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1 Preliminaries

Classical definition of the black hole is based on the existence of the event horizon [1] - the
boundary of a space-time region from which the light cannot escape to infinity. The very notion
of the event horizon is global and requires the knowledge of the whole history, both past and
future.

Classical ”black hole has no hair” [2] and is described by only few parameters: mass,
Coulomb-like charge and angular momentum. The Schwarzschild black hole has only the mass,
the Reissner-Nordstrom one - mass and charge, the Kerr black - mass and angular momentum.
The most general type - Kerr-Newman black hole - has all three parameters. This resembles
the body in thermal equilibrium. The process of becoming bold is also global, its duration,
formally, is infinite, like the process of coming to thermal equilibrium. It goes through ra-
diating of all possible perturbations and governed by Schroedinger-like wave equation, first
derived in [3]. The results of many numerical studies for a long period (two decades) were
summarized in the book [4]. It appeared that such perturbation modes have discrete spectra
with complex frequencies w. They received the name ”quasi-normal frequencies”. The imagi-
nary parts are equidistant indicating that the decaying modes are radiating away in a manner
reminiscent of the last pure dying tones of a ringing bell, and the higher the overtone, the
shorter its lifetime. The real part of quasi-normal frequencies tends to some constant value
which depends on the black hole type. For Schwarzschild black holes, we are interested in here,
Gm wn = 0.0437123 − i

4

(

n + 1

2

)

+ O[(n + 1)−1/2], n → ∞, where m is the mass, and G is the
Newton’s constant. All that shows that black holes have some inherent frequency. Therefore,
they are not ”dead” but have some ”private life”, encoded in some features of their horizons.
Evidently, this is also the global property because it does not depend on what is going on inside.

Investigation of the processes near an event horizon showed that they can be reversible and
irreversible like in thermodynamics [5, 6]. The assimilation of a point (classical) particle by a
non extremal (if a black hole has more than one parameter, then for fixed value of other, than
mass, parameters there exists the minimal value of mass - critical, or extreme - below which the
event horizon does not exist) black hole reversible if it is injected at the event horizon from a
radial turning point of its motion. In this case the black hole (horizon) area remains unchanged,
and the change in other parameters (mass, charge and angular momentum) can be undone by
another suitable (reversible) process. In all other cases the horizon area A increases. Thus, for
classical black holes dA ≥ 0.

The new area in black hole physics started with the seminal paper by J.D. Bekenstein
[7], where he presented serious physical arguments that the Schwarzschild black hole should be
described by a certain amount of entropy which is proportional to the area of event horizon. Such
a strict proportionality could appear to be playing games with symbols with only one parameter,
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black hole mass, but it was then confirmed by J.M. Bardeen, B. Carter and S.W. Hawking [8]
who proved the four laws of thermodynamics for the general class of Kerr-Newman black holes.
Moreover, it was shown that the role of the temperature is played by the surface gravity κ

at the event horizon (up to some numerical factor), which is constant there. And only after
discovering by S.W. Hawking the black hole evaporation [9] this thermodynamical analogy
became the real physical phenomenon. He considered the quantum theory of massless scalar
field on the Schwarzschild static space-time background and found that the specific boundary
conditions – only infalling waves in the vicinity of the horizon – result in a thermal behavior of
the wave functions and nonvanishing energy flow to the infinity. It appeared that the spectrum
of such a radiation is Planckian with the temperature

TH =
κH

2π
, (1)

where κ is the surface gravity at the event horizon. It follows then, that the black hole entropy
is exactly one fourth of dimensionless horizon area

S =
1

4

A

ℓ2
pℓ

, (2)

where ℓpℓ
=

√

~G
c3 ∼ 10−33cm is the Planckian length (~ is the Planck constant, c is the speed

of light, and G is the Newton’s gravitational constant). We will use the units ~ = c = 1, so

ℓpℓ
=

√
G and the Planckian mass is mpℓ

=
√

~c
G = 1/

√
G ∼ 10−5gr.

