplitudes with the maximal helicity violation in a
planar limit for N = 4 SUSY was suggested by Bern, Dixon and Smirnov [29]. This ansatz for
the elastic case at large coupling was confirmed by Alday and Maldacena [31]. However, later
for the multi-particle production amplitude these authors obtain the result different from the
BDS predictions [?]. It was shown in ref. [32], that already in the 6 point case the BDS ansatz
is in a disagreement with the Steinmann relations [33] which are equivalent to the requirement,
that the production amplitude does not have simultaneous singularities in overlapping channels.
The BDS result was not confirmed also by direct two loop calculations [34]. The reason for the
breakdown of the BDS ansatz is related to the fact, that the BDS amplitude for the transition
2 → 4 in the multi-Regge kinematics does not contain the Mandelstam cut contribution [35].
This new term appears in the j2-plane of the t2 channel at the physical kinematical regions,
where the invariants in the direct channels have the following signs s, s2 > 0; s1, s3 < 0 or
s, s1, s2, s3 < 0; s012, s123 > 0 [32]. In LLA the cut contribution for the 6-point amplitude was
calculated in LLA with the use of the BFKL equation [36]. The corresponding amplitude in
the region s, s2 > 0; s1, s3 < 0 can be written in the factorized form

M2→4 = MBDS
2→4 (1 + i∆2→4) (15)
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where ABDS is the BDS amplitude [29] and

∆2→4 =
a

2

∞∑

n=−∞

(−1)n
∫

∞

−∞

dν

ν2 + n2

4

(
q∗3k

∗

a

k∗b q
∗

1

)iν−n

2
(
q3ka

kbq1

)iν+ n

2
(
s
ω(ν,n)
2 − 1

)
. (16)

Here ka, kb are transverse components of produced gluon momenta, q1, q2, q3 are the momenta
of reggeons in the corresponding crossing channels and

ω(ν, n) = 4aℜ
(
2ψ(1) − ψ(1 + iν +

n

2
) − ψ(1 + iν − n

2
)
)
. (17)

The correction ∆ is Möbius invariant in the momentum space and can be written in terms of
the four-dimensional anharmonic ratios [36] in an accordance with the results of refs. [37].

It was shown also, that in a general case of the Mandelstam cut corresponding to a composite
state of n reggeized gluons the Hamiltonian coincides with the local Hamiltonian for an open
integrable Heisenberg spin chain [38].

In this paper we reproduce some results of ref. [36] using general arguments based only
on analyticity and factorization of the 6-point amplitude without any unitarity constraints
incorporated in the BFKL approach. Also the exponentiation ansatz with an additional phase
factor for the BDS amplitude is investigated in LLA.

2 Dispersion relation in multi-Regge kinematics

The BDS amplitude [29] for the transition 2 → 3 in the multi-Regge kinematics can be written
in the following form compatible with the Steinmann relation (see [32])

MBDS
2→3

Γ(t1)Γ(t2)
= (−s1)ω12(−sκ12)

ω2c121 + (−s2)ω21(−sκ12)
ω1c122 , κ12 = |ka|2 , (18)

where Γ(ti) are the reggeized gluon residues, ka is the transverse momentum of the produced
particle and we put the normalization point µ2 in the Regge factors equal to unity. The gluon
Regge trajectories are

ωr = ω(|qr|2) = −γK

4
ln

|qr|2
λ2

, γK ≈ 4a , a =
g2Nc

8π2
, ω12 = ω1 − ω2 , (19)

where γK is the cusp anomalous dimension and λ2 = µ2 exp(1/ǫ) for D = 4 − 2ǫ with ǫ→ −0.
The real coefficients c121 , c

12
2 are given below [32]

c121 = |Γ12|
sinπ(ω1 − ωa)

sinπω12
, c122 = |Γ12|

sinπ(ω2 − ωa)

sinπω21
, (20)

where the Reggeon-Reggeon-gluon vertex Γ12 in the physical region s, s1, s2 > 0 is

Γ12(lnκ12 − iπ) = |Γ12| exp(iπ ωa) , ωa =
γK

8
ln

|ka|2λ2

|q1|2|q2|2
, (21)

ln |Γ12| =
γK

4

(
−1

4
ln2 |ka|2

λ2
− 1

4
ln2 |q1|2

|q2|2
+

1

2
ln

|q1|2|q2|2
λ4

ln
|k2

a|
µ2

+
5

4
ζ2

)
. (22)

