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Abstract

This talk describes the resummation approach in (Fractional) Analytic Perturbation
Theory (FAPT) in QCD. First, we make a short historical review of the (F)APT approach
and then shortly describe the global scheme of FAPT which allows one to take into account
heavy-quark thresholds. After that we show how it is possible to resum a non-power series
in (F)APT both in the one- and two-loop approximations. As an application we suggest
our analysis of the Higgs boson decay H0 → bb, important for the LHC program.

1 Analytic Perturbation Theory in QCD

First, I’d like to remind the history of Analytic Perturbation Theory (APT). Strictly speak-
ing, APT was initiated by the paper of N. N. Bogolyuov et al. in 1959 [1], where ghost-free
effective coupling for QED was constructed using the dispersion-relations method. Then, in
1982, Radyushkin [2], and Krasnikov and Pivovarov [3], using the same dispersion-relations
technique, suggested regular (for s ≥ Λ2) QCD running coupling in the Minkowski region,
αs(s) ≡ as(s)/βf , namely, as[L] = π−1 arctan(π/L) with L = ln(s/Λ2) and βf = b0(Nf )/(4π) =
(11 − 2Nf/3)/(4π).1 (This normalized coupling as[L] in standard QCD PT is just 1/L in the
one-loop approximation.)

Thirteen years later, Dokshitzer et al. constructed an IR finite αeff
s (Q2) in the Euclidean

domain using a renormalon-based approach with dispersion relations [4]. After that, Jones and
Solovtsov [5, 6] discovered the coupling which appears to be finite for all s and coincides with
the Radyushkin’s one for s ≥ Λ2, namely

A1[L] =

∫ ∞

s

ρ1(σ)

σ
dσ =

1

π
arccos

L√
π2 + L2

. (1a)

Just at the same time, Ball, Beneke and Braun reproduced in the pQCD-based renormalon
approach as[L] = π−1 arctan(π/L) in the low-energy Minkowski region [7, 8], and Shirkov and
Solovtsov [9], using the same dispersion-relations approach of [1], discovered the ghost-free
coupling,

A1[L] =

∫ ∞

0

ρ1(σ)

σ + Q2
dσ =

1

L
− 1

eL − 1
, (1b)

in the Euclidean region with L = ln(Q2/Λ2). But Shirkov–Solovtsov approach, named APT,
appears to be more powerful: in the Euclidean domain, −q2 = Q2, L = ln Q2/Λ2, it generates

∗

E-mail: bakulev@theor.jinr.ru
1We use the notations f(Q2) and f [L] in order to specify the arguments we mean — squared momentum Q2

or its logarithm L = ln(s/Λ2) or ln(Q2/Λ2), that is f [L] = f(Λ2
· eL) and Λ2 is usually referred to the Nf = 3

region.
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the set of images for the effective coupling and its n-th powers, {An[L]}n∈N
, whereas in the

Minkowski domain, q2 = s, L = ln s/Λ2, it generates another set, {An[L]}n∈N
(see also in [10]).

APT is based on the Renormalization Group (RG) and causality that guarantees standard
perturbative UV asymptotics and spectral properties. The power series

∑
m dmam

s [L] transforms
into a non-power series

∑
m dmAm[L] or

∑
m dmAm[L] in APT. The global version of APT,

which takes into account the heavy-quark thresholds, has been elaborated in [11].
By the analytization in APT for an observable f(Q2) we mean the “Källen–Lehmann”

representation

[
f(Q2)

]
an

=

∫ ∞

0

ρf (σ)

σ + Q2 − iǫ
dσ (2a)

with ρf (σ) =
1

π
Im

[
f(−σ)

]
, which transforms to different prescriptions for couplings in the

Euclidean and Minkowski domains

An[L] = AE [αn
s ] =

∫ ∞

0

ρn(σ)

σ + Q2
dσ ; (2b)

An[L] = AM [αn
s ] =

∫ ∞

s

ρn(σ)

σ
dσ . (2c)

In the one-loop approximation, we have then ρ1(σ) = 1/
√

L2
σ + π2 and Eqs. (1), whereas

analytic images of the higher powers (n ≥ 2, n ∈ N) are [2, ?]
(An[L]

An[L]

)
=

1

(n − 1)!