The nature of Hawking radiation and its black body spectrum lies in the nontrivial causal
structure of the space-times containing black holes. The crucial point is the existence of the
event horizons. The same takes place in the Rindler space-time. This space-time is obtained by
transforming the two-dimensional Minkowski flat space-time from the “ordinary” coordinates
(t, x) and metric ds2 = dt2 −dx2 related to the set of inertial observers, to the so-called Rindler
coordinates (η, ξ) (t = 1

a eaξ sinh aη, x = ± 1

aeaξ cosh aη, −∞ < η < ∞, −∞ < ξ < ∞) and
metric ds2 = e2aξ(dη2 − dη2) . Thus, the Rindler space-time is static and locally flat but differs
from the two-dimensional Minkowski space-time globally, because it covers only one half of the
latter and, in addition, possesses the event horizon at t = ±x (η = ±∞, ξ = const). The
Rindler observers at ξ = const are uniformly accelerated. The norm of the acceleration vector
aµ equals α =

√−aµ aµ = ae−aξ . Considering a quantum scalar field in the Rindler space-
time, W.G. Unruh found [10], in fact, the finite temperature quantum field theory with the
temperature

TU =
a

2π
. (3)

We see that this temperature is proportional to the acceleration of the Rindler observer sitting
a ξ = 0 with g00 = 1. But, all of them are equivalent (we can always shift the spatial coordinate
ξ → ξ − ξ0). The temperature is not an invariant, but it is a temporal component of a heat
vector. This means that each observer measures the Unruh temperature when using its proper
time τ (ds = dτ). If the same observer uses the local clocks that show the local time t (ds =√

g00 dt), the local temperature measured by him equals Tloc = TU√
g00

= a
2 π e−aξ = α

2 π , which is

proportional to the local acceleration α. The very fact that the uniformly accelerated observer
(= detector) will detect the real particles in the vacuum, was known to people doing quantum
electrodynamics long ago. It was understood as a change of a vacuum state due to the external
forces that cause such an acceleration. The same happens in the space-time with event horizons.
But that the spectrum is thermal appeared to be new and purely relativistic feature. We
know from the university course of thermodynamics that the condition for thermal equilibrium
in static space-times is Tloc

√
g00 = const. Thus, all the Rindler observers are in thermal

equilibrium with each other. Is the Rindler space-time unique in this sense? To answer, let us
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consider some general two-dimensional static space-time with a metric

ds2 = eν dt2 − dρ2 = eν dt2 − eλ dq2 . (4)

In the Rindler case ρ = 1

a eaξ , eν = a2ρ2 = g00. The static observer undergoes a constant

acceleration with the invariant α = 1

2

∣

∣

∣

dν
dρ

∣

∣

∣
= 1

2

∣

∣

∣

dν
dq

∣

∣

∣
e−

λ
2 , and the (now local) Rindler parameter

a(ρ), which is called ”the surface gravity κ”, equals

κ =
1

2

∣

∣

∣

∣

dν

dq

∣

∣

∣

∣

e
ν−λ

2 =
1

2

∣

∣

∣

∣

dν

dρ

∣

∣

∣

∣

e
ν
2 . (5)

The thermal equilibrium requires κ = const, therefore, g00 = Cρ2, and this proves that the
Rindler space-time is the only one whith static observers are in thermal equilibrium.

By the Einstein equivalence principle we can extend all we learned studying Rindler space-
times, to the static gravitational fields, especially to the spherically symmetric ones, because
after fixing spherical angles θ and ϕ the latter become, in fact, the two-dimensional pseudo-
surfaces. Of course, in general these surfaces are curved, the equivalence principle holds only
locally, and the static observers will not be in thermal equilibrium with each other. Such a
temperature is observer-dependent and cannot be considered as an intrinsic property of a given
space-time. But for the black hole space-times the position of the event horizon is absolute and
does not depend on the observer. So, its temperature does serve an important characteristic of
space-time itself. To know the temperature we just need to compute the surface gravity value
at the event horizon, κH . For the Schwarzschild black hole with the famous metric

ds2 = F dt2 −
1

F
dr2 − r2(dθ2 + sin2 θ dϕ2), F = 1 −

2Gm

r
, (6)

where m is the black hole mass, and r is the radius of a sphere (in that sense that its area
equals 4π r2), the horizon is located at the radius rg = 2Gm, and the surface gravity equals

