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Abstract

The stability of isotropic cosmological solutions in the Bianchi I model with the Null
Energy Condition violation is considered. We prove that the stability of isotropic solutions
in the Bianchi I metric for a positive Hubble parameter follows from their stability in the
Friedmann–Robertson–Walker metric. We obtained the sufficient conditions of stability of
the solutions tending to a fixed point in cases of one- and two-field cosmological models.
These results are applied to models inspired by string field theory, which violate the null
energy condition. Examples of stable isotropic solutions are presented.

1 Introduction

Field theories which violate the null energy condition (NEC) are of interest for the solution of
the cosmological singularity problem [1, 2, 3] and for models of dark energy with the equation
of state parameter w < −1 (see [4]–[14] and references therein). Generally speaking, models
that violate the NEC have ghosts, and therefore are unstable and physically unacceptable.

However, the possibility of the existence of dark energy with w < −1 on the one hand1 and
the cosmological singularity problem on the other hand encourage the investigation of models
which violate the NEC. It is almost clear that such a possibility can be realized within an
effective theory, while the fundamental theory should be stable and admit quantization. From
this point of view the NEC violation might be a property of a model that approximates the
fundamental theory and describes some particular features of the fundamental theory. With
the lack of quantum gravity, we can just trust string theory or deal with an effective theory
admitting the UV completion.

There have been several attempts to realize these scenarios [18, 19, 20]. The ghost con-
densation model [18, 21, 22, 23] proposed to describe a wide class of cosmological perturba-
tions has a ghost in the perturbative vacuum and has no ghost in the ghost condensation
phase within an effective theory. The new ekpyrotic scenario [20, 24, 25, 26] is a development
of the ekpyrotic [27] and the cyclic scenarios [2, 28], and it attempts to solve the singular-
ity problem, among others, by involving violation of the NEC. Nonlocal cosmological models
[19, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38] inspired by the string field theory (SFT) [39, 40, 41]
admit a regime with w < −1.

The NEC violating models can admit classically stable solutions in the Friedmann–Robertson–
Walker (FRW) cosmology. In particular, there are classically stable solutions for self-interacting
ghost models with minimal coupling to gravity. Moreover, there exists an attractor behavior
(for details about attractor solutions for inhomogeneous cosmological models, see [45]) in a class
of the phantom cosmological models [46, 47, 48]. One can study the stability of the FRW metric,

∗

e-mail: nick bulatov@mail.ru
1This possibility is not excluded experimentally [15], see [16, 17] for reviews of dynamical dark energy models.
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specifying a form of fluctuations. It is interesting to know whether these solutions are stable
under the deformation of the FRW metric to an anisotropic one, for example, to the Bianchi
I metric. In comparison with general fluctuations we can get an explicit form of solutions in
the Bianchi I metric, which can probably clarify some nontrivial issues of theories with NEC
violation.

Stability of isotropic solutions in the Bianchi models [49, 50, 51] (see also [52]) has been
considered in inflationary models (see [53, 54] and references therein for details of anisotropic
slow-roll inflation). Assuming that the energy conditions are satisfied, it has been proved that
all initially expanding Bianchi models except type IX approach the de Sitter space-time [55] (see
also [56, 57, 58, 59]). The Wald theorem [55] shows that for space-time of Bianchi types I–VIII
with a positive cosmological constant and matter satisfying the dominant and strong energy
conditions, solutions which exist globally in the future have certain asymptotic properties at
t → ∞. It is interesting to consider a similar question in the case of phantom cosmology and
string inspired models [19, 30, 34, 36, 61, 62].

In our works we investigated classical stability of isotropic solutions in the Bianchi I metric
in the presence of phantom scalar fields. In my report I’ll tell you about the results of these
investigations. The report is based on the works [63, 64].

