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Abstract

The global geometries of bulk vacuum space-times in the brane-universe models are
investigated and classified in terms of geometrical invariants. The corresponding Carter-
Penrose diagrams and embedding diagrams are constructed. It is shown that for a given
energy-momentum induced on the brane there can be different types of global geometries
depending on the signs of a bulk cosmological term and surface energy density of the brane
(the sign of the latter does not influence the internal cosmological evolution). It is shown
that in the Randall-Sundrum scenario it is possible to have an asymmetric hierarchy splitting
even with a Z2-symmetric matching of ”our” brane to the bulk.

In this talk we would like to investigate the possible global geometries of the so-called
”brane universe” scenarios, in which our Universe is supposed to be a thin shell, ”membrane”,
embedded into the space-time of larger number of dimensions, ”bulk”.

Our strategy is to simplify everything as much as possible and construct some exactly solv-
able model, because only the thorough investigation of such models is the source of the physical
intuition. So, let us consider a (N + 1)-dimensional space-time containing a N -dimensional
brane (thin shell) with the metric

ds2 = gµν(y)dyµdyν . (1)

Having in mind the very name of the Conference, we demand the brane to be time-like and have
the so-called cosmological symmetry, i.e., homogeneity and isotropy. Moreover, we assume (and
this is the first step in our simplification process) that outside the brane the ”bulk” geometry
possesses the same symmetry, in other words, locally, the bulk geometry does not depend on
the place of the brane. This means, that throughout the whole (N + 1)-dimensional manifold
we can introduce the normal Gaussian coordinate system in which the metric (1) takes the form

ds2 = −dn2 + γij(n, x)dxidxj

= −dn2 + B2(n, t)dt2 − A2(n, t)dl2N−1, (2)

where i, j take the values (0, 2, ...N), and dl2N−1 is the Robertson-Walker unit line element of a
homogeneous space,

dl2N−1 =
dr2

1 − kr2
+ r2dΩ2

N−2 (3)

with dΩ2
N−2 representing the line element of the unit (N − 2)-dimensional sphere. For k = +1

the homogeneous space is the unit (N − 1)-dimensional sphere, for k = −1 it is the rotational
hyperboloid, and k = 0 means that such a space is flat. For a while we suppose that there
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exists only one brane in a bulk and put it at zero value of the normal coordinate n = 0. Then,
the general form of the energy momentum tensor Tµν is

Tµν = Sµνδ(n) + [Tµν ] Θ(n) + T−µν ,

[Tµν ] = T+µν − T−µν . (4)

Here Sµν is the surface energy-momentum tensor on the brane, square brackets [ ] denote a
jump of some quantity across the shell (brane), [X] = (X+ − X−), indices ” ± ” indicate the
n > 0(” + ”) and the n < 0(” − ”) regions outside the shell, δ(n) and Θ(n) are conventional
Dirac’s and step functions. If Sµν 6= 0, the hyper-surface n = const is singular, otherwise

it is regular. Introducing the extrinsic curvature tensor Kij = −1
2

∂γij

∂n
= −1

2γij,n for the N -
dimensional hyper-surfaces n = const (both singular and regular ones), we are able to separate
the Einstein equations into three groups according to the above decomposition of the energy-
momentum tensor (everywhere G is the non-renormalized (N + 1)-dimensional gravitational
constant).

1. (n
n) -equations:

Sl
j

{

K
j
l

}

+ [T n
n ] = 0 ,

1

2
K l

−jK
j
−l −

1

2
K2

− −
1

2
(N)R = 8π GT n

−n (5)

and analogous equations in ” + ”-region, K = K
j
j is the trace of the extrinsic curvature tensor.

The parenthesis means {X} = 1
2(X+ + X−), and (N)R is the N -dimensional Ricci scalar on

every hyper-surface n = const.
2. (n

i )-equations:

Sl
i|l + [T n

i ] = 0 ,

K l
−i|l − K−|i = 8π GT n

i , (6)

where the vertical line denotes a covariant derivative with respect to the N -dimensional metric
γij(x, n), and for the sake of brevity we will not mention anymore the equations in ”+”-region.

