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Abstract

It is a brief account of a new class of N = 2 supersymmetric Landau models which generalize
the previously studied superplane Landau model by extending it to an arbitrary magnetic
field on any two-dimensional manifold M2. Using an off-shell N = 2 superfield formalism, it
is shown that these models are generically characterized by two independent potentials given
on M2. The relevant Hamiltonians are factorizable and in the restricted case, when both
the Gauss curvature and the magnetic field are constant over M2, admit infinite series of
factorization chains implying the integrability of the associated systems. For the particular
model with CP

1 as the bosonic manifold, the spectrum and eigenvectors are presented.

1 Introduction: definitions and motivations

The original Landau model [1] describes a charged particle moving on a plane orthogonal to a
constant uniform magnetic flux. A spherical generalization of this model was given by Haldane
[2]. It describes a charged particle on the 2-sphere S2 ∼ SU(2)/U(1) in the background of
Dirac monopole placed in the center. The Landau-type models have plenty of applications. In
particular, they provide a theoretical basis of the Quantum Hall Effect (QHE) [3].

By definition, superextended Landau models are models of non-relativistic particles moving
on supergroup manifolds with S2 or its planar limit as a “body”.

Minimal superextensions of the S2 Haldane model were constructed in [4, 5]. They include:

• Landau problem on the (2|2)-dimensional supersphere SU(2|1)/U(1|1) [5];

• Landau problem on the (2|4)-dimensional superflag SU(2|1)/[U(1) × U(1)] [4, 5].

Their large S2 radius limits yield the planar super-Landau models. They were introduced
and studied in [6, 7] 1.

The most surprising feature of the super-planar Landau models is the presence of hidden
worldline N = 2 supersymmetry. One starts with a model invariant under some target super-
symmetry and, as a gift, finally finds the existence of the N = 2, d = 1 supercharges which
square on the Hamiltonian of the system. Thus, the super-planar Landau models simultane-
ously provide a class of the supersymmetric quantum mechanics (SQM) models. SQM models
[9] have a lot of applications in diverse domains.

Based on this remarkable property, a natural extension of the super-planar Landau models
can be constructed in the following way. One takes the fundamental notion of the worldline N =
2 supersymmetry as the primary principle and constructs the most general N = 2 SQM model
involving the standard superplane Landau model [6] as a particular case. Such a construction
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1See also [8] where an alternative planar super-Landau model based on the contraction of the supergroup

OSp(1|2) was presented.
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has been recently accomplished in [10], starting from N = 2, d = 1 superfield formalism. The
basic aim of the present Talk is to give a brief account of this new class of super-Landau models.

Most of the results reported and mentioned in the Talk are obtained together with Andrey
Beylin, Tom Curtright, Luca Mezincescu and Paul K. Townsend.

2 Bosonic Landau models

Before turning to the main subject, I will recall the salient features of the bosonic Landau-type
models and their superextensions.

2.1 Planar bosonic Landau model

The Landau model is described by the following Lagrangian and Hamiltonian:

Lb = |ż|2 − iκ (żz̄ − ˙̄zz) = |ż|2 + (Az ż +Az̄˙̄z) , (2.1)

Az = −iκz̄, Az̄ = iκz, ∂z̄Az − ∂zAz̄ = −2iκ .

Hb =
1

2

(

a†a+ aa†
)

= a†a+ κ , (2.2)

where
a = i(∂z̄ + κz), a† = i(∂z − κz̄), [a, a†] = 2κ . (2.3)

The invariances of this model are “magnetic translations” and 2D rotations generated by:

Pz = −i(∂z + κz̄), Pz̄ = −i(∂z̄ − κz), Fb = z∂z − z̄∂z̄,

[Pz, Pz̄ ] = 2κ, [H,Pz ] = [H,Pz̄ ] = [H,Fb] = 0. (2.4)

The full set of wave functions corresponding to different Landau Levels (LL) is as follows:

• Lowest Landau level (LLL), HΨ(0) = κΨ(0):

aΨ(0)(z, z̄) = 0 ⇔ (∂z̄ + κz)Ψ(0) = 0 → Ψ(0) = e−κ|z|
2

ψ(0)(z)

• n-th excited LL:

Ψ(n)(z, z̄) = [i(∂z − κz̄)]ne−κ|z|
2

ψ(n)(z), HΨ(n) = κ(2n + 1)Ψ(n)

Each LL is infinitely degenerate due to (Pz, Pz̄) invariance. The w.f. form infinite-dimensional
unitary irreps of this non-compact group, with the basis consisting of the monomials zm,m > 0.
They possess invariant norms:

||Ψ(n)||2 ∼
∫

dzdz̄e−2κ|z|2ψ(n)(z̄)ψ(n)(z) <∞ (2.5)

for any monomial ψ(n)(z) ∼ zm .

