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Abstract

For the wave function of thin gravitating shell in the Reissner-Nordström geometry it is
found an analytical solution in the form of the Meiksner polynoms and calculated discrete
spectrum. It’s shown that the extreme state in quantum spectrum of gravitating shell is
absent, similar to the case of extreme black hole.

In the absent of quantum theory of gravity, a quasi-classical approximation is a convenient
method for description of quantum effects on the classical background in general relativity
(gravitons, Hawking effect, spectrum of primary perturbations, black hole mass spectrum).
Here we describe a thin gravitating shell model, which is very useful for analyzing a black hole
mass spectrum [3].

In the thin shell formalism there is a simple method to get a spectrum mass of black holes.
This method is based on natural assumption that a mass of gravitating systems (for instance,
a mass of black hole) on a space infinity mout is a Hamiltonian of the system. Then, if we know
the Hamiltonian of the systems, we may obtain in principle a wave equation and solve it.

The Schwarzschild black hole in General relativity is described by only one parameter,
namely the black hole mass. At the same time, on the Carter-Penrose diagram for the eternal
Schwarzschild black hole (see Fig. 1), which describes a corresponding global geometry, there
are two space infinities, called, correspondingly, R+ and R− regions. For this reason, we guess,
that in the Schwarzschild geometry for eternal black hole, a spectrum mass may depend on two
quantum numbers [4].

Let us consider a dynamical equation for the evolution of thin shell in the Reissner - Nord-
ström geometry. This equation is (see e. g., [5, 6], and also [7, 8, 9, 10]):
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where σin,out = ±1, and min, mout, Qin, Qout are, correspondingly, a black hole mass and charge
inside and outside of the shell, ρ = ρ(τ) is a shell radius, measured by an observer at rest with
respect to this shell and the dot ( .) defines a derivative with respect to proper time τ of this
observer. We consider below only the dust shell, when µ(ρ) is µ(ρ) = A/ρ2, where A > 0 is an
integration constant [6]. It is convenient to use notation M = 4πA, which is a total shell mass.
The sign condition, σin,out, as it is easy seen from equation (1), has a form
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Figure 1: The Carter-Penrose diagram for eternal Schwarzschild black hole.

We consider below a case, when mout > min and M2 ≥ Q2
out − Q2

in
. So the sign σin equals to

σin = 1, in the all space-time, but the sign σout may be equal to ‘plus’ or to ‘minus’. After
squaring of this equation (1), we get the expression
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The left part of this expression is a total mass of the system mout, which is conserved during
the time evolution. Basing on the results of previous works [11, 12, 13, 14], we define this mass
as a Hamiltonian of the system H.

To proceed further, we define a new variable x = Mρ in the equation (4) (see also [11, 12,
13]). Then the Hamiltonian is
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The corresponding Lagrangian is
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and, respectively, a canonical momentum
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Now we express the Hamiltonian (5) through a canonical momentum (7). In order to do this,
we find from equation (7) the value ẋ and substitute it to the Hamiltonian (5). As a result, the
Hamiltonian is
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In order to write a wave equation Hφ(x) = moutφ(x), we use a commutation relation [p, x] = −i
and identity

exp

(

x0

∂

∂x

)

φ(x) = φ(x + x0). (8)

As a result, a wave equation is
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φ(x) = 2Eφ(x), (9)
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where E = (mout − min)/M . The distinction of wave equation (9) from the usual Schrodinger
one, is that this is a difference equation, not the differential one. This is a result of the
quantization, made with respect of the proper time of observer on the shell, but not with
respect of time for the observer at infinity.

If we expand the exponent in (8) in series, then the wave equation will transform to the
difference equation of infinite order. Hence, the infinite number of boundary conditions are
needed to add. These boundary conditions were used in the form

φ2l(0) = 0, l = 0, 1 . . . . (10)

It is requested also that a wave function must be finite at the space infinity.
A general solution of wave equation (9) is expressed through the Meiksner polynoms (see,

e. g. [12]), which satisfy the next difference equation

σ(x)[f(x + 1) − 2f(x) + f(x − 1)] + τ(x)[f(x + 1) − f(x)] + λf(x) = 0. (11)

In this equation σ(x) = x, σ(x) + τ(x) = µ(γ + x), where µ and γ are constants. In order to
solve the wave equation (9), we reduce it to equation (11). At first, we made the coordinate
transformation x → −ix, which corresponds to 90o rotation in the complex plane. Then,
equation (9) transforms to
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Consider a simple case, when min = Qin = 0. Solution of a wave equation (12) expresses over
the Meiksner polynoms

φn(x) = C(x)
βxx

β2x+2n
△n

[

β2xΓ(x)

Γ(x + 1 − n)

]

, (13)

where

β = E +
√

E2 − 1, △f(x) = f(x + 1) − f(x), C(x) = C(x + 1), (14)

Γ(x) is a gamma function and C(x) is a periodical function with a time period equals to 1. We
expand the periodical function C(x) in Fourier series:

C(x) =

∞
∑

k=−∞

ck exp(2πikx). (15)

The same factor C(x) is appeared, if we will find solution of wave equation in the impulse
presentation [13, 16]. The coefficients ck may be found from boundary conditions (10).