The first of this set of equations is nothing more but the continuity equation for S
j
i .

3. (ik)-equations:

− ([Kik] − γik [K]) = 8π GSik ,

2 Sl
i {Klk} + 2Sl

k {Kil} −
3

N − 1
S {Kik} − Sik {K} + γikS

l
j

{

K
j
l

}

−
1

N − 1
γikS {K} = [Tik] ,

−

(

K−ik,n − γikK−,n + 2K−ilK
l
−k − K−ikK +

1

2
γik

(

K l
−jK

j
−l + K

)

)

+(N) Gik = 8π GT−ik .(7)

The equations in the first line are known as the Israel’s equations. (N)Gik is the N -dimensional
Einstein tensor on every hyper-surface n = const. The last equation can also be written in the
form

(N)Gik = 8π GT−ik + 8π GT ind
−ik (8)

Using the proclaimed cosmological symmetry it is easy to calculate both (N)R and (N)Gik. For
each hyper-surface n = const we introduce the cosmological time by the relation dτn = B(n, t)dt

and the scale factor a(τn) = A(n, t), then, by symmetry, (N)G2
2 =(N) G3

3 = ... =(N) GN
N , and

(N)R = − (N − 1)

(

2aττ

a
+ (N − 2)

a2
τ + k

a2

)

,

(N)G0
0 =

(N − 1)(N − 2)

2

a2
τ + k

a2
,

(N)G2
2 =

N − 2

2

(

2aττ

a
+ (N − 3)

a2
τ + k

a2

)

(9)
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where aτ = da
dτ

, aττ = d2a
dτ2

The cosmological principle allows us to use also yet another technique in investigation of
the global geometry. This is the so-called (d + 2)-decomposition, and it is not related to the
singular brane, but deals exclusively with the invariants of the bulk geometry. So, let us start.
The metric of any (d + 2)-dimensional space-time which is a direct product of a d-dimensional
homogeneous space (cosmological symmetry!) and a two-dimensional space-time can be written
in the form

ds2 = γAB(x)dxAdxB − R2(x)dl2d , (10)

where dl2d - the unit Robertson-Walker line element for a homogeneous space with the curvature
d(d−1)k, k = ±1, 0, A = 0, 1 (”0” for some time coordinate t, ”1” for some radial coordinate q),
γAB is a two-dimensional metric tensor, and R(x) is the radius or, in other words, scale factor,
of the d-dimensional homogeneous space. Due to the general covariance a two-dimensional
geometry is locally determined actually by only one function of two variables t and q. For the
(d + 2)-dimensional manifold with cosmological symmetry we need, therefore, to know only
two functions of two variables. Naturally, one of them is the radius R(t, q) which is invariant
under (t, q)-transformations. Surely, we want the second function to be also an invariant.
Geometrically, the best choice is the squared normal to the surfaces R = const. So, we define
our second function as

∆ = γABR,AR,B (11)

where comma means a partial derivative, R,a = ∂R
∂xA . Remarkably enough that, using these two

invariants, we can rewrite the two-dimensional part of the Einstein equations in this case in a
very convenient vector-like form

(

Rd−1 (∆ + k)
)

,A
=

16π G

d
Rd

(

T R,A − TB
A R,B

)

, (12)

where T = TC
C . The third equation, for A 6= B can also be obtained as an integrability condition

for the above vector equation:

γAC R||CB = −
8πG

d
RTA

B . (13)