2 The Bianchi I cosmological model with scalar and phantom

scalar fields and the CDM

Let us start with a cosmological model with N scalar fields φ1, φ2, . . . , φN in the Bianchi I
metric

ds2 = − dt2 + a2
1(t)dx

2
1 + a2

2(t)dx
2
2 + a2

3(t)dx
2
3. (1)

The action is

S =

∫

d4x
√−g

(

R

16πGN
−

N
∑

k=1

Ck

2
gµν∂µφk∂νφk − V (φ1, . . . , φN ) − Λ

)

, (2)

where the potential V is a twice continuously differentiable function, GN is the Newtonian
gravitational constant, Λ is a cosmological constant, and Ck are nonzero real numbers. The
sign of Ck defines whether field φk is the phantom field (Ck < 0) or the ordinary scalar field
(Ck > 0).

The Einstein equations have the following form:

H1H2 +H1H3 +H2H3 = 8πGN̺, (3)

Ḣ2 +H2
2 + Ḣ3 +H2

3 +H2H3 = − 8πGNp, (4)

Ḣ1 +H2
1 + Ḣ2 +H2

2 +H1H2 = − 8πGNp, (5)

Ḣ1 +H2
1 + Ḣ3 +H2

3 +H1H3 = − 8πGNp, (6)

where

̺ =

N
∑

k=1

Ck

2
φ̇2

k + V (φ1, . . . , φN ) + Λ + ρm, (7)

p =

N
∑

k=1

Ck

2
φ̇2

k − V (φ1, . . . , φN ) − Λ, (8)

H1 =
ȧ1

a1
, H2 =

ȧ2

a2
, H3 =

ȧ3

a3
(9)

and a dot denotes a time derivative.
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Note that we couple, in a minimal way, pressureless matter (the CDM) with the energy
density ρm to our model. The equation for the CDM energy density is as follows:

ρ̇m = − (H1 +H2 +H3)ρm. (10)

Introducing ψk = φ̇k we obtain from action (2) the following equations:

φ̇k = ψk,

ψ̇k = − (H1 +H2 +H3)ψk − 1

Ck
V ′

φk
,

(11)

where V ′

φk
≡ ∂V

∂φk
, k = 1, 2, . . . , N .

It is convenient to express the initial variables ai in terms of new variables a and βi (we use
notations from [73]), subject to the following constraint:

β1 + β2 + β3 = 0. (12)

One has the following relations

ai(t) = a(t)eβi(t), hence, a(t) = (a1(t)a2(t)a3(t))
1/3, (13)

Hi ≡ H + β̇i, and H =
1

3
(H1 +H2 +H3), (14)

where H ≡ ȧ/a. To obtain (14) we have used the following consequence of (12):

β̇1 + β̇2 + β̇3 = 0. (15)

Note that βi are not components of a vector and, therefore, are not subjected to the Einstein
summation rule. In the case of the FRW metric all βi are equal to zero and H is the Hubble
parameter. Following [50, 73] (see also [52]) we introduce the shear

σ2 ≡ β̇2
1 + β̇2

2 + β̇2
3 . (16)

It is useful to write equations (3)–(6), (10) and (11) in terms of new variables.
Using relation (15) we can write equation (3) as follows

3H2 − 1

2
σ2 = 8πGN̺. (17)

Summing equations (4)–(6) one can obtain

2Ḣ + 3H2 +
1

2
σ2 = − 8πGNp. (18)

Therefore
Ḣ + 3H2 = 4πGN (̺− p). (19)

Note that equations (10) and (11) in new variables,

φ̇k = ψk, ψ̇k = − 3Hψk − 1

Ck
V ′

φk
, (20)

ρ̇m = − 3Hρm, (21)

as well as equation (19), look like the corresponding equations in the FRW metric.
For evolution of the new variables we obtain the following equations

β̈i = − 3Hβ̇i, (22)

d

dt

(

σ2
)

= − 6Hσ2. (23)
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3 A few known facts about stability

Let us remember a few facts about the stability [71, 72, 75] of solutions for a general system of
the first order autonomic equations

ẏk = Fk(y), k = 1, 2, . . . , N. (24)