2.2 Generalization to S2

An S2 analog of the planar Lagrangian Lb is

Lb =
1

(1 + r2|z|2)2 |ż|
2 + is

1

1 + r2|z|2 (żz̄ − ˙̄zz) . (2.6)

The second term is the d = 1 WZ term on the coset SU(2)/U(1), r being the “inverse” radius
of S2. The first term is the d = 1 pullback of the S2 distance.
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The wave functions in this case are finite-dimensional SU(2) irreps, s, s+ 1, s+ 2, . . . being
their “spins”. The LLL wave function is determined by the covariant analyticity condition on
S2

∇z̄Ψ(0) = 0, ∇z̄ = (1 + r2|z|2)∂z̄ + U(1) connection . (2.7)

Each LL is finitely degenerated since the wave functions are SU(2) irreps. The limit r → 0
yields the planar Landau model.

3 Superextensions

3.1 Worldline supersymmetry vs target-space supersymmetry

Super-Landau models are quantum-mechanical models for a charged particle on a homoge-
neous supermanifold, such that the “bosonic” truncation is either Landau’s original model for
a charged particle on a plane or Haldane’s spherical version of it. There are two approaches to
constructing such extensions.

• Worldline supersymmetry:

t ⇒ (t, θ, θ̄), z, z̄ ⇒ Z(t, θ, θ̄), Z̄(t, θ, θ̄) ,

z, z̄ ⇒ (z, z̄, ψ, ψ̄, . . .) − worldline supermultiplet .

This option yields a version of Supersymmetric Quantum Mechanics.

• Target-space supersymmetry:

group manifold : (z, z̄) ⇒ supergroup manifold : (z, z̄, ζ, ζ̄)

(Pz , Pz̄, Fb, κ) ⇒ (Pz , Pz̄,Πζ ,Πζ̄ , Fb, Ff , κ, . . .),

Πζ = ∂ζ + κζ̄, Πζ̄ = ∂ζ̄ + κζ, Ff = ζ∂ζ − ζ̄∂ζ̄ , {Πζ ,Πζ̄} = 2κ .

The geometrical meaning of this procedure in the simplest case is that 2-dimensional
plane (z, z̄) is extended to a (2|2) dimensional superplane (z, z̄, ζ, ζ̄) , where ζ, ζ̄ are new
complex fermionic coordinates.

3.2 Superplane Landau model

Planar super-Landau models are the large radius limits (contractions) of the supersphere and
superflag Landau models. One makes explicit the S2 radius R, properly rescales Hamiltonians
and sends R→ ∞. The supersphere SU(2|1)/U(1|1) goes into an (2|2) dimensional superplane.

The superplane Landau model is determined by the following Lagrangian and Hamiltonian:

L = Lf + Lb = |ż|2 + ζ̇ ˙̄ζ − iκ
(

żz̄ − ˙̄zz + ζ̇ ζ̄ + ˙̄ζζ
)

, (3.1)

H = a†a− α†α = ∂ζ̄∂ζ − ∂z∂z̄ + κ
(

z̄∂z̄ + ζ̄∂ζ̄ − z∂z − ζ∂ζ
)

+ κ2
(

zz̄ + ζζ̄
)

, (3.2)

where the operators a, a† were defined in (2.3) and

α = ∂ζ̄ − κζ , α† = ∂ζ − κζ̄ . (3.3)

The invariances are generated by Pz, Pz̄ ,Πζ ,Πζ̄ and by the new spinorial generators

Q = z∂ζ − ζ̄∂z̄ , Q† = z̄∂ζ̄ + ζ∂z , C = z∂z + ζ∂ζ − z̄∂z̄ − ζ̄∂ζ̄ . (3.4)

They generate the supergroup ISU(1|1), contraction of SU(2|1):

{Q,Q†} = C , [Q,Pz ] = iΠζ , {Q†,Πζ} = iPz . (3.5)
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3.3 Norms and hidden worldline supersymmetry

The natural ISU(1|1)-invariant inner product is defined as

< φ
∣

∣ψ >=

∫

dµ φ
(

z, z̄; ζ, ζ̄
)