The double vertical line here denotes a covariant derivative with respect to the two-dimensional
metric γAB. Our invariant ∆ brings a very important geometrical information. Note, first of
all, that for the flat Minkowskian space-time (of any dimension) ∆ = −1. But in the curved
space-time ∆ is no more a constant and can be both negative and positive. If it is negative, we
can choose the radius R as a spatial coordinate (Ṙ = 0, (R′)2 = 1 =⇒ ∆ = γ11(R′)2 = γ11 < 0)
like in the flat space-time, and the surfaces R = const are time-like. Such regions are called the
R-regions. Moreover, in these regions R,q cannot change its sign, therefore we may have either
R,q > 0 in the R+-regions, or R,q < 0 in the R−-regions. Analogously, if ∆ > 0, the surfaces
R = const are space-like, and the radius R can be used as a time coordinate, these regions
are called the T -regions. And, again, now the sign of R,t cannot be changed, so, there are T+-
regions with R,t>0 (inevitable expansion) and T−-regions with R,t<0 (inevitable contraction).
The R- and T -regions are separated by hyper-surfaces ∆ = 0 called the apparent horizons. The
global geometry of the space-time manifolds with cosmological symmetry is, therefore, the set
of R±- and T±-regions separated by the apparent horizons ∆ = 0. Of course, not all such sets
are physical. As a selection rule we will use the physical principle of geodesic completeness:
any null or time-like geodesics must start and end either at infinities or at singularities where
the Riemann curvature tensor becomes divergent.

It is time to make the next (second) step in simplification of our model. We assume that
outside the brane at n = 0 the space-time is a vacuum with cosmological constant Λ, thus, the
energy-momentum tensor for n 6= 0 has the form of an invariant tensor

8π GT ν
µ = Λ δν

µ , (14)
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in particular, 8π GTB
A = ΛδB

A , 8π GTC
C = 2Λ. The vector-like equations are easily integrated

now to give

∆ = −k +
2Gm

RN−2
+

2

N(N − 1)
ΛR2, (15)

here m is an integration constant with the dimension of mass. Note that here the invariant ∆
is actually a function of one variable - invariant radius R. In such a case it is easy to write
explicitly the two-dimensional line element separately in R- and T -regions. If ∆ < 0 (R-region),
we can choose the radius as the spatial coordinate q (or −q). Then,

ds2
2 = (−∆) dt2 −

dR2

(−∆)
. (16)

In what follows we will need yet another form of the line element, namely, the conformally flat
one. For this let us introduce the function R⋆(R) by the relation

dR⋆ = ±
dR

|∆|
, (17)

then
ds2

2 = (−∆)
(

dt2 − dR⋆2
)

. (18)

In T -regions ∆ > 0 and we can choose R (or −R) as a time coordinate, for the line element one
gets

ds2
2 =

dR2

∆
− ∆dq2 = ∆

(

dR⋆2 − dq2
)

, (19)

here R⋆ (−R⋆) is a time coordinate, and q a spatial coordinate of the Minkowskian (flat) two-
dimensional space-time. We assume that there can be only one singular shell in the whole
N + 1-dimensional space-time, namely, our brane. Then, to avoid a singularity at R = 0 we
have to put m = 0. In this case the value k = ±1, 0 should be the same everywhere, it is a global
property. For different k we obtain completely different bulk space-times. We see, that such
a global feature dictates the spatial curvature on the brane. The latter can be determined, in
principle, by making measurements on the brane itself. And this is the way to know something
about the bulk geometry (if, of course, we have some other evidences that the brane universe
hypothesis is true). The case of several branes will be briefly discussed later.

Let us go further and make use of the Eqn(13). Substituting in it the two-dimensional part
of the metric (2), namely, ds2

2 = −dn2 + B2(n, t)dt2, we obtain

∆ =
1

B2(n, t)
R2(n, t),t − R2(n, t),n = f2(t) − R2

,n , (20)

where f(t) is some function of time coordinate only. From this we have

R,n = ±
√

f2(t) − ∆ = σ
√

f2(t) − ∆ . (21)

We introduced new and very important sign function σ. It shows whether radii increase with
n(σ = +1), or they decrease (σ = −1). It is clear from the definition that in R+-regions σ = +1,
and σ = −1 in R−-regions. In T -regions σ may change the sign. Thus, this sign will point at the
region where exactly the brane is matched to the bulk. This last equation together with the fact
that the invariant ∆, Eqn.(15), depends only on the radius R allows us to obtain the solution
R(n, t) as an explicit function of the normal coordinate n. To have the full information we need

the equations on the brane at n = 0. Remembering that R(n, t) = A(n, t) and f(t) =
R,t