κH =
1

2

∣

∣

∣

∣

dν

dr

∣

∣

∣

∣

e
ν−λ

2 =
1

2
F ′(rH) =

Gm

r2

∣

∣

∣

∣

rg

=
1

4Gm
. (7)

Therefore, the Hawking temperature is just the Unruh temperature at the event horizon mea-
sured by distant observers (at infinity). The same is true also for Kerr-Newman black holes.
Note that outside the event horizon r > rg the Schwarzschild observers are not in thermal equi-
librium with each other, and this is a thermodynamical explanation of the Hawking radiation
and, thus, evaporation of black holes. It should be stressed that both the black hole temper-
ature and entropy are global features because their very appearance is due to the existence of
the event horizon.

Evaporating, black holes become smaller and smaller and will reach eventually a Planckian
size where the still unknown quantum gravity should play an important role. Since the radiation
is quantized, the black hole mass have to be quantized as well. Of course the relation is not
direct because a black hole is not necessarily transformed into black hole again, but the new
black hole will eventually be formed only due to radiation. To the black hole mass there may
contribute not only the rest masses and kinetic energy of particles, including the total angular
momentum, but also Coulomb and magnetic energies of their electric and gauge charges and all
kinds of other physical fields confined under the event horizon. But the common feature for all
types of black holes is their entropy with its universal relation (2) to the horizon area. Thus, the
black hole quantization means the quantization of its entropy. Moreover, the thermodynamical
description is possible only if the jump in the temperature due to quantization of mass, charge
and angular momentum during black hole evaporation is negligible compared to its absolute
value, while the notion of the entropy as a measure of the information, hidden or ignored, is
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still valid. This latter feature gives rise to common believe that the black hole quasi-classical
quantization can shade light on the structure of the future full quantum gravity, or, at least,
will provide us with some selection rules in the attempts to construct such a theory. The
quantization of a black hole as whole was proposed long ago by J.Bekenstein [11]. The idea was
based on the remarkable observation that the horizon area of non-extremal black holes behaves
as a classical adiabatic invariant. The Bohr-Sommerfeld quantization rule then predicts the
equidistant spectrum for the horizon area and thus, for the black hole entropy. The gedanken
experiments show that, due to the quantum effects, the minimal increase in the horizon area
in the processes of capturing a neutral or electrically charged particle approximately equals
∆ Amin ≈ 4 ℓ2

pℓ
. This suggests for the black hole entropy

SBH = γ0 N , N = 1, 2, . . . (8)

where γ0 is of order of unity. In their famous work on the black hole spectroscopy J.D. Bekenstein
and V.F. Mukhanov [12] related the black hole entropy to the number gn of microstates that
corresponds to the particular external macrostate through the well-known formula in statistical
physics gn = exp[SBH(n)], i.e., gn is the degeneracy of the n-th area eigenvalue. Since gn should
be integer, they deduced that

γ0 = log k , k = 2, 3, . . . (9)

In the spirit of the information theory and the famous claim by J.A. Wheeler “It from Bit” the
value of log 2 seems most suitable one.