The wave function φn(x) is orthogonal in the following meaning. If we put xi = x and
xi+1 = xi + 1, and use an orthogonal relation for the Meiksner polynoms, then, then we obtain

∞
∑

xi=0

φn(xi)φm(xi)ρ(xi) = δnmd2
n, (16)

where a weight function ρ(x) =
[

xC2(x)
]−1

and normalization coefficients

d2
n =

Γ(n)Γ(n + 1)

β2n
.

From equation (16) it follows that a wave function φn(x) for n 6= m is orthogonal if 0 < β < 1
[15]. It is easy to see that this function is also the orthonormal.
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A discrete mass spectrum En, corresponding to a wave function φn(x) in the form of Meik-
sner polynom [15], satisfies the equation

i(M2 − Q2
out) = 2n

√

E2
n − 1. (17)

The resulting mass spectrum is

E2
n =

(mout

M

)2

= 1 −
(M2 − Q2

out)
2

4n2
. (18)

The hydrogen-like mass spectrum mass (18) is a generalization of a similar spectrum in work
[11], and coincides with the spectrum obtained by different method in [13, 16, 17]. A discrete
mass spectrum (18) is realized if En < 1. In the opposite case En > 1, a mass spectrum mass
would be continuous [14]. We see that according to expression (18), a total gravitational mass
mout is less then a classical naked mass M due to a quantum correction.

In the case (M2 − Q2
out)

2/4 > 1, it can be written a condition for the applicability of
quasiclassical approximation. Really, there is minimal value of quantum number nmin = [(M2−

Q2
out)/2], where the bracket symbol ”[ ]“ denotes the integer part of number. A quasiclassical

approximation will be true if n ≫ nmin. Respectively, if the opposite condition is satisfied,
(M2 − Q2

out)
2/4 < 1, a quasiclassical approximation will be true for any number n, .

To write a solution for the original wave equation (9), it is necessary to made a reverse
transformation of variable, x → ix. For example, for the first two Meiksner polynoms, we
obtain

φ(x)n=1 = ixβix β2 − 1

β2

∞
∑

k=−∞

ck exp(−2πkx),

φ(x)n=2 = ixβix

[

ix

(

1−
1

β2

)2

+1−
1

β4

]

∞
∑

k=−∞

ckexp(−2πkx).

For finiteness of wave function at the space infinity, it is requested that constants ck = 0 for
k < 0. The remaining integration constant may be found from the boundary condition at
x = 0. It was found in [13, 16] for n = 1, and we will not present it here. Making the
formal replacement E = cos λ, the solution for wave function may be presented in the form
φ(x)n = Pn(x) exp(−λx)C(x), where Pn(x) are some polynoms of the order n (for details see
[13]).

In the extreme case, when mout = Qout the mass spectrum mass is degenerated (does not
dependent on n), and E = 1. The absence of extreme state in the quantum spectrum is in a full
agreement with a similar result for the mass spectrum mass of Reissner-Nordström black hole
[18]. This result also corresponds to the third law of black hole thermodynamics, which states
that the black hole extreme state is unreachable. On the quantum level this means the absence
of possibility for a black hole decay into the extreme state [19, 20, 21]. A formal solution of
wave equation (12) in the extreme state is

φ(x) = C1(x) + C2(x)x,

where C1, C2 are periodical functions with a time period equals 1. This periodical function is
expanded in the Fourier series

φ(x) =
∞
∑

k=0

ck exp(−2πkx) + ix
∞

∑

k=0

dk exp(−2πkx), (19)

where it is used a reverse transformation x → ix and the boundary condition at the space infin-
ity. The corresponding coefficients ck and dk may be found by using the boundary conditions
(10).
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In the case, when M2 ≤ Q2
out, the signs of σin can be as a plus and a minus one, σin = ±1.

For radius ρ < (Q2
out − M2)/2mout < 2mout the sign of σin = −1. A corresponding solution for

the wave equation will have a form φ̂(x) = (−1)xφ(x), where φ(x) is the solution (13) with the
same mass spectrum.