By definition a solution (a trajectory) y0(t) is attractive (stable) if

‖ỹ(t) − y0(t)‖ → 0 at t→ ∞ (25)

for all solutions ỹ(t) that start close enough to y0(t).
If all solutions of the dynamical system that start out near a fixed (equilibrium) point yf ,

Fk(yf ) = 0, k = 1, 2, . . . , N (26)

stay near yf forever, then yf is a Lyapunov stable point. If all solutions that start out near
the equilibrium point yf converge to yf , then the fixed point yf is an asymptotically stable
one. Asymptotic stability of fixed point means that solutions that start close enough to the
equilibrium not only remain close enough but also eventually converge to the equilibrium. A
solution y0(t) of (24), which tends to the fixed point yf , is attractive if and only if the point yf

is asymptotically stable.
The Lyapunov theorem [71, 72] states that to prove the stability of fixed point yf of non-

linear system (24) it is sufficient to prove the stability of this fixed point for the corresponding
linearized system

ẏ = Ay, Aik =
∂Fi(y)

∂yk
|y=yf

. (27)

The stability of the linear system means that real parts of all solutions of the characteristic
equation

det

(

∂F

∂y
− λI

)

|y=yf
= 0

are negative.

4 Stability of isolated fixed points and kink-type solutions in

one-field models with the CDM

Let us consider the gravitational model with one scalar field φ and an arbitrary potential V (φ),
described by action (2) at N = 1. Equations (19) and (42) for one-field models are as follows

Ḣ = − 3H2 + 8πGN (V (φ) + Λ),

φ̇ = ψ,

ψ̇ = − 3Hψ − 1

C
V ′

φ.

(28)

This system of three first order equations is valid in the Bianchi I metric as well as in the FRW
one. Different initial values of σ2 in (39) specify these different cases.

Let us define

I =
3

8πGN
H2 − C

2
ψ2 − V (φ) − Λ. (29)

From system (28) it is follows that the function I should be a solution of the following
equation:

İ = − 6HI. (30)
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If the case H(t) ≡ 0 is excluded, then I is an integral of motion of (28) if and only if I = 0.
From (39) we see that

I =
1

16πGN
σ2, (31)

so, I is an integral of motion only at σ2 = 0, i.e. in the FRW metric. From (30) and (31) it
follows that equation (46) is a consequence of (28).

We are interested in the stability of kink and lump solutions, namely, we consider such
solutions in which the Hubble parameter tends to a finite value at t → +∞. In this case
φ(t) tends to a finite value as well. Thus, there exists a fixed point yf ≡ (Hf , φf , ψf ), which

corresponds to t = +∞. We consider the stability of isotropic solutions only, so σ2
f = 0 and

β̇if = 0. It is easy to see that

ψf = 0, V ′

φ(φf ) = 0, H2
f =

8

3
πGN

(

Λ + V (φf )
)

. (32)

Having analyzed the solutions of the linearized system we came to the conclusion that the
stability conditions for the fixed point and for the solution that tends to it are

V ′′

ϕ

(

φf

)

C
> 0 and Hf > 0. (33)

As we can see the NEC is not necessary here, these conditions must be satisfied.
If we introduce the CDM into our model then the result will be the same.

5 Connections between the first order corrections to isotropic

solutions in the FRW and Bianchi I metrics

In the previous section we studied one-field models and the first corrections near a fixed point.
In this section we consider the first corrections of an arbitrary isotropic solution.

Let’s consider an N -field cosmological model, which is described by action (2) and the
Einstein equations (4)–(11). In this section we do not assume that the isotropic solution tends
to a fixed point. We do not prove the stability of solutions, we only analyse the first corrections
in the FRW and Bianchi I metrics.

To study the stability of this solution, we present solutions whose initial conditions are close
to the isotropic one, in the following form:

Hi(t) = H0(t) + εhi(t) + O(ε2), (34)

φk(t) = φ0k(t) + εϕk(t) + O(ε2), (35)

ψk(t) = ψ0k(t) + εχk(t) + O(ε2), (36)

ρm(t) = ρm0(t) + ερ̃m(t) + O(ε2), (37)

where i = 1, 2, 3 and k = 1, . . . , N .
Having analyzed the solutions of the system of equations for the corrections we obtained

that the following result is valid.