It is well known, that one particle production amplitude with the reggeon exchanges having
definite signatures τ1, τ2 = ±1 in the crossing channels t1 and t2 has the factorized form in all
physical regions [39]

M τ1τ2
2→3

Γ(t1)Γ(t2)
= |s1|ω1ξ1 V

τ1τ2 |s2|ω2ξ2 , V
τ1τ2 =

ξ12
ξ1

c121 +
ξ21
ξ2

c122 , (23)
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where

ξ1 = e−iπω1 − τ1 , ξ2 = e−iπω2 − τ2 , ξ12 = e−iπω12 + τ1τ2 , ξ21 = e−iπω21 + τ1τ2 . (24)

Moreover, for two particles production in the multi-Regge kinematics the amplitude with
definite signatures τi in three crossing channels can be also presented in the factorized form [39]

M τ1τ2τ3
2→4

Γ(t1)Γ(t3)
= |s1|ω1ξ1 V

τ1τ2 |s2|ω2ξ2 V
τ2τ3 |s3|ω3ξ3 , (25)

where V τ2τ3 is obtained from V τ1τ2 (23) with the corresponding substitutions

V τ2τ3 =
ξ23
ξ2

c231 +
ξ32
ξ3

c232 . (26)

For the second produced gluon with the transverse momentum kb the coefficients c23 and phase
ωb are

c231 = |Γ23|
sinπ(ω2 − ωb)

sinπω23
, c232 = |Γ23|

sinπ(ω3 − ωb)

sinπω32
, (27)

ωb =
γK

8
ln

|kb|2λ2

|q2|2|q3|2
, |kb|2 =

∣∣∣∣
s2s3
s123

∣∣∣∣ . (28)

In an accordance with the Steinmann relations the Regge hypothesis leads to the following
expression for the Regge pole contribution Mpole

2→4 [39, 32]

Mpole
2→4

Γ(t1)Γ(t3)
= (−s1)ω12 (−s012κ12)

ω23 (−sκ12κ23)
ω3 c121 c231

+(−s3)ω32(−s123κ23)
ω21 (−sκ12κ23)

ω1 c122 c232 + (−sκ12κ23)
ω2 (−s1)ω12 (−s3)ω32 c121 c232

+(−s2)ω21(−s012κ12)
ω13 (−sκ12κ23)

ω3
sinπω1

sinπω2

sinπω23

sinπω13
c122 c231

+(−s2)ω23(−s123κ23)
ω31 (−sκ12κ23)

ω1
sinπω3

sinπω2

sinπω21

sinπω31
c122 c231 . (29)

It is valid in all physical regions different by signs of momenta pA, pB , k1 and k2. Using the
identity

sinπω1

sinπω2

sinπω23

sinπω13

ξ13ξ2
ξ23ξ1

+
sinπω3

sinπω2

sinπω21

sinπω31

ξ31ξ2
ξ21ξ3

= 1 , (30)

one can verify the Regge factorization of the signatured amplitudes M τ1τ2τ3
2→4 (25). Note, that

there is another useful relation

sinπω1

sinπω2

sinπω23

sinπω13
+

sinπω3

sinπω2

sinπω21

sinπω31
= 1 . (31)

The two-gluon production amplitude in the multi-Regge kinematics can be written as a sum
of the Regge pole and Mandelstam cut contributions [32]

M2→4 = Mpole
2→4 +M cut

2→4 , (32)

where M cut
2→4 is non-zero only in two kinematical regions restricted by the inequalities s, s2 >

0; s1, s3 < 0 and s, s1, s2, s3 < 0; s012, s123 > 0.
The pole term (29) in the region s, s2 > 0; s1, s3 < 0 is given below

Mpole
2→4

|s1|ω1 |s2|ω2 |s3|ω3 Γ(t1)Γ(t3)
= e−iπω3 c121 c231 + e−iπω1 c122 c232 + e−iπω2 c121 c232
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+e−iπω2

(
eiπω13

sinπω1

sinπω2

sinπω23

sinπω13
+ e−iπω13

sinπω3

sinπω2

sinπω21

sinπω31

)
c122 c231 . (33)