The logarithmic behavior of the spacing coefficient γ0 comes also from the Loop Quantum
Gravity. It was shown in [13], [14], that the entropy of the Schwarzschild black hole is propor-
tional to the horizon area as well as a numerical constant called the Barbero-Immirzi parame-
ter. To fit the Bekenstein-Hawking relation (2) and the possible value for γ0 (9) this parameter
should equal log 2/(π

√
3) if the fundamental group in LQG is SU(2), and log 3/(2π

√
2) if it is

SU(3). The choice of the value for γ0 leads to minimal possible change in the black hole mass.
S.Hod [15], using Bohr’s correspondence principle, deduced that γ0 should be proportional to
log 3 because he noticed that

Gm Rew = 0.0437123 =
log 3

8π
. (10)

The value of γ0 as well as that of Barbero-Immirzi parameter and, thus, the choice of the
fundamental group in LQG, must be universal. Therefore, it is not surprising that people tried
to find some analytical methods for evaluating the quasi-normal frequencies for different types of
black holes. By using rather sophisticated tools from the general theory of ordinary differential
equations, L. Molt and A. Neitzke showed [16], [17] that for the scalar and tensor perturbations
around Schwarzschild black holes the value log 3 is exact. For more general types of black holes
the corresponding calculations were fulfilled in [18]. It appeared that the simple value log 3 for
the spacing coefficient γ0 is by no means universal, but exceptional. That is why we use the
expression ”the mystery of log 3”.

Below we construct a model which is not really a black hole, but possesses its main features.
It has an event horizon – but local, the temperature – but local. Then, we develop the local
thermodynamics for such a model and show how the mystery of log 3 can be solved. There is
a hope that our model will be helpful in understanding the underlining physics of many other
interesting features of quasi-classical black holes.

2 The ”Standard Model”

2.1 Quantum shells

The construction of our model we start with brief description of a particular model of quantum
Schwarzschild black hole. Namely, this is a theory of quantized spherically symmetric self-
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gravitating thin dust shells [19], [20] - the simplest generalization of a point particle. In this
case there is only one dynamical degree of freedom, the shell radius (real gravitons are absent due
to the spherical symmetry = Birkhoff theorem), and the Wheeler-DeWitt equation is reduced to
the stationary one-dimensional Schroedinger-like equation in finite differences. Most important
is the fact that the model is self-consistent, it takes into account the back reaction of the
gravitating source (thin shell) on the geodesically complete Schwarzschild manifold which has a
nontrivial causal structure. Such a space-time The geodesically complete Schwarzschild space-
time has a geometry of non-transversable wormhole (it is also called an eternal black hole).
There are two asymptotically flat regions with spatial infinities connected by the Einstein-
Rosen bridge (the throat). Two sides of the bridge are causally disconnected and separated by
(past and future) event horizons. Inside the shell we have some part of Schwarzschild metric
with the mass parameter min, while outside the Schwarzschild mass equals mout.

In quantum mechanics there are no trajectories, and the shell wave function ”feels” the
existence of the event horizons and both infinities. The result is the necessity of imposing the
additional boundary condition and the appearance of two quantum numbers for two quantities
describing the quantum states (for fixed min) - the bare mass ∆M of the shell (the sum of
masses of the constituents) and its total mass (energy) ∆m = mout − min which includes the
gravitational mass defect. The discrete mass spectrum for bound sates looks as follows (n and
p are integers)

2 (∆m)2 − M2

√

M2 − (∆m)2
=

2m2
pℓ

∆m + 2min

n

M2 − (∆m)2 = 2 (1 + 2p)m2

pℓ
, (11)

For given bare mass M the change of a quantum state causes the change in the mass inside
the shell min and in the total mass of the system mout. Therefore, during the gravitational
collapse the total mass decreases, while the inner mass increases. When such a process could be
stopped? The natural limit is the crossing of the Einstein-Rosen bridge, since such a transition
requires (at least in a quasi-classical regime) insertion of infinitely large volume, with, of course,
zero probability. Computer simulations show that the process of quantum collapse for our shells
stops when the principal quantum number becomes zero, n = 0.