Theorem 1

Let H0(t) be a smooth function bounded at all finite values of time and
∞
∫

0

H0(τ)dτ be bounded

from below, in other words, this integral is equal to either a finite number or plus infinity.
Functions h1(t), h2(t), h3(t), ρ̃m(t), and ϕk(t), which are solutions of the linearized system of
equations, are bounded if and only if isotropic solutions, namely, solutions, which satisfy the
condition h1(t) = h2(t) = h3(t), are bounded.
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Note that Theorem 1 connects the stability properties of the FRW and Bianchi I metrics
not only for solutions which tend to a fixed point, but also for solutions which tend to infinity
at t→ ∞.

6 Two-field cosmological models

Let’s consider two-field cosmological models. Two-field models with the crossing of the cosmo-
logical constant barrier wDE = −1 are known as quintom models and include one phantom
scalar field and one ordinary scalar field. Quintom models are being actively studied at present
time [61, 48]. We’ll consider not not only quintom models, but also models with arbitrary
nonzero constants before the kinetic terms.

The action for these models looks as follows

S =

∫

d4x
√−g

(

R

16πGN
−
(

C1

2
gµν∂µφ∂νφ+

C2

2
gµν∂µξ∂νξ − V (φ, ξ)

))

, (38)

where the potential V (φ, ξ) is a twice continuously differentiable function, which can include the
cosmological constant Λ, GN is the Newtonian gravitational constant (8πGN = 1/M2

P , where
MP is the Planck mass,), φ and ξ are either scalar or phantom scalar fields in dependence on
signs of constants C1 and C2.

The Einstein equations have the following form:

3H2 − 1

2
σ2 = 8πGN̺. (39)

2Ḣ + 3H2 +
1

2
σ2 = − 8πGNp. (40)

φ̇ = ψ, ψ̇ = − 3Hψ − 1

C1

∂V

∂φ
, (41)

ξ̇ = ζ, ζ̇ = − 3Hζ − 1

C2

∂V

∂ξ
, (42)

where

̺ =
C1

2
φ̇2 +

C2

2
ξ̇2 + V (φ, ξ), (43)

p =
C1

2
φ̇2 +

C2

2
ξ̇2 − V (φ, ξ). (44)

For βi and σ2 we obtain the following equations

β̈i = − 3Hβ̇i, (45)

d

dt

(

σ2
)

= − 6Hσ2. (46)

We assume that the fields φ and ξ tend to finite limits at t → +∞.
Summing equations (39) and (40) we obtain the following system

Ḣ = − 3H2 + 8πGNV (φ, ξ),

φ̇ = ψ,

ψ̇ = − 3Hψ − 1

C1

∂V

∂φ
,

ξ̇ = ζ,

ζ̇ = − 3Hζ − 1

C2

∂V

∂ξ
.

(47)
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System (47) has a fixed point yf = (Hf , φf , ψf , ξf , ζf ) if and only if

ψf = 0, (48)

ζf = 0, (49)

V ′

φ = 0, (50)

V ′

ξ = 0, (51)

H2
f =

8πGN

3
V (φf , ξf ), (52)

where V ′

φ ≡ ∂V
∂φ (φf , ξf ) and V ′

ξ ≡ ∂V
∂ξ (φf , ξf ).

All fixed points yf correspond to ψf = 0 and ζf = 0. We denote the fixed point yf =
(Hf , φf , ψf , 0, 0) as yf = (Hf , φf , ψf ). To analyse the stability of yf we study the stability
of this fixed point for the corresponding linearized system of equations and use the Lyapunov
theorem.

Having analyzed the solutions of the linearized system we came to the conclusion that the
stability conditions for the fixed point and the solution that tends to it are

Hf > 0,
V ′′

ξξ

C2
+
V ′′

φφ

C1
> 0,

V ′′

ξξV
′′

φφ

C1C2
>

V ′′

φξ
2

C1C2
. (53)

We obtained that the NEC is not necessary here again.
If we introduce CDM the into our model then the result will be the same.