With the use of the relation

eiπω13
sinπω1

sinπω2

sinπω23

sinπω13
+ e−iπω13

sinπω3

sinπω2

sinπω21

sinπω31

= cos πω13 + i
sinπω1 sinπω23 + sinπω3 sinπω21

sinπω2
(34)

this result can be simplified

Mpole
2→4

|s1|ω1 |s2|ω2 |s3|ω3 |Γ12||Γ23|Γ(t1)Γ(t3)
= −e−iπω2

sinπω2a

sinπω12

(
e−iπω1b + 2i

sin πω1

sin πω2
sinπω2b

)

+e−iπωb
sinπω1a

sinπω12
=

2 sinπωa sinπωb

i sinπω2
+ e−iπω2 eiπ(ωa+ωb) . (35)

We can present Mpole in the region s, s2 > 0; s1, s3 < 0 as a sum of three contributions

Mpole
2→4

|s1|ω1 |s2|ω2 |s3|ω3 |Γ12||Γ23|Γ(t1)Γ(t3)
=

2e−iπω2 cos πω2 sinπωa sinπωb

i sinπω2

+ie−iπω2 sinπ(ωa + ωb) + e−iπω2 cosπωab , ωab =
γK

4
ln

|ka||q3|
|kb||q1|

. (36)

Here two first terms have the phase structure of the cut contribution M cut
2→4 considered below

in (40) and can be included in it, which gives a possibility to redefine Mpole
2→4 in the form

Mpole
2→4

|s1|ω1 |s2|ω2 |s3|ω3|Γ12||Γ23|Γ(t1)Γ(t3)
= e−iπω2 cos πωab . (37)

Indeed, in an accordance with the above discussed representation for planar amplitudes in the
multi-Regge kinematics the cut contribution can be presented as follows (it corresponds to the
last two terms in the pole contribution (29)) (cf. [38])

M cut
2→4 ∼ (1 − Φω13) (−s012κ12)

ω13 (−sκ12κ23)
ω3(−s2)ω21

∫ i∞

−i∞

dω2′

2πi
φ(ω2′) (−s2)ω2′ . (38)

Here we introduced the quantity Φ which coincides with the anharmonic ratio related to the
conformal invariance of the production amplitudes in the momentum space

Φ =
ss2

s012s123
, 1 − Φ ≈ |ka + kb|2

s2
(39)

and the partial wave φ(ω2) is real for real ω2 and depends on various invariants in crossing
channels. The above expression for M cut

2→4 is non-zero only in two regions, where Φ = exp(∓2πi)
(really this fact fixes the relative coefficient of two terms at the first factor in (38). From this
representation we conclude, that the phase structure of the cut contribution at s, s2 > 0, s1, s3 <
0 (corresponding to Φ = exp(−2πi)) is

M cut
2→4

|s1|ω1|s2|ω2 |s3|ω3 |Γ12||Γ23|Γ(t1)Γ(t3)
= i e−iπω2

∫ i∞

−i∞

dω2′

2πi
f(ω2′) e

−iπω2′ |s2|ω2′ . (40)

The redefined partial wave f(ω2′) can contain the pole ∼ 1/ω2′ , which allows one to absorb the

terms ∼ i exp(−iπω2) from Mpole
2→4 to M cut

2→4, as it was done in transition from (36) to (37).
In a similar way the pole and cut contributions in the region s, s1, s2, s3 > 0; s012, s123 > 0

(Φ = exp(2πi)) can be presented in the form

Mpole
2→4

|s1|ω1 |s2|ω2 |s3|ω3|Γ12||Γ23|Γ(t1)Γ(t3)
= cos πωab , (41)

M cut
2→4

|s1|ω1 |s2|ω2 |s3|ω3|Γ12||Γ23|Γ(t1)Γ(t3)
= −i

∫ i∞

−i∞

dω2′

2πi
f(ω2′) |s2|ω2′ . (42)
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3 Factorization and analytic properties of M2→4

The BDS amplitude in the multi-Regge kinematics for the physical channel in which s, s2 >
0, s1, s3 < 0 is given below (see ref. [32])

MBDS
2→4

|s1|ω1 |s2|ω2|s3|ω3 |Γ12||Γ23|Γ(t1)Γ(t3)
= C e−iπω2 eiπ(ωa+ωb) = e−iπω2 eiπδ , (43)

where

δ =
γK

4
ln

|q1||q2||ka||kb|
|ka + kb|2|q2|2

(44)

and we used the following expression for the phase factor C

C = exp

(
γK

4
iπ ln

|q1|2|q3|2
|ka + kb|2λ2

)
. (45)