ψ
(

z, z̄; ζ, ζ̄
)

, dµ = dzdz̄dζdζ̄ . (3.6)

This definition leads to negative norms for some component wave functions. To make all norms
not negative we need to introduce the “metric” operator:

G =
1

κ

[

∂ζ∂ζ̄ + κ2ζ̄ζ + κ
(

ζ∂ζ − ζ̄∂ζ̄
)]

, << φ
∣

∣ψ >>∼
∫

dµ (Gφ)ψ . (3.7)

The full Hamiltonian H commutes with G, so H = H† = H‡ , where ‡ denotes hermitian con-
jugation with respect to the new inner product. However, the hermitian conjugation properties
of the operators which do not commute with G, change.

Let O be generator of some symmetry, such that [H,O] = 0. Then

O‡ ≡ GO†G = O† +GO†
G , OG ≡ [G,O] , (3.8)

and OG is another operator such that [H,OG] = 0 . The symmetry generators that do not
commute with G thus generate, in general, additional “hidden” symmetries.

In our case G commutes with all ISU(1|1) generators, except for Q, Q†. Thus the conjuga-
tion rules of these generators change:

Q‡ = Q† − i

κ
S , S = a†α = i

(

∂z∂ζ̄ + κ2z̄ζ − κz̄∂ζ̄ − κζ∂z
)

, S‡ = aα‡ , (3.9)

where α‡ = −α† . The operators S, S‡,H can be checked to form N = 2, d = 1 superalgebra:

{S, S‡} = 2κH , {S, S} = {S‡, S‡} = 0 , [H,S] = [H,S‡] = 0 . (3.10)

The LLL ground state is annihilated by S, S‡

Sψ(0) = S‡ψ(0) = 0,

and so it is a singlet of N = 2 supersymmetry. Hence N = 2 supersymmetry is unbroken and
all higher LL form irreps of it.

3.4 Superfield formulation

Superfield formulation of the superplane model was given in [11]. It makes manifest the hidden
N = 2 supersymmetry of this model.

The starting setting of this formulation is N=2, d=1 superspace in the left-chiral basis
(τ ≡ t + iθθ̄, θ, θ̄). The basic objects are N=2, d=1 chiral bosonic and fermionic superfields
Φ = z(τ) + θχ(τ), Ψ = ζ̄(τ) + θh(τ), with χ(τ) and h(τ) being auxiliary fields:

D̄Φ = D̄Ψ = 0 .

The superfield action eventually yielding the superplane model action is:

S =

∫

dtd2θ
{

ΦΦ̄ + ΨΨ̄ + ρ
[

ΦDΨ − Φ̄D̄Ψ̄
]}

, ρ = 1/(2
√
κ) . (3.11)

The auxiliary fields h and χ are eliminated by their algebraic equations of motion as χ =
2iρ ζ̇ , h = −2iρ ˙̄z. Then the action written in terms of physical fields reads

S ⇒
∫

dt
[

iκ
(

z ˙̄z − z̄ż + ζ ˙̄ζ − ζ̇ ζ̄
)

+
(

ż ˙̄z + ζ̇ ˙̄ζ
) ]

. (3.12)

The natural idea was to construct a generalized N = 2 supersymmetric Landau model by
going over to the most general N = 2 superfield action, S ⇒ Sgen. It was recently accomplished
in [10].
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4 From “free” theory to interaction

4.1 Most general N = 2 superfield action

A generalization of the superplane model superfield action (3.11) is as follows

Sgen =

∫

dtd2θ
{

K(Φ, Φ̄) + V (Φ, Φ̄)ΨΨ̄ + ρ
(

ΦDΨ − Φ̄D̄Ψ̄
)}

=

∫

dtL . (4.1)

It involves two independent superfield potentials, K(Φ, Φ̄), V (Φ, Φ̄) , and goes into the super-
plane model action in the flat limit, when K ⇒ ΦΦ̄, V ⇒ 1 .

After eliminating auxiliary fields in Φ = z + . . . ,Ψ = ψ + . . ., and setting 4ρ2 = 1, the
component Lagrangian reads

Lcomp = V −1 ż ˙̄z + i (żKz − ˙̄zKz̄) + ψ − terms . (4.2)

By introducing the notation ZA = (z, ψ), it can be rewritten as

L = ŻA ˙̄ZB̄gB̄A +
(

ŻAAA + ˙̄ZB̄AB̄

)

, (4.3)

where, e.g.,

gz̄z = V −1

(

1 − ψψ̄
VzVz̄
Kzz̄V

)

, gz̄ψ = − Vz̄
Kzz̄V

ψ̄ , etc,

Az = i(Kz + ψψ̄ Vz) , Aψ = iV ψ̄ , etc.