B
= aτ ,

we are able to calculate the extrinsic curvature tensor Kij and the induced energy-momentum
tensor on the brane T ind

−ij . We need also a relation between the coordinate time t and the
cosmological time τ on the brane. Using the freedom (gauge) in defining the coordinate time,
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we can always put B(0, t) = 1, in other words, t = τ for n = 0 on the brane. Let us remind that
the Israel’s equations (matching conditions) give some relations between the jump in extrinsic
curvature tensor and the surface energy-momentum tensor S

j
i . It is easy to show that this tensor

determines also (together with the bulk cosmological constant) the induced energy-momentum
tensor. We see now that, given the surface energy-momentum tensor S

j
i , the sign of the spatial

curvature k and the value and the sign of the cosmological constant Λ we can construct both
the global geometry of the bulk and the trajectory of the brane. Therefore, we will know the
complete geometry of the whole space-time.

Of course, in general, it is still impossible to get the solution in a closed form. Hence, we
need to simplify the model further. And as the final step, we restrict ourselves to investigation
of the vacuum shells. Namely, we choose the following equation of state

S0
0 = S2

2 . (22)

From the first of Eqns.(6) we have S0
0 = const, and the set of equations we need, looks as follows

R,n(±) = σ±

√

f2(t) + k −
2Λ

N(N − 1)
R2 ,

−

[

R,n

R

]

=
1

R
(R,n(−) − R,n(+)) =

8π G

N − 1
S0

0 ,

S0
0 = const , R(0, t) = a(τ) , τ = t ,

(N − 1)(N − 2)

2

a2
τ + k

a2
=

N − 2

N

(

Λ +
N

2(N − 1)
(4π G)2

(

S0
0

)2
)

. (23)

Note, first of all, that the values of R,n on different sides of the brane differ by their sign only,
this is the consequence of our assumption to have m = 0 everywhere in the bulk. Therefore,
σ− = −σ+, and we automatically obtain the Z2-symmetric brane. Moreover, the signs of S0

0 and
σ− are the same, the latter affects the matching of the brane to the bulk, but not the evolution
inside the shell. Let us now solve the set of equations (23), considering all the possibilities one
by one.

We begin with positive cosmological constant, Λ > 0. Introducing (for brevity) the so-

called cosmological radius R0 =

√

N(N−1)
2Λ and suppressing (±) indices we get from the first of

Eqns.(23)

R = R0

√

f2(t) + k sin

(

σn

R0
+ ϕ(t)

)

, (24)

where ϕ(t) is an another function of time. On the brane at n = 0 the following equations are
valid (σ = σ− = −σ+):

σ

R0
cot ϕ =

4π G

N − 1
S0

0 ,

a2
τ + k

a2
=

2Λ

N(N − 1)
+

(

4π G

N − 1

)2
(

S0
0

)2
=

1

R2
0 sin2 ϕ

. (25)

Since S0
0 = const, then ϕ = ϕ0 = const. We see also that the value of σ(= σ− = −σ+) depends

on the sign of S0
0 and affects crucially the matching of our brane to the bulk. For different

values of k = ±1, 0 only the time dependent pre-factor is changed:

R = R0 sin

(

σn

R0
+ ϕ0

)















cosh t
a0

, for k = +1

e
t

a0 , for k = 0
∣

∣

∣
sinh t

a0

∣

∣

∣
, for k = −1

a0 = R0 sin ϕ0 (26)
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It is useful to visualize the matching by plotting the above function R = R(n) for some moment
of time t = const. We have for σ = σ− = +1(σ+ = −1) (Figs.1 and 2):

R
R0

n
R0

0−φ0 π − φ0

σ = +1
n < 0

Fig. 1:

R
R0

n
R0

0−π + φ0 φ0

σ = +1
n > 0

Fig. 2:

The dashed curves show a continuation of the function R(n) beyond the shell. Combining
these two Figures we get Fig.3:

R
R0

n
R0

0−φ0 φ0

σ = +1

shell

Fig. 3:

For σ = σ− = −1(σ+ = +1) the corresponding pictures are shown in Figs.4, 5 and 6.
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R
R0

n
R0

0φ0 − π φ0

σ = −1
n < 0

Fig. 4:

R
R0

n
R0

0−φ0 π − φ0

σ = −1
n > 0

Fig. 5:

R
R0

n
R0

0φ0 − π π − φ0

σ = −1

shell

Fig. 6:

Let us now turn to the bulk geometry. The causal structure of space-times is better seen
on the so-called Carter-Penrose conformal diagrams where each point represents the (N −
1) dimensional homogeneous space. We suppose, everybody in the audience knows how to
construct such a diagram. Below we present only the results pointing out the R±- and T±-
regions and corresponding values of radii R and conformal radii R⋆ at the boundaries and
horizons. Consider, first, the case k = +1. The relations between R and R⋆ are now the
following

dR⋆ = ±
dR

1 − R2

R2

0

, =⇒ R⋆ = ±
1

2
ln

1 + R
R0

1 − R
R0

(27)

in R±-regions 0 ≤ R ≤ R0, and

dR⋆ = ±
dR

R2

R2

0

− 1
, =⇒ R⋆ = ±

1

2
ln

R
R0

+ 1
R
R0

− 1
(28)
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in T±-regions, R0 ≤ R ≤ ∞. The Carter-Penrose diagram is the well known square for the de
Sitter space-time. The time coordinate points up, while the radial coordinate goes from left to
right, and the null curves are straight lines with ±45◦ (Figs.7 and 8.

R = 0 R = 0

R = ∞

R = ∞

R = R0

R = R0 R = R0

R = R0
R∗ = 0

R∗ = 0

R∗ = 0

R∗ = 0

R∗ = ∞

R∗ = ∞

R∗ = −∞

R∗ = −∞

Fig. 7:

R+
R−

T+

T−

Fig. 8:

In Fig.8 the dashed curves represent the surfaces R = const (time-like in R-regions and
space-like in T -regions), and we slightly distorted the R = ∞ space-like boundaries in order
to make the matchings of the brane to the bulk more visual. And, finally, the conformal
diagrams for the complete geometry of the space-time with the brane in the case Λ > 0, k = +1
are shown in Figs.9 and 10. Clearly, they are different for S0

0 > 0 (σ = σ− = +1) and for
S0

0 < 0 (σ = σ− = −1).
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R+ R−

T+

T−

T+

T−

R = 0 R = 0

R = ∞

R = ∞

R = R0R = R0

R = R0 R = R0

Fig. 9:

R+R−R+ R−

T+

T−

T+

T−

R = ∞ R = ∞

R = ∞ R = ∞

R = 0 R = 0

Fig. 10:

Dashed curves are hyper-surfaces R = const. The case of negative surface energy density
S0

0 < 0 is much more interesting from the physics point of view. The bulk geometry on both
sides of the brane has the Einstein-Rosen bridge, or a throat, at the intersection of horizons
R = R0 (this is the so-called bifurcation point). In this sense such a geometry reminds that of
non-traversable wormhole. The interesting physics begins if there are several more branes (say,
two) in the space-time. Let us imaging that one of the additional branes is located on the same
side of the Einstein-Rosen bridge as ”our” brane is (to the left on the diagram), while the second
one is on the other side (to the right). In classical theory their existence does not affect the
dynamics of ”our” shell or destroy the Z2-symmetry of the matching. But in quantum theory
these additional shells will cause the energy level splitting and such a splitting will inevitably
be asymmetric, resulting in an asymmetric hierarchy of fundamental interactions.

Consider now the more simple case k = 0. Evidently, we have only the T±-regions everywhere
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except the hyper-surfaces R = 0 that serve as the apparent horizons. The R and R⋆ (time-like)
are reciprocal,

R⋆ = ∓
1

R
(29)

in T±-regions, and the conformal diagrams for the bulk are simple orthogonal triangles, Fig.11.