Note, that the phase δ does not contain infrared divergencies and can be written as follows

δ =
γK

4
ln

u2u3

(1 − u1)2
, (46)

where ur are anharmonic ratios of invariants in the momentum space

u1 = Φ =
s s2

s123s012
, u2 =

s3t1
s123t2

, u3 =
s1t3
s012t2

. (47)

Correspondingly, in the physical region where s, s1, s2, s3 < 0; s012, s123 > 0 the BDS amplitude
can be written as follows

MBDS
2→4

|s1|ω1 |s2|ω2 |s3|ω3 |Γ12||Γ23|Γ(t1)Γ(t3)
= C e−iπω2 eiπ(ωa+ωb) = e−iπδ , (48)

According to the hypothesis formulated in refs. [?, 40] the correct expression for M2→4 can
be obtained from MBDS

2→4 by multiplying it by a factor c being a function of these anharmonic
relations

M2→4 = cMBDS
2→4 . (49)

The factorization hypothesis together with the above discussed representation of M2→4 in the
form of a sum of the Regge pole and the Mandelstam cut contributions (32) leads to the following
relation for c valid in the region s, s2 > 0, s1, s3 < 0

c eiπ δ = cos πωab + i

∫ i∞

−i∞

dω

2πi
f(ω) e−iπω (1 − u1)

−ω , 1 − u1 ≈ |ka + kb|2
s2

→ +0 . (50)

Here f(ω) is a real function depending on two invariant variables

φ2 =
u2

1 − u1
≈ |q1|2|kb|2

|ka + kb|2|q2|2
, φ3 =

u3

1 − u1
≈ |q3|2|ka|2

|ka + kb|2|q2|2
. (51)

The phases δ and ωab also can be expressed in terms of these variables

δ =
γK

8
ln(φ3φ2) , ωab =

γK

8
ln
φ3

φ2
. (52)

In a similar way for the production amplitude in the region s, s1, s2, s3 < 0; s012, s123 > 0
one can derive the relation

c e−iπ δ = cosπωab − i

∫ i∞

−i∞

dω

2πi
f(ω) (u1 − 1)−ω , u1 > 1 . (53)
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The above representations for c are valid on the second sheets of the Riemann surface of
this function at u1 → 1. In the quasi-multi-regge kinematics s1, s3 ≫ s2 ∼ t1 ∼ t2 ∼ t3
the anharmonic ratio u1 is not close to unity. The first sheet of the Riemann surface for c
corresponds to the production amplitude M2→4 in the kinematical region where s, s1, s2, s3 > 0.
In this region the amplitude is regular at u1 = 1 and has the singularity at u1 = 0.

To illustrate these analytic properties let us consider the BDS amplitude in the region
s, s1, s2, s3 > 0. It contains the following dependence on u1 [32]

lnMBDS
2→4 = −γK

8

(
Li2(1 − u1) + lnu1 ln(−√

u2 u3) +
1

2
ln2 u1

)
+ ... , (54)

where we included also the phase iπ(ωa + ωb) and used the identity

|q1| |q3| |k1| |k2|
−s2 |q2|2

= −√
u2 u3 . (55)

With the use of the integral representation for the dilogarithm function Li2(z)

Li2(z) = −
∫ z

0

dx

x
ln(1 − x) = z

∫
∞

1

dz′

z′(z′ − z)
ln z′ (56)

we conlude, that the one loop BDS amplitude [29] has singularities at u1 = 0

I
(1)
6 + F

(1)
6 = −γK

8

∫ 0

−∞

(1 − u1) du
′

1

(1 − u′1)(u1 − u′1)

(
ln(1 − u′1) − ln(−√

u2 u3) − ln(−u′1)
)

+ ... . (57)

In the multi-Regge regime, where s, s2 > 0; s1, s3 < 0, the invariant u1 is close to unity

u1 ≈ e−2πi

(
1 − |k1 + k2|2

s2

)
(58)

and the amplitude should be continued to the second sheet of the u1-plane through the lower
edge of the cut at u1 < 0, which generates the additional term (cf. [32])

∆
(
I
(1)
6 + F

(1)
6

)
= −πi γK

4

(
ln(1 − u1) − ln

t1t3
s2λ2

− lnu1

)
. (59)

Note, that this term has also a singularity at u1 = 1 and is pure imaginary in the physical
region u1 < 1.