The point n = 0 in our spectrum is very special. In this case the shell does not ”feel” not
only the outer region (what is natural for the spherical configuration) but it does not know
anything about what is going on inside. It ”feels” only itself. Such a situation reminds the ”no
hair” property of a classical black hole. Finally, when all the shells (both the primary one and
newly born) are in the corresponding states ni = 0, the whole system does not ”remember” its
own history. Then it is this ”no-memory” state that can be called ”the quantum black hole”.
Note that the total masses of all the shells obey the relation ∆ mi = 1√

2
Mi.

2.2 Classical analog of quantum Schwarzschild black hole

The final state of quantum gravitational collapse can be viewed as some stationary matter
distribution. Therefore, we may hope that for massive enough quantum black hole such a
distribution is described approximately by a classical static spherically symmetric perfect fluid
with energy density ε and (effective) pressure p obeying classical Einstein equations. This is
what we call a classical analog of a quantum black hole. Of course, such a distribution has to
be very specific. To study its main features, let us consider the situation in more details.

Any static spherically symmetric metric can be written in the form

ds2 = eν dt2 − eλ dr2 − r2(dθ2 + sin2 θ dϕ2) . (12)

Here r is the radius of a sphere with the area A = 4π r2, ν = ν(r), λ = λ(r). There are only
three (static spherically symmetric) Einstein equations. The constraint equation which can be
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written in the integral form as

e−λ = 1 −
2Gm(r)

r
, (13)

where

m(r) = 4π

∫ r

0

ε r̃2 dr̃ (14)

is the mass function that should be identified with min. Now, the ”no-memory” principle is
readily formulated as the requirement, that m(r) = ar, i.e.,

e−λ = 1 − 2Ga = const, ε =
a

4π r2
. (15)

We can also introduce a bare mass function M(r) (the mass of the system inside a sphere of
radius r without gravitational mass defect):

M(r) =

∫

ε d V = 4π

∫ r

0

ε e
λ
2 r̃2 dr̃ =

ar√
1 − 2Ga

. (16)

The remaining two equations can now be solved for p(r) and eν(r). The general solution is
rather complex, but the correct non-relativistic limit for the pressure p(r) (we are to reproduce
the famous equation for hydrostatic equilibrium) is given by only the following one-parameter
family:

p(r) =
b

4π r2
, b =

1

G

(

1 − 3Ga −
√

1 − 2Ga
√

1 − 4Ga
)

. (17)

We see that the solution exists only for a ≤ 1

4 G , then b ≤ a. The physical meaning of these

inequalities is that the speed of sound cannot exceed the speed of light, v2

sound
= b

a ≤ 1 = c2,
the equality being reached just for a = b = 1

4 G . Finally, for the temporal metric coefficient
g00 = eν we get

eν = C2

0 r
4b

a+b = C2

0 r2G a+b
1−2Ga .

Thus, demanding the ”no-memory” feature and the existence of the correct non-relativistic
limit, we obtained the two-parameter family of static solutions. But, we need a one parameter
family, so we have to continue our search.

Evidently, the point r = 0 is singular both for matter distribution and g00 metric coefficient.
To examine what kind of singularity we are dealing with, one should calculate the Riemann
curvature tensor. It appears that for b < a this tensor is, indeed, divergent at r = 0. But,
if a = b = 1

4 G , we are witnessing a miracle, the (before) divergent components become zero.
Thus, demanding, in addition to the previous two very natural requirements, the third one
(also natural), namely, the absence of the real (curvature) singularity at r = 0, we arrive at the
following one-parameter family of solutions to the Einstein equations

eν = C2

0 r2 , eλ = 2 , ε = p =
1

16π Gr2
. (18)

So, the equation of state of our perfect fluid is the stiffest possible one. The constant of inte-
gration C0 can be determined by matching the interior and exterior metrics at some boundary
value of radius, r = r0. Let us suppose that for r > r0 the space-time is empty, so, the interior
should be matched to the Schwarzschild metric with the mass parameter m. Of course, to
compensate the jump in the pressure ∆p (= p(r0) = p0) we must include in our model a surface
tension Σ, so, actually, we are dealing with some sort of liquid. It is easy to check that

C2

0 =
1

2 r2
0

; ∆p =
2Σ√
2 r0

; eν =
1

2

(

r

r0

)2

;

p0 = ε0 =
1

16π Gr2
0

, m = m0 =
r0

4G
.
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Note that the bare mass M =
√

2 m, the relation is exactly the same as for the shell ”no-
memory” state, and r0 = 4Gm0, so, the size of our analog model is twice as that for a classical
black hole of the same mass.