(
− d

dL

)n−1 (A1[L]

A1[L]

)
. (3)

At first glance, the APT is a complete theory supplying tools to produce an analytic answer
for any perturbative series in QCD. But in 2001 Karanikas and Stefanis reminded the need
for more tools to produce analytic expressions for hadronic observables, calculated perturba-
tively [12]. Indeed, in the standard QCD PT one has also:

(i) the factorization procedure in QCD that gives rise to the appearance of logarithmic factors
of the type: aν

s [L]L;

(ii) the RG evolution that generates evolution factors of the type B(Q2) =
[
Z(Q2)/Z(µ2)

]

B(µ2), which reduce in the one-loop approximation to Z(Q2) ∼ aν
s [L] with ν = γ0/(2b0)

being a fractional number (here the subscript 0 means that the corresponding quantity is
calculated in the one-loop approximation).

They suggested the principle of analytization “as a whole” in the Q2 plane for hadronic am-
plitudes, obtained in QCD PT, thus generalizing the analytic approach suggested in [13].2 A
review of both approaches can be found in [14], whereas an extensive discussion of the APT
application to the pion form factor analysis is contained in [15].

All that means that in order to generalize APT in the “analytization as a whole” direction
one needs to construct analytic images of new functions: aν

s , aν
s Lm, . . . . This task has been

performed in the framework of the so-called FAPT, suggested in [16, 17]. Now we briefly
describe this approach. In the one-loop approximation, using the recursive relation (3), we can
obtain explicit expressions for Aν [L] and Aν [L]:

Aν [L] =
1

Lν
− F (e−L, 1 − ν)

Γ(ν)
; (4a)

Aν [L] =
sin

[
(ν − 1) arccos

(
L√

π2+L2

)]

π(ν − 1) (π2 + L2)(ν−1)/2
. (4b)

2More precisely, they proposed the analytization recipe for terms like
R 1

0
dx

R 1

0
dy αs

`

Q2xy
´

f(x)f(y), which
can be treated as an effective account for the logarithmic terms in the next-to-leading-order approximation of
perturbative QCD.
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Here F (z, ν) is the reduced Lerch transcendental function, which is an analytic function in ν.
This function has very interesting properties, which were discussed extensively in the previous
papers [16, 17, 18, 19].

The construction of FAPT with a fixed number of quark flavors, Nf , is a two-step procedure:
we start with the perturbative result

[
as(Q

2)
]ν

, generate the spectral density using ρν(σ) =
1

π
Im

[
as(−σ)

]ν
, and then obtain analytic couplings Aν[L] and Aν [L] via the relations like Eqs.

(2). Here Nf is fixed and factorized out. We can proceed in the same manner with Nf -dependent
quantities:

[
αs(Q

2;Nf )
]ν ⇒ ρν(σ;Nf ) = ρν [Lσ;Nf ] ≡ ρν(σ)/βν

f ⇒ Aν [L;Nf ] and Aν [L;Nf ]
— here Nf is fixed, but not factorized out. The global version of FAPT [18], which takes
into account heavy-quark thresholds, is constructed along the same lines but starting from the
global perturbative coupling

[
α glob

s (Q2)
]ν

, being a continuous function of Q2 due to adopting
different values of QCD scales Λf , which correspond to different values of Nf . We illustrate
here the case of only one heavy-quark threshold at s = m2

4, corresponding to the transition
Nf = 3 → Nf = 4. Then we obtain the discontinuous spectral density

ρglob

n (σ) = θ (Lσ < L4) ρn [Lσ; 3] + θ (L4 ≤ Lσ) ρn [Lσ + λ4; 4] (5)

with Lσ ≡ ln
(
σ/Λ2

3

)
, Lf ≡ ln

(
m2

f/Λ2
3

)
and λf ≡ ln

(
Λ2

3/Λ
2
f

)
for f = 4, which is expressed in

terms of fixed-flavor spectral densities with 3 and 4 flavors, ρn[L; 3] and ρn[L+λ4; 4]. However,
it generates the continuous Minkowski coupling

A
glob

ν [L] = θ (L<L4)
(
Aν [L; 3] + ∆43Aν

)
+ θ (L4≤L) Aν [L + λ4; 4] (6a)

with ∆43Aν = Aν [L4 + λ4; 4] − Aν [L4; 3] and the analytic Euclidean coupling Aglob
ν [L]