T+

T−

R = 0

R = 0

R∗ = ∞

R∗ = −∞

R = ∞, R∗ = 0

R = ∞, R∗ = 0

Fig. 11:

The complete geometries with the brane are Figs.12 and 13.

R = 0 R = 0

R = ∞

Fig. 12:

R = 0

R = 0R = 0

R = ∞ R = ∞

Fig. 13:

plus their time reversals. Again, the dashed curves represent constant radii.
The case k = −1 is a little bit more complex. The whole region 0 ≤ R < ∞ is now the

T -region without horizons. For the conformal time R⋆ we have

R⋆ = ± arctan
R

R0
, =⇒ R = ±R0 tan

R⋆

R0
, (30)
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where the signs ”± ” stand for T±-regions. when R increases from zero to infinity, 0 ≤ R < ∞,
the cosmological time R⋆ changes from 0 to π

2 R0 in T+-region, the region of inevitable expansion
(in T−-region −π

2 R0 ≤ R⋆ ≤ 0 when R decreases from ∞ to 0, this is the case of inevitable
contraction). Formally, we can extend the conformal time R⋆ to run from −∞ to ∞ and,
thus, arrive at the so-called unfolded description. In the purely vacuum space-time there are
no physical observers, but in more realistic brane universe scenarios everything depends on the
physical conditions inside the shell (possible appearance of real singularities and so on). Further,
it is easy to notice that the two-dimensional metric for Λ < 0, k = +1 differs from that one
for Λ > 0, k = −1 only by the signature: (+−) → (−+). This means that the corresponding
Carter-Penrose conformal diagram can be obtained from that of conventional anti-de Sitter
space-time by interchanging R±- and T±-regions,the horizontal lines being replaced by vertical
ones. With this in mind, we get for the bulk geometry (Fig.14).

R = 0, R∗ = 0

R = 0, R∗ = 0R = ∞, R∗ = π
2 R0

R = ∞, R∗ = −π
2 R0

T+ T−

Fig. 14:

Here two isolated points on each diagram are spatial infinities (−∞ on the left and +∞ on
the right), and the dashed curves are for R = const. The complete geometries with the brane
for S0

0 > 0 and S0
0 < 0 look on the conformal diagrams as in Fig.15.

R = 0, R∗ = 0

R = 0, R∗ = 0R = ∞, R∗ = π
2 R0

R = ∞, R∗ = −π
2 R0

Fig. 15:

This is the case of inevitable expansion. For inevitable contraction the diagrams are essen-
tially the same.

And now we will describe all possible global geometries when the bulk is a vacuum (N +1)-
dimensional space-time with negative cosmological constant, Λ < 0. First of all, let us have a
look at the differential equation for R(n, t),

R,n = σ

√

f2(t) + k −
2Λ

N(N − 1)
R2 = σ

√

f2(t) + k +
R2

R2
0

, (31)

where we introduced the cosmological radius R0 =
√

N(N−1)
2|Λ| . In contrast to the case of positive

Λ, there are two possibilities: either f2(t) + k > 0, or f2(t) + k < 0. We start with the case
f2(t) + k > 0, the solution to the Eqn.(31) is

R = R0

√

f2(t) + k sinh

(

σn

R0
+ ϕ(t)

)

. (32)
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The Einstein equations on the brane (n = 0) take now the form

σn

R0
coth ϕ(t) =

4π G

N − 1
S0

0 ,

f2(t) + k

a2
=

a2
τ + k

a2
=

2Λ

N(N − 1)
+

(

4π G

N − 1

)2

S0
0
2

=
1

R2
0 sinh2 ϕ(t)

. (33)

Again, for vacuum shells (S0
0 = S2

2 = const) we have ϕ(t) = ϕ0 = const. We see that the
transition from the positive cosmological constant to the negative one results in replacing the
trigonometric by corresponding hyperbolic functions. Moreover, in this case (f2(t)+k > 0) the
induced energy density inside the shell is positive, so qualitatively, the inner evolution is exactly
the same as for positive Λ. Since the absolute value of the surface energy density is bounded

from below,
∣

∣S0
0

∣

∣ >

√

(N−1) |Λ|
2π GN

, we may call such a brane ”the heavy shell”. The plots of the

functions R(n) for different σ = ±1 are shown in Figs.16 and 17.