In the next section we consider the two loop contribution. In this case the second order
expansion of the BDS exponent on the first sheet also can be presented in a form of the dispersion
integral which relates its real and imaginary parts. However, this expression does not agree with
the Steinmann relations.

4 Two loop production amplitude M2→4

For the production amplitude in LLA the following expression for M2→4 in the region s, s2 >
0; s1, s3 < 0 was obtained in two loops with the use of the s-channel unitarity [36]

M2→4 = cMBDS
2→4 , c = 1 +

a2

4
r2 +O(a3) , (60)

where

r2 ≈ Li2(1 − u1) ln
(1 − u1)

u2
ln

(1 − u1)

u3

8



+Li2(1 − u2) ln
(1 − u2)

u3
ln

(1 − u2)

u1
+ Li2(1 − u3) ln

(1 − u3)

u2
ln

(1 − u3)

u1
. (61)

Here we introduced the four-dimensional anharmonic ratios (47) and included additional terms
to provide the invariance of M2→4 under the cyclic permutations. The added contributions
are not essential in the multi-Regge kinematics, although for the exact two-loop result they
are important. Note, that another physical region s, s1, s2, s3 < 0; s012, s123 > 0, where u1 =
exp(2πi), is also described correctly by the above expression (61) for r2.

We should take into account also a similar cut contribution to the transition amplitude
3 → 3. But in fact it is already contained in eq. (61) due to the relations (cf. [32, 36])

s13s02
st′2

= u2 → 1 +
|q1 + q3 − q2|2

t′2
,

1 − u2

u1
→ |q1 + q3 − q2|2|q2|2

|q3|2|q1|2
,
u1

u3
→ |q3|2|q1|2

|k2|2|k1|2
. (62)

Thus, our expression (61) in two loops leads to the correct multi-Regge asymptotics in all
channels. Moreover, the conformal invariance in the momentum representation is valid also in
higher loops of LLA if we substitute the anharmonic ratios in the two-dimensional transverse
subspace by the corresponding four dimensional ratios u2,3 and the power of the logarithm ln s2
at large s2 by the following expression

−2πi
lnn s2
n

→ (−1)n−1

∫ 1−u1

0

dt

t
lnn−1 t ln(1 − t) , (63)

which can be written in terms of the polylogarithm function Lin+1(z).
Let us expand the BDS amplitude in the region s, s2 > 0; s012, s123 < 0 in the perturba-

tion series to investigate a possibility to correct its bad analytic properties with the factor c
depending on the anharmonic ratios. It can be presented at this kinematics in the form [32]

MBDS
2→4 = C Γ(t1) (−s1)ω1 Γ(lnκ12 − iπ) (−s2)ω2 Γ(lnκ23 − iπ) (−s3)ω3 Γ(t2) , (64)

which was simplified above (see (43)). Note, that the phase δ (44) does not contain infrared
divergencies and depends on an anharmonic ratio in the two-dimensional momentum space. It
can be written also in terms of four-dimensional anharmonic ratios (46).

The first order term of the expansion of the phase in (43) over δ corresponds to the Man-
delstam cut contribution in one-loop approximation [32]. The second order term −π2δ2/2 of
the phase factor expansion

eiπδ = 1 + iπδ − π2 δ
2

2
+ ... (65)

contradicts the Steinmann relations and analytic properties for M2→4 if we would not take into
account the additional logarithmic contribution ∼ ln s2 appearing in the factor c. On the other
hand, the LLA result for c in the two loop approximation after its analytic continuation to the
region s, s2 > 0; s1, s3 < 0 can be written as follows [36]

c ≈ 1 − 2πi
a2

4
ln s2 ln

|k2|2|q1|2
|k1 + k2|2|q2|2

ln
|k1|2|q3|2

|k1 + k2|2|q2|2
+ ... . (66)

It does not contain the phase factor exp(−πi) in the argument of ln s2 due to the pure imaginary
asymptotics of the function Li2(1−u1) in eq. (61) at u1 → exp(−2πi). To obtain the correct real
part for F2→4 in an accordance with the phase structure of the cut contribution (38) depending
on the argument −s2 we should find somewhere the following real term

∆c = −a
2 π2

2
ln

|k2|2|q1|2
|k1 + k2|2|q2|2

ln
|k1|2|q3|2

|k1 + k2|2|q2|2
. (67)
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It is remarkable, that this correction is contained already at the BDS factor in eq. (49). Indeed,
∆c can be written as follows