Aglob

ν [L] = Aν [L + λ4; 4] +

L4∫

−∞

ρν [Lσ; 3] − ρν [Lσ + λ4; 4]

1 + eL−Lσ
dLσ . (6b)

The same strategy one needs to use when working in a higher-loop approximation — then,
analytic formulas even for the fixed-Nf case are unavailable (the spectral density is expressed
in terms of the imaginary part of the Lambert function) and one is forced to use integral
representations of the type (2) to calculate analytic couplings and other quantities of interest.
One more complication here is the more complex evolution law: for example, in the two-loop
approximation the evolution factor B(Q2) =

[
Z(Q2)/Z(µ2)

]
has Z(Q2) ∼ aν0

s [L](1+ c1as[L])ν1 ,
with exponents ν0 and ν1 being known numerical coefficients — for more details see in [18].

2 Resummation in (F)APT

We consider now the perturbative expansion of a typical physical quantity, like the Adler func-
tion and the ratio R, in the one-loop APT. Due to the limited space of our presentation, we
provide all formulas only for quantities in the Minkowski region:

R[L] =

∞∑

n=1

dn An[L] . (7a)

We suggest that there exist a generating function P (t) for the coefficients d̃n = dn/d1:

d̃n =

∫ ∞

0
P (t) tn−1dt with

∫ ∞

0
P (t) dt = 1 . (7b)
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To shorten our formulae, we use for the integral

∞∫

0

f(t)P (t)dt the following notation: 〈〈f(t)〉〉P (t).

Then, the coefficients dn = d1 〈〈tn−1〉〉P (t) and the series (7a) can be represented as follows (we
put for shortness d1 = 1):

R[L] =

∞∑

n=1

〈〈tn−1〉〉P (t) An[L] . (7c)

2.1 One-loop case

Due to the recurrence relations (4), as has been shown in [20], we have the exact result for the
sum in (7c), viz.,

R[L] = 〈〈A1[L − t]〉〉P (t) . (8)

The integral over the variable t has a rigorous meaning, ensured by the finiteness of the coupling
A1[t] ≤ 1 and the fast fall-off of the generating function P (t). This result resembles the result
of resummation of the large (βn

0 αs)
n−1 terms due to Neubert [21], but here we have no problem

with renormalon poles, i. e., in our case the integral 〈〈A1[L − t]〉〉P (t) is nicely convergent. Note
that the same type of approach in the one-loop APT has been independently invented two years
later3 by Cvetic and Valenzuela [22] within the framework of the so-called “skeleton expansion”.

We have first accomplished the generalization of result (8) to the case of global APT [11],
taking into account heavy-quark thresholds [18, 23]. Then, one starts with the series of type
(7c), where An[L] are substituted by their global analogs A

glob
n [L] (note that due to the different

normalizations of the global couplings, A
glob
n [L] ≃ An[L]/βf , the coefficients dn should also be

changed). Then, we have

Rglob[L] = θ(L<L4)〈〈∆4A1[t] + A1

[
L− t

β3
; 3

]
〉〉P (t) + θ(L≥L4)〈〈A1

[
L+λ4 −

t

β4
; 4

]
〉〉P (t) , (9)

where ∆4Aν [t] ≡ Aν

[
L4 + λ4 − t/β4; 4

]
− Aν

[
L3 − t/β3; 3

]
.

The second generalization has been obtained for the case of global FAPT. The starting point
in this case is the generalized recurrence relation

− 1

n + ν

d

dL
Fn+ν [L] = Fn+1+ν [L] , (10)

where F [L] denotes one of the analytic quantities A[L] or A[L]. The result of summation of the
series

∑∞
n=0〈〈tn−1〉〉P (t) A

glob

n+ν [L] is the complete analog of Eq. (9) with the substitutions

P (t) ⇒ Pν(t) =

∫ 1

0
P

(
t

1 − x

)
ν xν−1dx

1 − x
, (11)

where d0 ⇒ d0 Aν [L], A1[L − t] ⇒ A1+ν [L − t], and ∆4A1[t] ⇒ ∆4A1+ν [t]. All needed formulas
have also been obtained in parallel for the Euclidean case, see in [18].