The potentials V and K define an M2 metric and background super gauge field, respectively.

4.2 Quantization

The classical Hamiltonian is given by the following expression

Hclass = PA gAB̄ PB̄ , PA = PA −AA , PA =
∂L

∂ŻA
. (4.4)

The Noether N = 2 supercharges read

Q =
1

i
PzPψ, Q̄ =

1

i
Pψ̄Pz̄,

{Q,Q}PB =
{

Q̄, Q̄
}

PB
= 0 ,

{

Q, Q̄
}

PB
= −2iHclass . (4.5)

The quantization follows the standard routine:

PA → −i∂A, PB̄ → −i∂B̄ .

The quantum Hamiltonian is expressed as:

Hq = PzV Pz̄ + PzPψ̄Vz̄ψ̄ − VzψPz̄Pψ + Pψ̄(Kzz̄ + ψψ̄Vzz̄)Pψ , (4.6)

{Q,Q†} = 2Hq . (4.7)

With the above definitions of Q and H, the Hermitian properties are specified with respect
to the inner product with a unity measure,

< f, g >=

∫

dzdz̄dψdψ̄ f(z, z̄, ψ, ψ̄) g(z, z̄, ψ, ψ̄) , < f,Qg >=< Q†f, g > .
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The general wave function

Ψ
(

z, z̄, ψ, ψ̄
)

= f0(z, z̄) + ψf1(z, z̄) + ψ̄f2(z, z̄) + ψ̄ψf3(z, z̄),

proves to contain four invariant subspaces of Hq:

Hq Ψ = λΨ ⇒ Hq ψf1 = λ1 ψf1 , Hq ψ̄f2 = λ2 ψ̄f2 ,

Hq (f0 + ψ̄ψf3) = λ3 (f0 + ψ̄ψf3) , Hq (V −1f3 + ψ̄ψV f0) = λ4 (V −1f3 + ψ̄ψV f0),

yielding two sets of the eigenvalues problems

− (∂z̄ −Kz̄)V (∂z +Kz) f1 = λ1 f1, − (∂z +Kz)V (∂z̄ −Kz̄) f2 = λ2 f2 , (4.8)

and
− (∂z +Kz) (∂z̄ −Kz̄)V f

L
0 = λ′3f

L
0 , − (∂z̄ −Kz̄) (∂z +Kz)V f

H
0 = λ′4f

H
0 , (4.9)

with f0 = fL0 +fH0 , f3 = V
(

fL0 − fH0
)

. The functions (f1, f
L
0 ) and (f2, f

H
0 ) form two irreducible

N = 2 multiplets and possess the same spectrum.
The inner product of two wave functions, like in the superplane model, contains states with

negative norms

< f, g >=

∫

dz dz̄ dψ dψ̄
(

Ψ̄fΨg

)

=

∫

dz dz̄
(

f̄1g1 − f̄2g2 + 2V f̄L0 g
L
0 − 2V f̄H0 g

H
0

)

.

This drawback is cured by introducing the appropriate metric operator, < f, g > ⇒ <<
f, g >>=< Gf, g > ,

G =

[

Pψ̄,Pψ
]

2V
+ 2

(

ψ
∂

∂ψ
− ψ̄

∂

∂ψ̄

)

, [G,Q] = [G,Q†] = [G,Hq] = 0 . (4.10)

With respect to the new product << , >>, all norms are strictly positive.

4.3 Integrability

One can pose the question in which cases the above eigenvalue problems can be fully solved
and the entire energy spectrum of the model can be found.