In order to find a general solution of wave equation (9) in the more general case, when only
Qin = 0, we made an another transformation of coordinate variable, namely, x → ix. This
transformation means a rotation on the π/2 degrees in the complex plane. Equation (9) now
are rewritten in the form

φ(x − 1) +

(

1 +
2minMi

x

)

φ(x + 1) + i
M2 − Q2

out

x
φ(x) = 2Eφ(x). (20)

Solution of the this equation is expressed through the Meiksner polynoms [15]:

φn(x) = C(x)
β̃xΓ(x + 1)

β̃2x+2nΓ(γ + x)
△n

[

β̃2x+2nΓ(γ + x)

Γ(x + 1 − n)

]

, (21)

where
β̃ = E −

√

E2 − 1, γ = i2minM, C(x) = C(x + 1), (22)

and C(x) is a periodical function with a time period equals 1. The corresponding first two
polynoms are

φ(x)n=1 = [β̃2(γ + x) − x]β̃xC(x),

φ(x)n=2 = β̃x[β̃4(γ + x + 1)(γ + x) − 2β̃2x(γ + x) + x(x − 1)]C(x). (23)

As in the previous case, we put x = xi, xi+1 = xi + 1 and will sum the wave function with a
weight

ρ(x) =
Γ(γ + x)

Γ(1 + x)Γ(γ)C2(x)
, (24)

In result, the considered polynoms will be orthogonal [15]:

∞
∑

xi=0

φn(xi)φm(xi)ρ(xi) = δnmd2
n, (25)

where

d2
n =

n!Γ(n + γ)

β̃2n(1 − β̃2)γΓ(γ)
. (26)

By making the reverse replacement x → −ix, polynoms may be written as

φ(x)n=1 = [β̃2(γ − ix) + ix]β̃−ix

∞
∑

k=−∞

ck exp(−2πkx),

φ(x)n=2 = β̃−ix[β̃4(γ−ix+1)(γ−ix)+ 2β̃2ix(γ−ix) + ix(ix + 1)]
∞
∑

k=−∞

ck exp(−2πkx). (27)

It is easy to show, that for γ = 0, i. e. for min = 0, the solution (27) for wave equation reduces
to the solution (19). A resulting discrete mass spectrum is

i(M2 − Q2
out + 2minMβ̃) = 2n

√

E2
n − 1. (28)

This mass spectrum is an imaginary because the Hamiltonian (5) is not hermitian for min 6= 0.
There only case, when a mass spectrum is real, is when E2

n = 1 and M2 −Q2
out + 2minMβ̃ = 0.

From these two equations there are follow corresponding conditions on parameters: mout =
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min + M and M = −min +
√

m2
in

+ Q2
out. This as a limiting case, corresponding to transition

from the discrete spectrum to continuous one. In order to made the Hamiltonian to be the
Hermitian one for min 6= 0, it is necessary to made the replacement in operators A(x)B(p) →
1

2
[A(x)B(p) + B∗(p∗)A∗(x)], which in our case is

1

x
exp

(

i
∂

∂x

)

→
1

2

[

1

x
exp

(

i
∂

∂x

)

+ exp

(

−i
∂

∂x

)

1

x

]

. (29)

After this replacement of operator, the wave equation for the Hermitian Hamiltonian has a form

φ(x + i) + φ(x − i) − minM

[

φ(x + i)

x
+

φ(x − i)

x − i

]

−
M2 − Q2

out

x
φ(x) = 2Eφ(x). (30)

This equation is a very complex. Solution of this equation and energy spectrum mass must
depended on two quantum numbers, the inner min and the outer mout mass of black hole. We
did not find the corresponding exact solution.

In summary, we considered a simple model of quasi-classical quantization of thin shell in
the Reissner - Nordström geometry. It was used an ansatz, based on mass spectrum for a
more simple model, when the inner and outer space-times of the shell are the Schwarzschild
geometries. The corresponding mass spectrum of the shell depends on two quantum numbers.
It has a simple explanation. On the Carter-Penrose diagram for Schwarzschild black hole, there
are two space-time regions, R− and R+ (see Fig. 1). According to [1, 2], for the every region
R±, a mass spectrum depends on one quantum number. Respectively, the mass spectrum in
general depends on two quantum numbers, due to existence of two asymptotically flat regions
in the global Schwarzschild space-time.
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[16] V. A. Berezin, Phys. Rev. D 55, 2139 (1997).

[17] V. A. Berezin, A.M. Boyarsky, A. Yu. Neronov, Phys. Rev. D 57, 1118 (1998).

[18] A. Barvinsky, S. Das, G. Kunstatter. Found. Phys. 32, 1851 (2002); (arXiv:hep-
th/0209039v1).

[19] S. Das, A. Dasgupta, P. Ramadevi, Mod. Phys. Lett. A 12, 3067 (1997); (hep-th/9608162).

[20] S. Das, P. Majumdar, R. K. Bhaduri, Class. Quant. Grav. 19, 2355 (2002) ; (hep-
th/0111001).

[21] A.J.M. Medved, hep-th/0112056.

7