3Note that the paper of Mikhailov [20] was put into arXiv in November, 2004, and after a long discussions
with referees published only in 2007, whereas the paper of Cvetic and Valenzuela [22] was put in arXiv in August,
2006, and published the same year. It is interesting to remind here the title of Mikhailov’s paper: “Generalization

of BLM procedure and its scales in any order of pQCD: A practical approach” — we see that it was devoted to
completely different subject and Eq. (8), numerated in this paper as Eq. (2.7), was obtained in passing.
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2.2 Two-loop case

In the case of the two-loop running of α
(2)
s (Q2) = 4π a(2)(Q

2)/b0, i. e., when the β-function has
the following form (with c1 ≡ b1/b

2
0)

β(a(2)) = −a2
(2)

[
1 + c1 a(2)

]
, (12)

we have two types of complication. First, the recurrence relations (3) and (10) transform into

− 1

n + ν

d

dL
Fn+ν [L] = Fn+1+ν [L] + c1 Fn+2+ν [L] , (13)

where F [L] denotes now one of the analytic quantities A(2)[L], A
(2)[L], or ρ(2)[L]. Second, the

evolution factors appear to be more complicated as well, namely,

Zν0;ν1
[L] = aν0

(2)[L]
(
1 + c1 a(2)

)ν1 [L] , (14)

with exponents ν0 and ν1 being numerical combinations of anomalous-dimension coefficients γ0,
γ1, and β-function coefficients β0, β1.

For these reasons, we need to consider the resummation of the following series:

Sν [L] =

∞∑

n=1

〈〈tn−1〉〉P (t) Fn+ν [L] ; (15a)

Sν0,ν1
[L] =

∞∑

n=1

〈〈tn−1〉〉P (t) Fn+ν0,ν1
[L] . (15b)

In the last line, one has Fn+ν0,ν1
[L] = B(2)

n+ν0,ν1
[L] or B

(2)
n+ν0,ν1

[L] (or—in the case of global

FAPT—the spectral density ρ
(2)
n+ν0,ν1

[L] for these functions) with
(Bν0;ν1

[L]

Bν0;ν1
[L]

)
=

(
AE

AM

)[
aν0

(2)

(
1 + c1 a(2)

)ν1

]
[L] (15c)

being the analytic images of the two-loop evolution factors in the Euclidean and Minkowski
regions, correspondingly. These problems have been successfully resolved in our recent paper [24]
and here we show only the results.

First, we need to define the two-loop evolution “logarithmic time” τ(t):

τ(t) ≡ t − c1 ln

[
1 +

t

c1

]
. (16)

Then the two-loop FAPT resummation procedure produces the following answers:
For the series (15a) the resummed expression is

Sν [L] =

〈〈
F1+ν [L] − t2

c1 + t

∫ 1

0
zνdz Ḟ1+ν [L + τ(t z) − τ(t)]

〉〉

P (t)

+

〈〈
c1 t

c1 + t

{
F2+ν [L] −

∫ 1

0
dz

t2 zν+1

c1 + t z
Ḟ2+ν [L + τ(t z) − τ(t)]

}〉〉

P (t)

, (17a)

whereas for the series (15b) —

Sν0,ν1
[L] =

〈〈
B1+ν0;ν1

[L] + δ0,ν0+ν1
t

[
c1

c1 + t

]1−ν1

B2+ν0;ν1
[L − τ(t)]

〉〉

P (t)

−
〈〈

t2

(c1 + t)1−ν1

1∫

0

dz
zν0+ν1

(c1 + t z)ν1

dB1+ν0;ν1
[L + τ(t z) − τ(t)]

dL

〉〉

P (t)

+

〈〈
c1 t

(c1 + t)1−ν1

1∫

0

dz
(ν0 + ν1) zν0+ν1−1

(c1 + t z)ν1
B2+ν0;ν1

[L + τ(t z) − τ(t)]

〉〉

P (t)

, (17b)
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with δ0,ν0+ν1
being a Kronecker delta symbol.

3 Applications to Higgs boson decay

Here we analyze the Higgs boson decay to a bb pair. For its width we have

Γ(H → bb) = Γb
0(m

2
b)

R̃S(M
2
H)

3m2
b

, (18)

with Γb
0(m

2
b) = 3GF MH m2

b/4
√

2π, mb and MH are the pole mass of the b-quark and the mass

of the Higgs boson, respectively, R̃S(M
2
H) = m2

b(M
2
H)RS(M2

H) and RS(s) is the R-ratio for the
scalar correlator, see for details in [16, 25].