R
R0

n
R0

0−φ0

σ = +1
n < 0

Fig. 16:

R
R0

n
R0

0 φ0

σ = −1
n < 0

Fig. 17:

With the brane the pictures are Figs.18 and 19.
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R
R0

n
R0

0−φ0 φ0

σ = +1

shell

Fig. 18:

R
R0

n
R0

0

σ = −1shell

Fig. 19:

Despite of the similar behavior inside the brane, the bulk geometries are completely different
from that for positive cosmological term.

The case k = +1 is the conventional anti-de Sitter space-time, and the conformal Carter-
Penrose diagram is the same as for Λ > 0, k = −1, but it becomes vertical, because instead of
T -regions we have now the R-regions everywhere, see Fig.20.
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R = ∞ R = ∞

R∗ = π
2 R0 R∗ = −π

2 R0

R = 0 R = 0

R∗ = 0 R∗ = 0
R+ R−

Fig. 20:

The isolated points are the future and past time infinities. Of course, we can consider a
variety of unfolded version (with different identifications) of this AdS space-time, and such
extensions are even more natural than before, because due to the negative curvature the light
rays reach the ”boundary” at R = ∞ in finite coordinate time interval. But, again, everything
depends on the specific properties of the matter inside the brane. Remembering that the scale
factor of the brane evolution for k = +1 is bounded from below we obtain the following two
types of global geometries for S0

0 > 0 and S0
0 < 0, up to possible unfoldings, Figs.21 and 22.
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R = 0 R = 0

Fig. 21:

R+ R+ R−R−

Fig. 22:

The dashed curves represent the hyper-surfaces R = const.
In the case k = 0, Λ < 0 everything is similar to that for k = 0, Λ > 0. Again, the T -

region is replaced by the R-region, and the vertical orthogonal triangle becomes horizontal.
The surfaces R = 0 are the apparent horizons. For the bulk geometry we have Fig.23.
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replacemen

R+ R−

R = 0
R = 0

R∗ = 0 R∗ = 0

R∗ = −∞
R∗ = ∞

R = ∞ R = ∞

Fig. 23:

After inclusion of the brane we get, Figs.24 and 25.

R+ R−

R = 0

R = 0

R = 0

R = 0

R = ∞

Fig. 24:
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R+R−

R = ∞ R = ∞

R = ∞ R = ∞

R = 0

Fig. 25:

The most unusual is the case Λ < 0, k = −1. It admits both the ”heavy shells” with
∣

∣S0
0

∣

∣ >

√

(N−1)|Λ|
2π GN

, and the ”light shells” for which
∣

∣S0
0

∣

∣ <

√

(N−1) |Λ|
2π GN

. For the ”heavy” shells

R = R0 sinh

(

t

R0 sinhϕ0

)

sinh

(

σn

R0
+ ϕ0

)

, (34)

and the shell infinitely expands from zero radius to infinity. For the ”light” shells

R = R0 sin

(

t

R0 cosh ϕ0

)

cosh

(

σn

R0
+ ϕ0

)

,

R = ±R0 tanh
R⋆

R0
, , 0 ≤ R ≤ R0 ,

R = R0 coth
R⋆

R0
, R0 ≤ R < ∞ . (35)

The ”light” shells, first expands from zero radius R = 0 to the maximum at R = R0 cosh ϕ0

and then contracts back to R = 0. The curves R(n, ) for t = const look in this case as shown
in Figs.26 and 27.

R
R0

n
R0

0−φ0

σ = +1
n < 0

Fig. 26:
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R
R0

n
R0

0 φ0

σ = −1
n > 0

Fig. 27:

With inclusion of the shell, the complete pictures are (σ = +1 for S0
0 > 0, σ = −1 for

S0
0 < 0) Figs.28 and 29.