The special point in our solution, r = 0 is not a trivial coordinate singularity, like in a
three-dimensional spherically symmetric space, because ds2 (r = 0) = 0 . This looks like an
event horizon. Indeed, the two-dimensional (t − r)-part of our metric describes a locally flat
manifold. Since the static observers at r = const are, in fact, uniformly accelerated, this is
a Rindler space-time with the event horizon at r = 0. The corresponding Rindler parameter
which in more general case is called the ”surface gravity”, equals

κ =
1

2

∣

∣

∣

∣

dν

dr

∣

∣

∣

∣

e
ν−λ

2 =
C0√

2
=

1

2 r0

. (19)

Therefore, the Unruh temperature in our model is TU = 1

4 π r0
= 1

16 π Gm , what is twice less
than the Hawking temperature for the Schwarzschild black hole,

TH =
1

8π Gm
= 2TU . (20)

Let us resume what we have got by now. We constructed a purely classical model that
possesses some features of (semi)classical black holes: event horizon and temperature, but
instead of being global, they are local. Indeed, by definition, the surface r = 0 cannot be
crossed, thus, the event horizon in our model becomes local. The temperature is also local,
Tloc = TU/

√
g00 = 1/2

√
2πr, and does not depend on the boundary value r0. And, one more

important feature: if one removes some outer layer, nothing would be changed inside. This is
a reflection of the fact that all parts of our matter distribution are in thermal equilibrium.

Quantum nature of radiation and the fact that the black hole entropy has a discrete equidis-
tant spectrum suggest that our distribution consists, actually, of some number of Quasi-particles,
”gravitational phonons”. Thus, having at hand local intensive parameters: effective pressure
p(r), temperature Tloc(r), chemical potential µ(r), and extensive parameters: bare mass M ,
volume V , entropy S and ”particle” number N , we are now ready to construct the local ther-
modynamics.

2.3 Thermodynamics

The first law of thermodynamics reads

dM = ε dV = Tloc dS − p dV + µ dN . (21)

Dividing the above expression by the volume element dV we get the first law in its local form

ε(r) = Tloc(r) s(r) − p(r) + µ(r)n(r) , (22)

where s and n are the entropy and particle densities, respectively. In our model ε = p, but how
about s? The local observer cannot calculate it without knowing the corresponding microscopic
structure, but he can ask his global counterpart who is educated enough (read proper books)
and knows that the total entropy of the black hole is S = 1

4 G Ahor, what for the Schwarzschild

black hole gives (Ahor = 4π r2
g) S = π

G r2
g =

π r2
0

4 G . Having this information, our local observer
can deduce that

s(r) =
1

8
√

2 Gr
, Tloc(r) s(r) =

1

32π Gr2
. (23)

Remembering now that ε = 1

16 π Gr2 , we obtain

Tloc(r) s(r) =
1

2
ε , µ(r)n(r) =

3

2
ε .
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We will need also the expression for the free energy F :

F =

∫

f dV , f = ε − Tloc s =
1

2
ε . (24)

It is known that the thermal equilibrium conditions for the systems in static gravitational field
are

T
√

g00 = const , µ
√

g00 = const . (25)

The constants on the right-hand sides are universal for our model – they do not depend on the
boundary value r0. Therefore, their ratio is also a universal constant. Thus, we have

µ

T
= 3

s

n
= 3

S

N
= 3 γ0 . (26)

Hence, the entropy is naturally quantized:

S = γ0 N , N = 1, 2 . . . (27)

2.4 Solving the mystery of log 3

In order to calculate the spacing coefficient γ0 we have to make some assumption about the
microscopic structure of our model. We assume that the interior matter distribution consists
of N black hole phonons with the equidistant spectrum of excitations

εn = ω n , n = 1, 2 . . . (28)