In the one-loop FAPT this generates the following non-power series expansion:4

R̃ (1)
S [L] = 3 m̂2

(1)

{
A

glob

ν0
[L] + d S

1

∑

n≥1

d̃ S
n

πn
A

glob

n+ν0
[L]

}
, (19)

where m̂2
(1) = 8.53 ± 0.09 GeV2 is the RG-invariant of the one-loop m2

b(µ
2) evolution, written

in the following way: m2
b(µ

2) = m̂2
(1) αν0

s (µ2) with ν0 = 2[γ0/b0]Nf =5 = 1.04, and γ0 is the

leading-order quark-mass anomalous dimension. This value m̂2
(1) has been obtained using the

one-loop relation [26, 27] between the pole mass of the b quark, mb, and the value of the
running mass at the scale µ∗ = mb(µ

2
∗), which we call mb(m

2
b). Here we also extract the value

of d S
1 = 17CF/4 = 17/3 out of higher perturbative coefficients, so that d̃ S

n = 3 d S
n/17 and d̃ S

1 = 1.
In the two-loop case we obtain

m2
b(µ

2) = m̂2
(2)α

ν0
s (µ2)

[
1 +

c1 b0 αs(µ
2)

4π2

]ν1

; (20a)

R̃ (2)
S [L] = 3m̂2

(2)

{
B

(2);glob
ν0,ν1

[L] + d S

1

∑

n≥1

d̃ S
n

πn
B

(2);glob
n+ν0,ν1

[L]

}
, (20b)

where the RG-invariant mass m̂2
(2) = 8.22 ± 0.09 GeV2, while the value of ν0 is the same as in

the one-loop case, and ν1 = 2 [(γ1 b0−γ0 b1)/(b0 b1)]Nf =5 = 1.86 (γ1 is the next-to-leading-order
quark-mass anomalous dimension). Note that we determined both values, m̂2

(1) and m̂2
(2), using

the estimates for mb(m
2
b) derived by Penin and Steinhauser [28].

In order to estimate now the importance of higher-order corrections, we need to construct
some model for the generating function P (t). We use a Lipatov-like model [23] with c = 2.4,
β = −0.52, which generates factorially growing coefficients d̃ S

n:

d̃ S

n = cn−1 Γ(n + 1) + β Γ(n)

1 + β
, (21a)

PS(t) =
(t/c) + β

c (1 + β)
e−t/c . (21b)

this model gives a very good prediction for d̃ S
n with n = 2, 3, 4, calculated in QCD PT [25]: 7.50,

61.1, and 625 in comparison with 7.42, 62.3, and 620. Moreover, it predicts the value d̃ S

5 = 7826
which is in a good agreement with the PMS [29, 30] prediction d̃PMS

5 = 7782, obtained in [24].
Then, we apply the FAPT resummation technique to estimate how good is the Nth order

truncation

Γ
(1)

H→bb
[L;N ] = Γb

0

(
m̂2

(1)

) [
A

glob

ν0
[L] + d S

1

N∑

n=1

d̃ S
n

πn
A

glob

n+ν0
[L]

]
(22a)

4Appearance of denominators πn in association with the coefficients d̃n is due to dn normalization.
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in approximating the whole one-loop width Γ
(1)

H→bb
[L] in the range L ∈ [12.4, 13.5] which corre-

sponds to the range MH ∈ [100, 172] GeV with Λ
Nf =3
QCD = 201 MeV and A

glob

1 (m2
Z) = 0.1226. In

this range, we have L5 < L < L6 = ln(m2
t /Λ

2
3) and hence

Γ
(1);∞
H→bb

[L] = Γb
0

(
m̂2

(1)

) {
A

glob

ν0
[L] +

d S

1

π

〈〈
A1+ν0

[
L+λ5−

t

πβ5
; 5

]
+ ∆6A1+ν0

[
t

π

]〉〉

P S
ν0

}
(22b)

with P S
ν0

(t) defined via Eqs. (11) and (21). We analyze the accuracy of the truncated FAPT
expressions (22a) and compare them with the total sum (22b) using relative errors ∆N [L] =

1 − Γ
(1)