A salient feature of the quantum theory is that the worldline N = 2 supersymmetry implies
the factorization property for the component Hamiltonians (modulo constant shifts). These
Hamiltonians live on a curved 2-dimensional manifold M2 ∼ (z, z̄) and involve couplings to
background magnetic field. The factorizable Hamiltonians of this sort were studied by Ferapon-
tov and Veselov [12]. They found that a sufficient condition for such systems to be integrable
is the existence of an infinite sequence of factorization chains, which amounts to determining
infinite sequences of eigenvalues and eigenvectors of the corresponding Hamiltonians. They
proved that this is the case, iff i) The Gauss curvature K of M2 is a constant:

K = 2gzz̄∂z∂z̄ ln gzz̄ = const, (4.11)

and ii) The corresponding magnetic field is also a constant over M2:

gzz̄
[

∇̄z̄,∇z

]

= c = const . (4.12)

In our case these conditions, with K 6= 0, amount to the relation:

K =
1

2

(

1 +
c

K

)

lnV . (4.13)

The constant Gauss curvature K is known to be associated with only three types of the
manifolds M2: a) 2-plane with K = 0, gzz̄ = const; b) 2-sphere with K > 0, gzz̄ ∼ (1+ zz̄)2 and
c) hyperboloid with K < 0, gzz̄ ∼ (1 − zz̄)2. The Landau model corresponding to the case a)
is just superplane model. As an example of non-trivial curved solvable Landau model with the
worldline N = 2 supersymmetry we studied in detail the option b).
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5 CP
1 model

5.1 Lagrangian

The CP
1 model corresponds to the particular choice of the generic N = 2 superfield action

(4.1), with

K(Φ, Φ̄) = −N ln
(

1 + ΦΦ̄
)

, V (Φ, Φ̄) =
(

1 + ΦΦ̄
)2
. (5.1)

Here N is quantized by the standard cohomology arguments, N ∈ (N,N + 1
2 ). The action is

invariant under SU(2) transformations

δΦ = ε+ iβ Φ + ε̄Φ2 , δΨ = − (iβ + 2ε̄Φ)Ψ . (5.2)

The component Lagrangian, after eliminating the auxiliary fields, takes the form

Lsu(2) =
ż ˙̄z

(1 + zz̄)2
+N−1 (1 + zz̄)2

[

1 + 2N−1ψψ̄ (1 + zz̄)2
]

∇ψ∇ψ̄

− i

[

N − 2ψψ̄ (1 + zz̄)2

1 + zz̄
(żz̄ − ˙̄zz) − (1 + zz̄)2

(

ψ̇ψ̄ − ψ ˙̄ψ
)

]

, (5.3)

where

∇ψ = ψ̇ + 2
żz̄

1 + zz̄
ψ , ∇ψ̄ = ˙̄ψ + 2

˙̄zz

1 + zz̄
ψ̄ .

5.2 Eigenvalue problems

In the considered case it will be convenient to use the manifestly SU(2) covariant inner product

<< f, g >>=

∫

dz dz̄

(1 + zz̄)2
[

f̄1g1 + f̄2g2 + 2(1 + zz̄)2
(

f̄L0 g
L
0 + f̄H0 g

H
0

)]

.

The relevant eigenvalue equations are:

−V∇(N+1)
z̄ ∇(N+1)

z f1 = λ1f1 , −V∇(N−1)
z ∇(N−1)

z̄ f2 = λ2f2, (5.4)

−∇(N−1)
z̄ V∇(N−1)

z fH0 = λ3f
H
0 , −∇(N+1)

z V∇(N+1)
z̄ fL0 = λ4f

L
0 , (5.5)

with V = (1 + zz̄)2, ∇(N)
z = ∂z −N z̄

1+z̄z , ∇
(N)
z̄ = ∂z̄ +N z

1+z̄z . Ground states are defined by
the equations

∇(N+1)
z f1 = ∇(N−1)

z̄ f2 = ∇(N−1)
z fH0 = ∇(N+1)

z̄ fL0 = 0 . (5.6)

Both the ground states and excited LL states should be normalizable with respect to the above
norm. This is a very stringent requirement. It implies the wave functions to carry irreducible
SU(2) multiplets with spins related to the number N .

5.3 Ground states

For N = 0 there are two normalizable singlet ground states

fH,00 (z, z̄) =
fH,00

1 + z̄z
, fL,00 (z, z̄) =

fL0
1 + z̄z

, (5.7)

where fH,00 and fL,00 are constants. Thus in this case the ground states are SU(2) singlets.
For N = 1

2 , one has normalizable doublet ground states:

fL,00 (z, z̄) =
A+Bz

(1 + z̄z)
3

2

, (5.8)
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the constants A and B thus forming spin 1/2 multiplet of SU(2).
For N > 1 , one has the following set of the ground states:

f0
2 (z, z̄) =

f0
2 (z)

(1 + z̄z)N−1
, Nmax = 2(N − 1) , (5.9)

fL,00 (z, z̄) =
fL,00 (z)

(1 + z̄z)N+1
, Nmax = 2N , (5.10)

f0
2 (z) and fL,00 (z) being z-polynomials of the maximum degree Nmax. Thus the ground states

carry SU(2) spins N − 1 and N .
All ground states are singlets under the N = 2 supersymmetry, i.e. for N ≥ 0, N = 2

supersymmetry is unbroken.