7 Examples of isotropic stable solutions in the SFT inspired

models

As the examples of application of the results obtained by us let’s consider some String Field
Theory inspired cosmological models with stable exact solutions.

In the examples we use a dimensionless parameter m2
p ∼ M2

p = 1/(8πGN ). The coefficient
of proportionality arises when we construct effective cosmological models from the original SFT
action (see [60, 30, 36] for details). For convenience, we write the Einstein equations for the
SFT inspired cosmological models in the following form:

Ḣ = − 3

2
H2 − 1

2m2
p

(

Cψ2

2
− V (φ) − Λ

)

,

φ̇ = ψ,

ψ̇ = − 3Hψ − 1

C
V ′

φ(φ).

(54)

We also have

3m2
pH

2 − C

2
φ2 − V (φ) = Λ. (55)

7.1 Model with a kink solution and the sixth degree potential

An exact solution to the Friedmann equations with a string inspired phantom scalar matter
field has been constructed in [60] (see also [46]). The notable features of the model are a
phantom sign of the kinetic term (C = −1) and a special polynomial form of the effective
tachyon potential:

V (φ) =
1

2

(

1 − φ2
)2

+
1

12m2
p

φ2
(

3 − φ2
)2
. (56)

Note that this potential has been used in the string gas cosmology [8].
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System (54) has the following exact kink-type solution [60]:

φ0(t) = tanh(t), H0(t) =
1

2m2
p

tanh(t)

(

1 − 1

3
tanh(t)2

)

. (57)

Let us analyse the stability of this solution. At t → ∞ solution (57) tends to a fixed point,

Hf =
1

3m2
p

, φf = 1. (58)

It is easy to see that

V ′

φ(1) = 0, V ′′

φφ(1) = 2

(

2 − 1

m2
p

)

. (59)

Using (33), we obtain that solution (57) is attractive in the Bianchi I metric at m2
p < 1/2. Note

that this solution is stable with respect to small fluctuations of the initial value of the CDM
energy density as well.

In [60] we have showed that the first corrections ϕ(t) and h(t) satisfy the following system:

ḣ =
1

m2
p

(

1 − tanh(t)2
)

ϕ̇,

ϕ̇ =

(

3 − 4m2
p + 4(m2

p − 1) tanh(t)2 + tanh(t)4
)

tanh(t)

2m2
p (1 − tanh(t)2)

ϕ−

−
(

3 − tanh(t)2
)

tanh(t)

1 − tanh(t)2
h,

(60)

and have the following explicit form:

ϕ(t) = 2m2
pC1

(

1 − tanh(t)2
)

+

+ 2m2
pC2

2J(t) + (cosh(2t) − 1)(cosh(t))
2− 1

m2
p e

„

1

2m2
p(cosh(2t)+1)

«

cosh(2t) + 1
,

h(t) = C1

(

1 − tanh(t)2
)2 −

4m2
pC2J(t)

(cosh(2t) + 1)2
,

(61)

where C1 and C2 are arbitrary constants,

J(t) =

∫ t

0
sinh (τ) (cosh(τ))1−1/m2

p
(

2
(

2m2
p − 1

)

cosh(τ)2 − 1
)

e
1

4m2
p cosh(τ)2 dτ.

It is easy to see that if m2
p > 1/2 then at C2 6= 0 the function ϕ(t) tends to infinity as t→ ∞

and, therefore, solution (57) is not stable. At m2
p = 1/2 we obtain from (61) that

h(t) =
(

tanh(t)2 − 1
)2

(C1 − C2J2) ,

ϕ(t) = −
(

tanh(t)2 − 1
)

(C1 − C2J2) −
1

2
C2e

− tanh(t)2/2,

where J2 =
∫ t
0e

− tanh(τ)2/2 tanh(τ)dτ . Thus, ϕ(t) and h(t) are bounded functions at m2
p = 1/2.