In this case the partition function for the whole system is the product of that ones for each
phonons, and

Ztot = (Z1)
N , Z1 =

∑

n

e−
εn
T =

∑

n

(

e−
ω
T

)n
=

e−
ω
T

1 − e−
ω
T

. (29)

It is natural to suppose that ω is just the black hole resonance frequency, its existence follows
from the properties of quasi-normal modes (as was already explained earlier). Of course, ω is
a temporal component of a four-vector, but the temperature T also does, so their ratio does
not depend on the choice of the clocks by local static observers. We accept that the observers
are using their proper time, so T is just the Unruh temperature TU which is constant in the
whole interior. The partition function is an invariant, and we can calculate it in another way,
using thermodynamical relations. Indeed, we can consider some small volume element dV and
the corresponding partition function Zsmall. Then, using the well-known formula for the free
energy F = −T log Z, and writing it for the volume element

dF = f dV = −Tloc log Zsmall , (30)

where, as before, we use the local intrinsic quantities in thermodynamical relations. From this
we have

∫

f

Tloc

dV = −
∑

log Zsmall = − log Ztot . (31)

The left-hand side equals

∫

f

Tloc

dV =
1

2

∫

ε

Tloc

=
π r2

0

4G
=

π r2
g

G
= S . (32)

Here rg is the Schwarzschild radius, and S is the total black hole entropy. Eventually, we obtain
the important relation

e−S = Ztot = (Z1)
N , (33)
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from which it follows that

e−
ω
T

1 − e−
ω
T

= e−
S
N = e−γ0 , eγ0 = e

ω
T − 1 . (34)

To go further, let us consider the irreversible process of converting the mass (energy) of the
system into radiation from a thermodynamical point of view. In our model such a process takes
place just at the boundary r = r0, and the thin shell with zero surface energy density and surface
tension Σ serves as a converter supplying the radiation with extra energy and extra entropy, this
resembles the ”brick wall” model. The nature of this radiation is purely quantum because our
system is not radiating classically. The jump in the Unruh temperature of the inner and outer
near-boundary static observers is compensated exactly by the gravitational influence of the
surface tension. One can imagine that the near-boundary layer of thickness ∆ r0 is converting
into radiation, thus decreasing the boundary of the inner region to (r0 − ∆ r0). Its energy
equals ∆ M = ε∆ V . To this we should add the energy released from the work done by the
surface tension due to its shift, which is equal exactly to

∑

d(4π r2
0
) = p d∆ V = ε∆ V = ∆ M .

Therefore, both the energy and the temperature in the converter becomes two times higher than
that for any inner layer of the same thickness. And this double energy is gained by radiating
quanta. Clearly, they have double frequency and exhibit double temperature, so

Rew

TH
=

ω

TU
= log 3 , (35)

as follows from the spectrum of quasi-normal modes for the Schwarzschild black holes. Substi-
tuting this into Eqn. (34) and remembering that

3 − 1 = 2 (36)

we obtain
γ0 = log 2 . (37)

Since the radiated energy is thermalized, the interpretation of dm as equal to Rew is an
improper procedure. This resolves the ”log 3-paradox”.

3 Beyond the ”Standard Model”

The model proposed above is very stringent. And the question arises: which of the imposed
conditions could be weakened? Let us remember the steps towards the final results. First, we
demanded the ”no memory” condition to be fulfilled. This was necessary in order to ensure
the black hole mimicry. Second, we assumed the perfect fluid energy-momentum tensor. Then,
the requirement of the absence of a curvature singularity at zero radius has led us both to the
appearance of the temperature and to the unique (stiffest possible) equation of state. Surely,
the thermal equilibrium is the crucial feature, but how about the isotropy in the fluid pressure?