5.4 Excited states

For the first N = 2 multiplet (f1, f
L
0 ) one has the following full set of the eigenvalues and

normalizable wave functions:

Eℓ = ℓ(ℓ+ 2N + 1), ℓ = 0, 1, 2, . . . (5.11)

f1
1 = f̃1

1 , f
ℓ
1 = ∇(N+3)

z · · · ∇(N+2ℓ−1)
z f̃ ℓ1 , ℓ > 1, fL,ℓ0 = ∇(N+1)

z f̂ ℓ1 , ℓ ≥ 1 , (5.12)

f̃ ℓ1 =
f̃ ℓ1(z)

(1 + z̄z)N+1
,

˜̂
f ℓ1 =

˜̂
f ℓ1(z)

(1 + z̄z)N+1
. (5.13)

The polynomials f̃ ℓ1(z) and
˜̂
f ℓ1(z) both carry spins (N + ℓ). This two-fold degeneracy is related

to N = 2 supersymmetry which mixes these two states.
Situation with the second N = 2 multiplet (f2, f

H
0 ) is more intricate and it requires a

separate analysis for N ≥ 1 and 0 ≤ N < 1 . For these two cases we have, respectively, the
following sequences of the eigenvalues

EHℓ = ℓ(ℓ+ 2N − 1), ℓ = 0, 1 . . . , Eℓ = (ℓ+ 1)(ℓ− 2N + 2), ℓ = 0, 1 . . . . (5.14)

For N = 0 in the second case the system reveals a four-fold degeneracy (like in the superplane
Landau model).

For N = 1
2 , there is no ground state for the second N = 2 multiplet and N = 2 super-

symmetry looks as spontaneously broken in this sector. However, no actual breaking occurs
because there is a singlet ground state in the first multiplet (f1, f

L
0 ) at N = 1

2 .

6 Summary and outlook

The basic results reported in this Talk can be summarized as follows:

• The worldline N = 2 supersymmetry defines a general family of quantum super-Landau
models in terms of two independent potentials generating a Kähler metric and coupling
to magnetic field. The Hamiltonians are factorized, which allows for a general definition
of ground states.

• Due to non-canonical second-order kinetic terms for fermions, the states at each excited LL
are grouped into two irreducible N = 2 multiplets. This is in contrast to the models with
the first-order fermionic kinetic terms, where such states span a single N = 2 multiplet
(see, e.g., [13]).

• The appearance of the negative norms, like in other super-Landau models, can be evaded
by redefining the inner product.
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• In the CP
1 model, the eigenvalues and eigenfunctions are split into two sequences corre-

sponding to two super monopole systems, one with the charge 2N and the other with the
charge 2(N − 1). N = 2 supersymmetry is unbroken for any strength of the monopole,
in contrast to the “minimal” N = 2 CP

1 model in which it is spontaneously broken at
N = 1/2 [13].

I finish by mentioning possible physical applications of the new class of super-Landau models
presented here and some problems for further study.

• One can wonder whether this kind of models could have some implications in supersym-
metric versions of the QHE. The possible physical significance of the superplane N = 2
supersymmetric Landau models in this context was discussed by Hasebe [8]. The models
addressed in my talk are curved generalizations of the super-planar models, so it is natural
to expect that they can be related to some versions of supersymmetric QHE on curved
manifolds.

• It is interesting to find out possible relations of the CP
1 and other particular models to

integrable structures in N = 4 SYM and string theory. In this connection, it would be
worthwhile to see whether some of the generalized N = 2 models admit hidden internal
supersymmetries like the ISU(1|1) symmetry of the superplane model and whether they
can be obtained by a dimensional reduction from some higher-dimensional theories.

• The obvious (and solvable) problem is to extend our consideration to higher N worldline
supersymmetries, i.e. to explore the possibility of existence of the corresponding super-
Landau models. The relevant worldline supermultiplets can involve more physical bosonic
fields, so these models can be related to higher-dimensional QHE, e.g. to QHE in four
dimensions [14]. The first example of the super-Landau model with N = 4 worldline
supersymmetry and four-dimensional bosonic manifold will be soon presented [15].
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