The functions hi have the form

hi(t) = h(t) + C̃i e
−

tanh2(t)

4m2
p
(

1 − tanh2(t)
)1/(2m2

p) , (62)

where C̃i are real constants, i = 1, 2, 3, which satisfy the following relation:

C̃1 + C̃2 + C̃3 = 0. (63)

We conclude that exact solutions obtained in [60] are stable in the Bianchi I metric at
m2

p < 1/2 and unstable at m2
p > 1/2. The case of m2

p = 1/2 needs a more detailed analysis.
The first corrections are bounded.
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7.2 Model with a lump solution

In the previous subsection kink solutions were considered. In this subsection we consider the
stability of a lump solution in the model [30] which is motivated by a description of D-brane
decay within the string field theory framework. We take the one-field cosmological model with
the potential

V (φ) = 2(1 − φ)φ2 − 4(φ− 1)3(2 + 3φ)2

75m2
p

(64)

and C = −1. The Friedmann equations (54) have the following exact solution [30]:

φ0 = sech2(t), (65)

H0 =
2(3 + 2 cosh(t)2) tanh3(t)

15m2
p cosh(t)2

. (66)

At t→ ∞ solution (7.2) tends to a fixed point:

Hf =
4

15m2
p

, φf = 0. (67)

It is easy to see that

V ′

φ(0) = 0, V ′′

φφ(0) = 4

(

1 − 2

5m2
p

)

. (68)

Using (33), we obtain that solution (7.2) is attractive in the Bianchi I metric at m2
p < 2/5.

In [30] the authors consider a model without the CDM, at the same time, the results of Section
2 show that solution (7.2) is stable with respect to small fluctuations of the initial value of the
CDM energy density as well.

Let us perturb the Friedmann equations in the standard way,

H = H0(t) + ǫh(t), φ = φ0(t) + ǫϕ(t). (69)

To first order in ǫ we have the following system of equations:

ḣ+
2

m2
p

sech2(t) tanh2(t)ϕ̇ = 0,

1

m2
p

(

4

5
(4 + cosh(2t)) sech2(t) tanh3(t)h+ (6 sech4(t) − 4 sech2(t))ϕ

)

−

− 4(2 + 3 sech2(t))2

25m2
p

(tanh4(t) − 2 tanh6(t))ϕ + 2 sech2(t) tanh(t)ϕ̇ = 0.

(70)

System (70) has the following solutions:

ϕ =
1

2 sinh(t) cosh3(t)

(

5C2m
2
p cosh(t)

(
−4+30m2

p

5m2
p

)
e

„

2 cosh2(t)−3

10m2
p cosh4(t)

«

− 2C1 cosh2(t) −

− 2C2

∫

1

sinh3(t)
(−15m2

p cosh4(t) + 10m2
p cosh6(t) + 8 cosh2(t) − 6 − 4 cosh6(t) + 2 cosh4(t))×

× cosh(t)
(
−4+5m2

p

5m2
p

)
e

„

2 cosh2(t)−3

10m2
p cosh4(t)

«

(cosh2(t) −m2
p)dt+ 2C1

)

,

h =
16(cosh(2t) − 1)

cosh(6t) + 6cosh(4t) + 15 cosh(2t) + 10

(

C1 + C2

∫

cosh(t)
(
−4+5m2

p

5m2
p

)
e

„

2 cosh2(t)−3

10m2
p cosh4(t)

«

sinh3(t)
×
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×[−15m2
p cosh4(t) + 10m2

p cosh6(t) + 8 cosh2(t) − 6 − 4 cosh6(t) + 2 cosh4(t)]dt
)

.

Using (66) we get

hi = h+ C̃i cosh(t)
−

4

5m2
p e

sinh(t)2(3+cosh(t)2)
10m2

p cosh(t)4 , (71)

where C̃i are arbitrary real constants which satisfy (63).
It is easy to verify that h(t) and hi(t) are bounded functions for any values of the parameters.