H→bb
[L;N ]/Γ

(1);∞
H→bb

[L]. In Fig. 1 we show these errors for N = 2, N = 3, and N = 4 in

the analyzed range of L ∈ [11, 13.7]. We see that already Γ
(1)

H→bb
[L; 2] gives an accuracy of the

order of 2.5%, whereas Γ
(1)

H→bb
[L; 3] is of the order of 1%. Looking in the left panel of Fig. 1, we

12.6 12.8 13 13.2 13.4

0.005

0.01

0.015

0.02

0.025

L

∆2[L]

∆3[L]

∆4[L]

100 110 120 130 140 150 160 170

2

2.2

2.4

2.6

2.8

3

3.2

100 110 120 130 140 150 160 170

2

2.2

2.4

2.6

2.8

3

3.2

MH [GeV℄

Γ
(1);∞

H→b̄b
[MeV℄

Figure 1: Left panel: The relative errors ∆N [L], N = 2, 3 and 4, of the truncated FAPT in
comparison with the exact summation result, Eq. (22b). Right panel: The width ΓH→bb as a
function of the Higgs boson mass MH in the resummed FAPT. The width of the shaded strip
is due to the overall uncertainties, induced by the uncertainties of the resummation procedure
and the pole mass error-bars. Both panels show the results obtained in the one-loop FAPT [24].

understand that in order to have an accuracy better than 0.5%, we need to take into account the
4-th correction. We also verified that the uncertainty due to P (t)-modelling is small, . 0.6%,
while the mb(m

2
b)-induced uncertainty is of the order of 2%. The overall uncertainty then is of

the order of 3%, see in the right panel of Fig. 1.
Qualitatively, the same picture is reproduced at the two-loop order [24]. In the left panel

of Fig. 2, we discuss the convergence properties of the decay widths, truncated at the order

N , relative to the resummed two-loop result Γ
(2);∞
H→bb

(MH). We see that our conclusions drawn

from the one-loop analysis remain valid. Indeed, Γ
(2)

H→bb
(MH ; 2) deviates from the resummed

quantity by not more than 2%, whereas Γ
(2)

H→bb
(MH ; 3) reaches an even higher precision level of

the order of 0.7%.
In the right panel of Fig. 2, we show the results for the decay width Γ∞

H→bb
(MH) in the

resummed two-loop FAPT, varying the mass in the interval m̂(2) = 8.22 ± 0.13 GeV according
to the Penin–Steinhauser estimate mb(m

2
b) = 4.35 ± 0.07 GeV [28]. Comparing this outcome

with the one-loop result—upper strip in the same panel of this figure—reveals a 5% reduction
of the two-loop estimate. This reduction consists of two parts: one part (≈ +7%) is due to
the difference m̂2

(1) − m̂2
(2) in both approximations, while the other (≈ −2%) comes from the

difference in the values of RS(MH) in the one- and the two-loop approximations.
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Figure 2: Left panel: The two-loop width ΓH→bb as a function of the Higgs-boson mass MH

in the resummed (black solid line) and the truncated (at the order N) FAPT [24]. Here, the
short-dashed line corresponds to N = 1, the dashed one to N = 2, and the long-dashed line to
N = 3. Right panel: The two-loop width Γ∞

H→bb
as a function of the Higgs-boson mass MH in

the resummed FAPT is shown (lower strip). The upper strip shows the corresponding one-loop
result.

4 Application to the vector correlator Adler function

Now we analyze the Adler function of the vector correlator. We model the generating function
of the perturbative coefficients dn [31] (note that here d1 = 1, so that d̃n = dn)

DV[L] = d0 +

∞∑

n=1

dn

(
αs[L]

π

)n

(23)

using a generalized Lipatov-like model:

dV
n = cn−1 δn+1 − n

δ2 − 1
Γ(n) , (24a)

PV(t) =
δ e−t/cδ − (t/c) e−t/c

c (δ2 − 1)
. (24b)

Our predictions, obtained with this generating function by fitting the two known coefficients
d̃2 and d̃3, have been included in Table 1 (see [24]). We observe a good agreement between
our estimate dV