To make this point clearer, let us consider the general form of static spherically symmetric
metric with static observers in mutual thermal equilibrium. As we already know, the space-time
in such a case should be a direct product of Rindler (locally flat) manifold and 2-dimensional
sphere of radius R:

ds2 = a2 ρ2 dt2 − dρ2 − R2(ρ)(dθ2 + sin2 θ dϕ2) , (38)

where a = is the acceleration parameter, and R(ρ) is the only unknown function of the radial
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coordinate ρ. The Einstein equations read as follows

−
2R′′

R
+

1 − R′2

R2
= 8π Gε

−2
R′

ρR
+

1 − R′2

R2
= −8π Gpr

−
R′′

R
−

R′

ρR
= −8π Gpt . (39)

Here ”prime” denotes ordinary derivatives and we assume that, in general, the radial pressure pr

is not equal to the tangential pressure pt. With the ”no memory” condition R′ = α = const the
above equations become algebraic, besides, in this case ε + pr = 2pt and for isotropic pressure
pr = pt we recover the previous result. But, let us remember that the relation between the
bare and total masses M =

√
2m in our model appeared the same as that of the quantized thin

dust shells in the ”no memory” states. And this points to the fact that our classical analog
consists solely of massive constituents. But in reality classical black holes may contain some
radiation (i.e., massless particles) as well. Consider now the extreme situation when the analog
model distribution is represented by massless particles only. Then, ε = pr + 2pt and , hence,
pr = 0, ε = 2pt. α = 1/

√
3. Such a strange equation of state means that we are dealing not

with a condensed matter but, rather, with a set of thin shells of small (vanishing) energies that
consist of massless particles orbiting along the spheres of constant radii in all possible directions
[22]. But such a distribution is unstable, because the orbits coincide with the last circular ones
in the outer Schwarzschild metric. In the intermediate case,there is a mixture, and these orbits
become stable. Moreover, if one assumes that these two systems are non-interactive (except
gravitationally), what seems quite natural in the spirit of our ”no memory” condition, then it
is not difficult to show, using separate continuity equations, that R′ = const, and the perfect
fluid part of the mixture has the stiffest possible equation of state.

Such a generalized model possesses plausible features. First, the value for R′ is no more
unique, instead, 1/3 < α2 ≤ 1/2. Second, these orbiting massless particles can be understood as
remnants of radiated quasi-normal modes and, at the same time, as the origin of the equidistant
”phonon” spectrum in the perfect fluid. Third, the ”Hawking evaporation” of our analog model
can now be considered as the induced radiation tunneling through the potential barrier caused
by the surface tension at the boundary. Fourth, it is possible to construct the following model.
Let the complete space-time consists of three quite different regions, the inner, middle and
outer ones. In the inner region we have our classical analog model together with the massless
radiation described shortly above. The outer region is the vacuum Schwarzschild solution. And
in-between we put the pure radiation with vanishing trace of the energy-momentum tensor. It
is assumed that both the inner and middle parts are in thermal equilibrium, but at different
temperatures since they are separated by the thin shell with nonzero surface tension that gives
rise to the temperature gradient. It appears that the seemingly obvious isotropic equation of
state ε = 3p 9n the middle region does not meet two requirements: to support the thermal
equilibrium and obey the static Einstein equations, so, this is not the ordinary black-body
radiation, but rather the set of spherically symmetric thin shells with massless constituents
moving between the inner and outer boundaries. Now, let us imagine that we move the outer
boundary keeping the total Schwarzschild mass fixed. The position of the inner boundary will
be determined, say, using the maximum entropy principle. What could happen? Nobody knows.
But the perspectives are very exciting. This is because the state of the whole system is now
depends on two parameters, the total mass (energy) and the position of the outer boundary,
unlike in the case of classical Schwarzschild black hole. Besides, the resulting solution will
be self-consistent, i.e., taking into account the back reaction of the matter on the space-time
geometry. So, we can expect even the appearance of some extremal state, like for the Reissner-
Nordstrom black hole, with zero temperature. Who knows?
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It is not yet clear how to make use of the thermodynamical relations in this rather complex
system and ... , but the work is in progress.

This work was supported by the grant No. 10-02-00635-a from the Russian Foundation of
Fundamental Investigations (RFFI).
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