Taking into account that

lim
t−>∞

exp

(

2 cosh2(t) − 3

10m2
p cosh4(t)

)

= 1, (72)

we obtain that ϕ is bounded at m2
p 6 2/5 and unbounded at m2

p > 2/5. The stability in the
case of m2

p = 2/5 cannot be analysed without using high order corrections.

8 Conclusion

We have analysed the stability of isotropic solutions for the models with NEC violation in the
Bianchi I metric.

In our papers for the one-field and two-field models with the CDM we used the Lyapunov
theorem and found sufficient conditions for stability of kink-type and lump-type solutions both
in the FRW metric and in the Bianchi I metric. The obtained results allow us to prove that the
exact solutions, found in string inspired phantom models [60, 30], are stable.

We found the explicit form of the connection between h1(t), h2(t), and h3(t), which define
metric perturbations in the Bianchi I metric, and h0, which defines perturbations in the FRW
metric. We have proved that fluctuations for the fields and the CDM energy density in both
metric are the same. In particular, forH0 > 0 the boundedness of h0 is a sufficient and necessary
condition for the boundedness of h1(t), h2(t), and h3(t).

Our study of the stability of isotropic solutions for the models with NEC violation in the
Bianchi I metric shows that the NEC is not a necessary condition for classical stability of
isotropic solutions. In these papers we have shown that the models [30, 36, 60] have stable
isotropic solutions and that large anisotropy does not appear in these models.

I would like to thank I. Ya. Arefeva and S. Yu. Vernov for fruitful discussions related to
this work.
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France, August 17–29, 1998, ed. M. Lachièze-Rey. Boston: Kluwer Academic, 1999. NATO
Adv. Study Inst. Ser. C, Math. Phys. Sciences, V. 541, pp. 1–116, gr-qc/9812046

[51] G.F.R. Ellis, The Bianchi models: Then and Now, Gen. Rel. Grav. 38 (2006) 1003

[52] J. Wainwright and G.F.R. Ellis (eds.), Dynamical Systems in Cosmology, Cambridge Uni-
versity Press, Cambridge, England, 1997

[53] C. Germani and A. Kehagias, P-nflation: generating cosmic Inflation with p-forms, JCAP
0903 (2009) 028, arXiv:0902.3667

[54] T.S. Koivisto, D.F. Mota, and C. Pitrou, Inflation from N-Forms and its stability, JHEP
0909 (2009) 092, arXiv:0903.4158

[55] R.M. Wald, Asymptotic behavior of homogeneous cosmological models in the presence of a
positive cosmological constant, Phys. Rev. D. 28 (1983) 2118–2120

[56] I. Moss and V. Sahni, Anisotropy in the chaotic inflationary universe, Phys. Lett. B 178

(1986) 159–162.

[57] J. Wainwright and L. Hsu, A dynamical systems approach to Bianchi cosmologies: orthog-
onal models of class A, Class. Quantum Grav. 6 (1989) 1409–1431
A. Coley, J. Wainwright, and L. Hsu, Qualitative analysis of two-fluid Bianchi cosmologies,
Class. Quantum Grav. 9 (1992) 651–665

[58] Yu. Kitada and K. Maeda, Cosmic no-hair theorem in power-law inflation, Phys. Rev. D
45 (1992) 1416–1419;
Yu. Kitada and K. Maeda, Cosmic no-hair theorem in homogeneous spacetimes. I. Bianchi
models, Class. Quantum Grav. 10 (1993) 703–734

[59] A.D. Rendall, Mathematical properties of cosmological models with accelerated expansion,
Lect.Notes Phys. 692 (2006) 141–155, gr-qc/0408053

[60] I.Ya. Aref’eva, A.S. Koshelev, and S.Yu. Vernov, Exactly Solvable SFT Inspired Phantom
Model, Theor. Math. Phys. 148 (2006) 895–909 [Teor. Mat. Fiz. 148 (2006) 23–41], astro-
ph/0412619

[61] I.Ya. Aref’eva, A.S. Koshelev, and S.Yu. Vernov, Crossing the w = −1 barrier in the
D3-brane dark energy model, Phys. Rev. D 72 (2005) 064017, astro-ph/0507067