∆c = −a
2 π2

2

(
ln2 |k1||k2||q1||q2|

|k1 + k2|2|q2|2
− ln2 |k1||q3|

|k2||q1|2
)

≈ −f
2
K π2

32

(
ln2 |k1||k2||q1||q2|

|k1 + k2|2|q2|2
− ln2 |k1||q3|

|k2||q1|2
)

= −π2 δ
2

2
+ π2ω

2
ab

2
. (68)

The first contribution −δ2/2 is the second order term in the expansion of the phase factor
exp(iδ) in (43) and the second contribution ω2

ab/2 is opposite in sign to the second order term

in the expansion of the factor cosωab included in the pole contribution Mpole
2→4 (37). Note, that

the phase factor exp(−iπω2) exists in all three amplitudes M2→4, M
pole
2→4 and M cut

2→4.
Thus, the two-loop result for the two gluon production amplitude in LLA is in a full agree-

ment with analyticity requirements and a factorization hypothesis (49). In fact it follows com-
pletely from these properties without any necessity to solve the BFKL equation [36]. Moreover,
the BFKL kernel can be calculated from the two loop correction. Note, that the analytic prop-
erties of the cut contribution (38) predict the pure imaginary result also for the next-to-leading
term in r2 (not proportional to ln s2). Recently [41] this prediction was confirmed by an analytic
continuation of the exact expression for two loop production amplitude obtained in refs. [42, 43].
It means, that the representation of the six point amplitude in terms of the P -exponents [40]
is in an agreement with the Mandelstam cut asymptoticsat least in two loops [36].

In a similar way in the physical region s, s, s1, s2, s3 < 0; s012, s123 > 0 the factor c in two
loops can be presented as follows

c ≈ 1 + 2πi
a2

4
(ln(−s2) − iπ) ln

|k2|2|q1|2
|k1 + k2|2|q2|2

ln
|k1|2|q3|2

|k1 + k2|2|q2|2
+ ... . (69)

Here the real term ∼ a2π2 contradicts the analytic properties for the Mandelstam cut contribu-
tion in this region and it is cancelled as above with the two loop expansions of the BDS phase
and the pole contribution

∆c = −π2 δ
2

2
+ π2ωab

2
. (70)

5 Exponentiation hypothesis

As it was argued above, in the region s, s2 > 0; s1, s3 < 0 for the multi-loop amplitude M2→4

in LLA and beyond it one can use the relations

M2→4 = cMBDS
2→4 = Mpole

2→4 +M cut
2→4 , (71)

where c is an invariant function of three anharmonic ratios in the momentum space. The BDS
amplitude is given by eq. (43), Mpole

2→4 is known explicitly (see (37)) and the analytic properties
of M cut

2→4 are defined by the integral (40).
These relations can be considered as a set of equations for the real functions c and f(ω2)

although they seem to be incomplete, because for example in two loops we can add to the result
the next-to-leading correction of the form (see ref. [41])

∆M2→4 = ia2 χ(z2, z3) , z2 =
1 − u1

u2
, z3 =

1 − u1

u3
. (72)

Generalizing the BDS hypothesis one can assume, that the correct amplitude M2→4 has an
exponential form. However, it will be shown below, that the factor c can not be a pure phase
in the region s, s2 > 0, s1, s3 < 0

c 6= eiφ . (73)

10



This conclusion is based on the fact, that in LLA the complex structure of the production
amplitude (including the phase of the BDS ansatz) is known.

We start with the dispersion representation for the cut contribution to the production am-
plitude in LLA (see (40))

M cut
2→4

|MBDS
2→4 | = ia π e−iπω2

∞∑

n=0

(ln(−s2))n cn an , (74)

where the coefficients cn due to eq. (16) are known in the form of integrals over ν and a sum
over n from powers of the eigenvalue (17) of the BFKL kernel for the adjoint representation.
For the real part one obtains with a leading accuracy

ℜ M cut
2→4

e−iπω2|MBDS
2→4 | = aπ2

∞∑

n=0

(ln(s2))
n−1 n cn a

n . (75)

We devided the equality with the factor exp(−iπω2) because it is common for all contributions.
On the other hand, using the exponentiation hypothesis with the additional asumption, that

the remainder function is a phase

c = eiφ , φ ≈ ∆2→4 , (76)

where ∆2→4 is given in eq. (16), one can obtain the coefficients cn for n ≥ 2 from the expansion