4 = 27.1 and the value 27.4, calculated recently by Chetyrkin et al. in Ref.
[31]. Would we use instead a fitting procedure, which would take into account the fourth-order
coefficient d4 in order to predict d5, we should readjust the model parameters in (24) to the new
values {c = 3.5526, δ = 1.32453}. In order to explore to what extent the exact knowledge of
the higher-order coefficients dn is important, we employed our model (24) in [24] with different
values of the parameters: c = 3.63 and δ = 1.3231. These values were selected in order to
reproduce the exact value of the coefficient d4 = 27.4 by the value, close to the Naive Non-
Abelization (NNA) prediction [32]. The difference between the resummed results of the two
models in the region of Nf = 4 appears to be very small — of the order of 0.2%. We also
show in Table 1 the dn estimates obtained by using the Improved NNA (INNA) approximation,
developed in our last paper [24] by taking into account not only the bn

0αn
s terms, but also the

bk
1b

n−2k
0 αn

s ones. This technique produces predictions for higher-order coefficients in terms of
intervals for the dnvalues. We see that our model predictions for the d5 coefficient are all inside
the INNA interval.
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Table 1: Coefficients dn for the Adler-function series with Nf = 4. The numbers in the square
brackets denote the lower and the upper limits of the Improved NNA (INNA) estimates.

PT coefficients d1 d2 d3 d4 d5

pQCD results with Nf = 4 [31] 1 1.52 2.59 27.4 —

Model (24) with c = 3.555, δ = 1.3245 1 1.52 2.59 27.1 2024

Model (24) with c = 3.553, δ = 1.3245 1 1.52 2.60 27.3 2025

Model (24) with c = 3.630, δ = 1.3231 1 1.53 2.26 20.7 2020

“INNA” prediction of [24] 1 1.44 [3.5, 9.6] [20.4, 48.1] [674, 2786]

Then, we have

DAPT
V (Q2) = 1 +

∑

n≥1

dV
n

πn
Aglob

n (Q2) , (25a)

DAPT
V (Q2;N) = 1 +

N∑

n=1

dV
n

πn
Aglob

n (Q2) . (25b)

The global-APT resummation result for DAPT
V (Q2) can be estimated using our resummation

formulas from [18, 23, 24], which we shortly explained in Sect. 2. We show in Fig. 3 the relative
errors ∆V

N (Q2) = 1 − DAPT
V (Q2;N)/DAPT

V (Q2) evaluated in the range Q2 ∈ [2, 20] GeV2 for
four values N = 1, 2, 3, 4. We observe from this figure that already DAPT

V (Q2; 1) provides
an accuracy in the vicinity of 1%, whereas DAPT

V (Q2; 2) is smaller then 0.1% in the interval
Q2 = 1 − 20 GeV2. This means that there is no real need to calculate further corrections: at
the level of an accuracy of the order of 1% it is quite enough to take into account only the
terms up to d2. Again, we verified that this conclusion is stable with respect to the variation
of the model PV(t) parameters. This conclusion is in some sense surprising: The best order
of truncation of the FAPT series in the region Q2 = 2 − 20 GeV2 is reached by the N2LO
approximation, i.e., by keeping just the d2-term.

2.5 5 7.5 10 12.5 15 17.5 20

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Q2 [GeV2]

∆V
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∆V
2

∆V
3

∆V
4

Figure 3: The relative errors ∆V
N (Q2) evaluated for different values of N : N = 1 (short-dashed

red line), N = 2 (solid blue line), N = 3 (dashed blue line), and N = 4 (long-dashed blue
line) of the truncated APT given by Eq. (25b), in comparison with the exact result of the APT
resummation procedure.
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5 Conclusions

We described here the resummation approach in the global versions of both APT and FAPT
for the one- and two-loop running of the effective QCD coupling. We argued that this approach
produces finite answers, provided the generating function P (t) of the perturbative coefficients dn

is known. We considered two applications of our approach to the physical problems of current
interest.

In the case of the Higgs boson decay, H → b̄b, the main conclusion is that to achieve a
truncation accuracy of the order of 1% for the width ΓH→bb(MH) it is enough to take into
account up to the third correction — in complete agreement with Kataev&Kim [33]. In the
case of the vector-current Adler function, DV(Q2), the truncation accuracy is of the order 0.1%,
already reached at N2LO, i. e., by taking into account up to the second-order correction.

In our approach the knowledge of higher-order coefficients, d4, is needed in order to construct
a reliable model for the generating functions P (t). Meanwhile, we showed that the exact values
of still higher coefficients, d5, are not so important.
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