R
R0

n
R0

0−φ0 φ0

σ = +1
shell

Fig. 28:

R
R0

n
R0

0−φ0 φ0

σ = −1shell

Fig. 29:

The Carter-Penrose diagram is also unusual. Formally, it can be obtained from that of
Λ > 0, k = +1 by interchanging R- and T -regions. We get Fig.30.
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R+R−

T+

T−

R = 0, R∗ = 0

R = 0, R∗ = 0

R∗ = 0
R∗ = 0

R = ∞
R = ∞R∗ = −∞

R∗ = −∞

R∗ = ∞

R∗ = ∞

Fig. 30:

This diagram is the same as for the Schwarzschild black hole with the only difference that
instead of null infinities we have now the time-like infinities on both sides of the Einstein-Rosen
bridge. But this black hole is strange: it has zero mass (!), and the horizon radius R = R0

is connected to the negative (!) cosmological constant. Besides, there are no singularities at
R = 0. The complete Carter-Penrose diagrams for the ”heavy” shell with S0

0 > 0 and S0
0 < 0

look as in Figs.31 and 32.

R+R− R+R−

T+

T−

T+

T−

R = 0 R = 0

R = 0 R = 0
R = ∞

R = ∞ R = ∞

Fig. 31:
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R+R−

T+ T+

R = R0
R = R0

R = 0

R = ∞ R = ∞

R = ∞ R = ∞

Fig. 32:

We see that in the case S0
0 > 0 there zero mass black holes on both sides of the shell and,

consequently, two Einstein-Rosen bridges. The latter property allows to have asymmetric hier-
archy without destroying the Z2-symmetry of the matching. For the ”light” shell the complete
Carter-Penrose diagrams are Figs.33 and 34.

R+R− R+R−

T+

T−

T+

T−

R = 0

R = 0

R = ∞ R = ∞

Fig. 33:
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R+R−

T+

T−

T+

T−

R = 0

R = 0

R = ∞ R = ∞

Fig. 34:

For both signs of S0
0 our shell undergoes a bound motion and, thus, can be quantized in the

same way as the bound states, say, of hydrogen atom. And the last note: because the proper
time is finite when traveling from an initial state at R = 0 to the final state at R = 0, we can
use the unfolded description in the time direction (both past and future) as well.

We would like now to summarize what we learned studying the global geometry of the
brane universe cosmological models. About the assumption. The most severe one is that
about the existence of cosmological symmetry throughout the whole space-time. This means
that the brane does not affect the local bulk geometry, in other words, the latter does not
depend on the place of brane matching (in terms of invariant radius R). Thus, the singular
shell does not send any (gravitational) signal about its existence. The very interesting result
is the connection between the spatial curvature of a homogeneous space on the brane and the
global geometry. This is rather unexpected and contradicts, in a sense, our four-dimensional
experience and intuition. We are used ti think of the thin shells as the two-dimensional bubble
walls embedded into a three-dimensional space. Because these walls are spherically symmetric
(assuming ”cosmological” symmetry) we get automatically k = 1. It is appeared unexpected
also the possibility of non-symmetric (from the global geometry point of view) inclusion into
consideration of several additional branes without destroying the Z2-symmetric matching of
”our” brane to the bulk. This may be useful in attempts to understand the observed non-
symmetric hierarchy of the fundamental interactions. We saw that such a property exists
(even for zero Schwarzschild mass) if we adopt some unfolded description of the space-times
with negative cosmological constant, and also in the case Λ < 0 k = −1, where we found the
Einstein-Rosen bridge which exactly like in the Schwarzschild black hole space-time, but with
the cosmological constant playing the role of the nonzero mass. This last case is also interesting
for constructing more realistic models because it allows a transition from the ”light” shells (with
the surface energy density bounded from above) to the ”heavy” shells (surface energy density
bounded from below). Besides, the quantized ”light” shells will form the bound states and this
may become very important in investigating the quantum models with several branes which
could exhibit the hierarchy features.
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