[62] S.Yu. Vernov, Construction of Exact Solutions in Two-Fields Models and the Crossing of
the Cosmological Constant Barrier, Theor. Math. Phys. 155 (2008) 544–556 [Teor. Mat.
Fiz. 155 (2008) 47–61], astro-ph/0612487

[63] Aref’eva I.Ya., Bulatov N.V., Joukovskaya L.V. and Vernov S.Yu. 2009 Null Energy Con-
dition Violation and Classical Stability in the Bianchi I Metric, Phys. Rev. D 80 083532
(arXiv:0903.5264)

14



[64] Aref’eva I.Ya., Bulatov N.V., and Vernov S.Yu. 2010 Stable Exact Solutions in Cosmolog-
ical Models with Two Scalar Fields, Theor. Math. Phys 163 788–803 [Teor. Mat. Fiz. 163

475–494] (arXiv:0911.5105)

[65] J.D. Barrow, Cosmological Limits on Slightly Skew Stresses, Phys. Rev. D 55 (1997) 7451–
7460, gr-qc/9701038

[66] A. Bernui, B. Mota, M.J. Reboucas, and R. Tavakol, Mapping large-scale anisotropy in the
WMAP data, Astron. Astrophys. 464 (2007) 479–485

[67] C. Armendariz-Picon, V. Mukhanov, and P.J. Steinhardt, Essentials of k-essence, Phys.
Rev. D 63 (2001) 103510, astro-ph/0006373
E. Babichev, V. Mukhanov, and A. Vikman, k-Essence, superluminal propagation, causality
and emergent geometry, JHEP 0802 (2008) 101, arXiv:0708.0561

[68] M. Malquarti, E.J. Copeland, A.R. Liddle, and M. Trodden, A new view of k-essence,
Phys. Rev. D 67 (2003) 123503, astro-ph/0302279

[69] J.M. Aguirregabiria, L.P. Chimento, and R. Lazkoz, Phantom k-essence cosmologies, Phys.
Rev. D 70 (2004) 023509, astro-ph/0403157
L.P. Chimento and M. Forte, Anisotropic k-essence cosmologies, Phys. Rev. D 73 (2006)
063502, astro-ph/0510726

[70] A.A. Sen, Reconstructing K-essence, JCAP 0603 (2006) 010, astro-ph/0512406

[71] A.M. Lyapunov, Stability of Motion, Academic Press, New-York and London, 1966 (in
English); A.M. Lyapunov, General Problem of Stability of Motion, GITTL, Moscow–
Leningrad, 1950 (in Russian)

[72] L.S. Pontryagin, Ordinary Differential Equations, Adiwes International Series in Mathe-
matics. Addison-Wesley Publishing Company, London–Paris, 1962 (in English), ”Nauka”,
Moscow, 1982 (in Russian)

[73] T.S. Pereira, C. Pitrou, and J.-Ph. Uzan, Theory of cosmological perturbations in an
anisotropic universe, JCAP 0709 (2007) 006, arXiv:0707.0736

[74] A.D. Rendall, Dynamics of k-essence, Class. Quant. Grav. 23 (2006) 1557–1570, gr-
qc/0511158

[75] I.G. Petrovsky, Lectures on Ordinary Differential Equations, M.: Nauka, 1970

[76] D.M. Grobman, Homeomorphisms of systems of differential equations, Dokl. Akad. Nauk
SSSR 128 (1959) 880–881

[77] P. Hartman, A lemma in the theory of structural stability of differential equations, Proc.
A.M.S. 11 (1960) 610–620;
P. Hartman, On local homeomorphisms of Euclidean spaces, Bol. Soc. Math. Mexicana 5

(1960) 220–241;
P. Hartman, Ordinary Differential Equations, J. Wiley & Sons, New York, 1964

[78] V.I. Arnol’d and Yu.S. Ilyashenko, Ordinary differential equations, Itogi Nauki i Tekhniki.
Ser. Sovrem. Probl. Mat. Fund. Napr., Vol. 1, VINITI, Moscow, 1985

15