ℜ M cut
2→4

e−iπω2 |MBDS
2→4 | = −π

2

2

(
a

∞∑

k=0

(ln s2)
k ck a

k

)2

, (77)

where

c0 = ln
|q1|2|q3|2

|k1 + k2|2λ2
+

1

2
ln

|k1|2λ2

|q1|2|q2|2
+

1

2
ln

|k2|2λ2

|q3|2|q2|2
=

1

2
ln

|q1|2|q3|2|k1|2|k2|2
|k1 + k2|4|q2|4

. (78)

Here the first term appears from the factor C (45) and two last terms are from the phases ωa

(21) and ωb (28). For the coefficient c1 we have from the previous section (see (67))

c1 = −1

2
ln

|k2|2|q1|2
|k1 + k2|2|q2|2

ln
|k1|2|q3|2

|k1 + k2|2|q2|2
. (79)

Thus, from the exponentiation hypothesis (76) we obtain the recurrent relation for cn at n ≥ 2

n cn = −1

2

n−1∑

k=0

ck cn−1−k . (80)

In particular,

c2 =
1

8
ln

|q1|2|q3|2|k1|2|k2|2
|k1 + k2|2|q2|4

ln
|k2|2|q1|2

|k1 + k2|4|q2|2
ln

|k1|2|q3|2
|k1 + k2|2|q2|2

. (81)

Let us introduce the generating function y(x)

M cut
2→4

e−iπω2 |MBDS
2→4 | = ia π y(a ln(−s2)) , y(x) =

∞∑

n=0

xn cn . (82)

This function satisfies the equation

d

dx
y(x) = −1

2
y2(x) + b , (83)
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where

y(0) = c0 , b = c1 +
c20
2

=
1

2
ln2 |k2q1|

|k1q2|
. (84)

Its solution is

y =
√

2b tanh

(√
b

2
x+ δ

)
, coth δ =

c0√
2b

(85)

with the perturbative expansion

y = c0 + c1 x− c0 c1
2

x2 + ... . (86)

This result based on analytic properties of the production amplitude and on the asumption
of the exponentiation (76) of i∆2→4 in (15) is in an disagreement with the perturbative solution
(16) of the BFKL equation corresponding to the factorization property of t-channel partial
waves. In particular, the exponent exp(−

√
2b x) depends only on the module of the anharmonic

ratio u2/u3 whereas the correct BFKL expression depends also on a phase. It turns out, that
already in three loops the leading logarithmic result (16) contains the special functions Li3(x)
and Li2(x) absent in c3. Indeed, according to ref. [44] the function c̃3 obtained from eq. (16)
has the form

c̃2 =
1

8

(
2 ln |w|2 ln2 |1 + w|2 − 4

3
ln3 |1 + w|3 − 1

2
ln2 |w|2 ln |1 + w|2

)

+
1

8
ln |w|2 (Li2(−w) + Li2(−w∗)) − 1

4
(Li3(−w) − Li3(−w∗)) , w =

q3k1

k2q1
. (87)

Thus, the factor c in the region s, s2; s1, s3 < 0 can not be a pure phase in the physical
regions with u1 = exp(±2πi), where the amplitude contains the Mandelstam cuts. The analytic
properties of c are presented in eqs. (50 and (53)). They show, that the knowledge of the
amplitude in LLA allows one to calculate not only leading corrections to the imaginary part of
the factor c, but also - leading corrections to its real part suppressed by the extra factor ∼ a
(see ref. [44]).

6 Conclusion

In this paper we investigated analytic properties of the planar six point amplitude for N = 4
SUSY in the multi-Regge kinematics. This amplitude has the Regge pole and the Mandelstam
cut contributions and should satisfy the Steinmann relations. We calculated the two loop
correction to the amplitude M2→4 at the region s, s2 > 0; s1, s3 < 0 in an agreement with the
results of the paper [36] using only analyticity constraints and a factorization hypothesis. It
was shown, that in the next-to-leading approximation the two loop correction to the factor c
in front of the BDS expression should be also pure imaginary. This prediction is confirmed by
direct calculations in ref. [41]. We also demonstrated above, that in upper loops the factor c in
the Regge kinematics can not be a pure phase (see (73)), because such phase structure would
contradict the t-channel Regge factorization incorporated in the BFKL equation.

I thank J. Bartels and A. Prygarin for helpful discussions. This work was supported by the
Russian grant RFBR-10-02-01338-a.
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